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ON AN INEQUALITY OF CHERNOFF!

By CHRIS A. J. KLAASSEN
University of Leiden

An inequality due to Chernoff is generalized and a related Cramér-Rao
type of inequality is studied.

1. Introduction. Let X be a standard normal random variable and let
G: R — R be a function which is absolutely continuous with respect to Lebesgue
measure with Radon-Nikodym derivative g. In Chernoff (1980, 1981) the elegant
inequality

(1.1) var G(X) = Eg¥(X)

has been presented and proved by a method involving Hermite polynomials. As
has been shown in Chen (1982) this result can also be proved by the Cauchy-
Schwarz inequality and Fubini’s theorem, as follows:

varG(X)Sf (f g(y) dy) #(x) dx<f f &%(y) dy ¢(x) dx
f f &%(y)xg(x) dx dy+f f &%(y)x¢(x) dx dy

I _E()8(y) dy = Eg*(X),

(1.2)

where ¢ is the standard normal density.

Applying this device of Cauchy-Schwarz inequality and Fubini’s theorem one
can obtain upper bounds for var G(X) in terms of g, also when X is not normal.
This has been done in Cacoullos (1982) for absolutely continuous random
variables X and for nonnegative integer valued random variables X. In Section
2 we present a generalization of Chernoff’s inequality (1.1) which is valid for
arbitrary random variables X. The key ideas leading to this generalization are:

* define the relation between G and g properly (cf. (2.5))

+ choose a nonnegative function h and rewrite g in (1.2) as (gh~?)h*/? before
applying the Cauchy-Schwarz inequality (cf. (2.9)).

The resulting inequality (2.8) looks rather complicated, but in many cases it is
sharper and simpler than the corresponding one in Cacoullos (1982).
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It has been pointed out by Cacoullos (1982) that a suitable application of the
Cramér-Rao inequality and a partial integration yields lower bounds for
var G(X), again in terms of g. For a standard normal random variable X the
resulting inequality is

(1.3) var G(X) = {Eg(X)}?,

which resembles (1.1) very much. Indeed,
var G(X)

=z [E(G(X) - EG(X))X)}® = {.L J; g(y)xe(x) dy dx}

(14) 0 'y . o 9
={‘,L Lc 8(y)x¢(x) dx dy+J; fy &(y)xp(x) dx dy}

= fj:w g(y)o(y) dy[ = {Eg(X)}?

and we see that, just like (1.1), inequality (1.3) can be proved by the Cauchy-
Schwarz inequality and Fubini’s theorem, which are of course closely related to
the Cramér-Rao inequality and partial integration respectively. In Section 3 we
generalize (1.4) to the case of arbitrary random variables X. The resulting
inequality provides the same lower bounds as obtained in Cacoullos (1982) as
well as other ones.

We conclude this section by noting that, as pointed out above, the device of
Cauchy-Schwarz inequality and Fubini’s theorem yields both lower and upper
bounds for var G(X) in terms of g and that these bounds may have some value
in cases where they are easier to compute than var G(X) itself or where more is
known about the behavior of g than about that of G.

2. Chernoff’s inequality. In the situation of the introduction, where G
has derivative g with respect to Lebesgue measure, there exist b and ¢ such that

(2.1) G(x) = J; 8(y)dy +c.
With the kernel x: R? — R defined by

(2.2) x (%, ¥) = Log(y) — Lp(y)
or

(203) X(x’ y) = l[b,x)(y) - l[x,b)(y)’

we may write this also as

(2.4) G(x) = f x(x, ¥)g(y) dy + c.
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When u is some o-finite measure, we may generalize (2.4) to

(2.5) G(x) = f x(x, ¥)g(y) du(y) + c.

If in (2.5) u is counting measure on the integers and x is defined by (2.2), then
g(x) =G(x) — G(x — 1) and if x is as in (2.3) then g(x) = G(x + 1) — G(x).

In view of the above, (2.5) seems to be a useful generalization of (2.1). Indeed
we obtain quite general inequalities with it, by very easy proofs.

In what follows, we use the convention that the variance of a random variable
is infinite iff the second moment of that random variable is infinite.

THEOREM 2.1. Let u be a o-finite measure on (R, Z) and X a random variable
with density f with respect to u. Let x: R? — R be a measurable function such
that for p-almost all x € R the function x(x, *): R — R does not change sign.
Furthermore, g: R — R is a measurable function such that G: R — R is well-
defined by (2.5) for some ¢ € R. Finally, h: R — R is a nonnegative measurable
function such that H: R — R is well-defined by

(2.6) H(x) = f x (%, y)h(y) du(y).
If
2.7 r(lx € R|g(x) # 0, f(x)h(x) = 0}) =0,

then the inequality

28  vanGX) = {f £X)_ [ o, OHEe) d#(z)}

(X)h(X)
holds.

PROOF. Analogously to (1.2), i.e., by the Cauchy-Schwarz inequality and
Fubini’s theorem, we have
2

EO) (X, ) 1R 2(y) du(y) i

Val‘fG(X) = Ef{f lX(X’ y) |1/2 h1/2( )

2
sEf{ | ey & duty) | mi d/t(y)}

(2.9)

2
| [ xe &2 HOY @) duy) du(a)
g(y)
=f—-fx(x, YIH (x)f (x) du(x)f (y) du(y).

f(¥)h(y)

Note that Fubini’s theorem may be applied here since x(x,y)H(x) =
x(x, ¥) [ x(x, 2)h(z) dz is nonnegative for u-almost all x and y. 0



ON AN INEQUALITY OF CHERNOFF 969

From this proof it is clear that equality in (2.8) holds iff the variance is infinite
or E;G(X) = c holds and there exists a measurable function C: R — R such that
x(x, ¥){g(y) — C(x)h(y)} = 0 for (f X p)-almost all (x, y) € R2.

Let us consider the case in which u is Lebesgue measure and x is as in
(2.2) or (2.3) with b chosen in such a way that H satisfies E;H(X) = 0. Then
I x(z, x)H(2)f(z) dz = [7 H(z)f(2) dz holds and g and h are derivatives of G and
H respectively. In Table 2.1 the bound from (2.8) for this situation is given for
some choices of f and H.

Note that (1.1) is implied by Examples 1 and 6 of Table 2.1 and that Example
5 of Table 2.1 with « = 1, ¢ = 67" improves Propositions 4.1 and 4.2 of Cacoullos
(1982). When we try to choose H such that the bound in (2.8) becomes dE;g%(X),
for some d > 0, then we have to solve the integral equation [7 Hf = df (x)h(x).
Differentiation of this equation leads to the differential equation H” + f'f'H’
+ d7'H = 0, which by the transformation H’ = f"1Hy is equivalent to the Riccati-
equation ¢y’ + f'¢Y? + d~'f = 0, for which a general solution seems to be unknown.
A solution for some particular cases is given in Examples 1 through 4 of Table
2.1. )

Here the question poses itself for which densities f there exists a finite constant
d such that all measurable functions g satisfy

(2.10) var,G(X) = dEg%X).

Existence of a solution for the above mentioned Riccati-equation is not necessary,

of course.
The next theorem provides a necessary and almost sufficient condition on f

for (2.10) to hold.

THEOREM 2.2. Let u be Lebesgue measure and F a distribution function with
density f. If (2.10) holds for some finite d then we have

(2.11) lim sup, o ¢ f {FA@1—-F)}"™/f <,

On the other hand if lim,jou/f(F~(v)) and limu (1 — w)/f(F~'(u)) exist, then
(2.11) implies the existence of a finite d satisfying (2.10) for all g.

TABLE 2.1
The value of the upper bound of (2.8) for some choices of f and H with u Lebesgue measure
and x as in (2.2)

name f H (2.8)
1. normal (2ma?) V2e~e 2 x o’Eg*(X)
2. exponential Ae ™, x>0 (x — 2/N)eV™  AN“Eg%(X)
3. Laplace Yo Ne M= xel/2M =l 4B (X)
4. logistic 2\ (e + e™™)2 eM—e™ AP Egi(X)
5. gamma {o°T ()} x* e, x>0 X — ag oEXg*(X)

1 - atl 201 -

6. — cla, o) | x| e V20! x Ef| X | g*(X)

a+1
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PrOOF. For all measurable functions y and g: R — [0, ©) we have

a a 2
var;G(X) = infoep {f_w <f &(y) dy) f(x) dx

* J;w (J;x 8() dy)2 f(x) dx}-

S in {(f‘iw I3 8(y) dyd(x)f(x) dx)*

= TeeR [ % Y2(x)f(x) dx

(2 J%8(y) dyw(x)f(x) dx)?|
Ja YA(x)f (x) dx

> infoen {(few {2 ¥} ﬁ\ {iffmg(y) dy)?

+ U A% 9} AT yrle(y) dy)?)
% '

(2.12)

+

Since forall C, D € R
x? + (C — x)? _ c?
aD? (1 - «)D?* D?
holds, inequality (2.12) yields (for positive g and )
varG(X) _ ([% {[Y= ¥f} A [T ¥fle(y) dy)®
Eg(X) — IRZANHi '
With ¢(x) = {F(x) A (1 — F(x))}*¥* 2 and
gx(x) = ({F(x) A (1 = F(x))}***"2/f(x)) NK

for ¢ > 0 and K > 0 this implies

sup, var;G(X)
(2.15) Eg*(X)

(213) infOSasl,xEIR

(2.14)

= 2"%(1 + &) limg_w f {F N\ (1 — F)}/2*2g,

= 2% (1 + ¢) 2 f {F A (1 — F)}™/f.

Taking the limit for ¢ | 0 we see that, if (2.11) is not valid then (2.10) can not
hold.

We assume now that (2.11) holds and that L, = lim, wu/f(F(u)) and
L, = limyy; (1 — u)/f(F~'(u)) exist. If Ly = o, then for every K > 0 there exists a
ug > 0 such that u/f(F~'(u)) = K on (0, ux] and the inequality

v 1+ 1220 -1 _ 1/2, u 1_2 e—1 2 e
(2.16) ej; u'r/fAF(u)) du—ej; {f(F’l(u))] u " du = K°u%

shows that (2.11) can not hold. We conclude that L, and L, have to be finite.
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Consequently there exist a, e € R with 0 < F(a) < %2 < F(e) < 1 such that
{F \ (1 — F)}/f is bounded outside (a, e). Furthermore (2.11) shows that [/ is
finite and we see that the support of f has to be an interval. Choosing now
h(x) = (f(x))™ on (a, e) and h(x) = {F(x) A (1 — F(x))}"*?%f(x) outside
(a, e) and choosing x(x, y) as in (2.2) for some b € (a, e¢) and H as in (2.6), we
see that

f x (z, x)H (2)f (z) dz{f(x)h(x)}™*

is uniformly bounded a.e. on the support of f. Together with (2.8) this
yields (2.10). Note that (2.7) is no restriction here, since the support of f is an
interval. [0

If f is such that there exists an interval over which 1/f is integrable and outside
which (F A (1 — F))/f is bounded, then we will say that Condition 2.1 holds.
From Theorem 2.2 and its proof we see that the following string of implications
holds

(2.10) = (2.11) = Condition 2.1 = (2.10),
where we have used the regularity conditions of Theorem 2.2 in order to prove
the second implication.

LEMMA 2.1. If the support of f is an interval on which log f is concave, i.e., if f
is strongly unimodal, then Condition 2.1 and hence (2.10) hold.

PROOF. In view of the unimodality of f it suffices to prove the boundedness
of F(x)/f(x) for x “close” to F~*(0+) = a. First assume that a > —. If f(a) = 0
then f is nondecreasing and positive on (a, b) for some b > a and we have

F(x)/f(x) = J; f(y) dy/f(x) = J; dy<b—-—a, a<x<b.

If f(a) > 0 the boundedness of F(x)/f(x) on some interval (a, b) is trivial.
Finally, assume that a = —o. Because log f(x) is concave with log f(—») =
—oo, there exist constants b € R and ¢ > 0 such that

log f(x) —log f(y) = c(x—y), y<sx=<b.

Consequently we have
F(x)/f(x) =£ f(y) dy/f(x) SJ: eV dy=1/c, x<b. O

For u counting measure on the integers we consider only the case h(x) = 1
and H(x) = x — v with » = E;X. This may be obtained by the choice

(2.17) x(x, ¥) = 1o (¥) = lwmy(y) — (0 = D1y (),

where [v] is the integer part of ». For this choice of x the function g satisfies
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TABLE 2.2
The value of the upper bound of (2.8) for some choices of f and H with u counting measure on the
integers and x as in (2.17)

name f H (2.8)
1. Poisson e\ (x!) ™ =X NEgi(X)
2. binomial <:) p*(1—=p)** x=np PE{(n — X)g*(X)
. . . = 1) ek _ _ -1 2
3. negative binomial p—1/P1-p) x —k/p (1 -p)pTE;Xg*(X)

g(x) =G(x + 1) — G(x). A few examples of (2.8) for this situation are given in
Table 2.2.

REMARK 1. It is easy to verify that Examples 1 and 2 of Table 2.2 yield only
the first summands in the right-hand sides of inequalities (5.1) and (6 1) respec-
tively of Cacoullos (1982), thus providing better bounds.

3. Cramér-Rao inequality. Here we present a Cramér-Rao type of in-
equality which generalizes (1.3) and (1.4) and which is related to the inequalities
in Lemmas 2.2.3 and 2.2.4 of Klaassen (1981).

THEOREM 3.1. Let u, X, f, x, & and G be as in Theorem 2.1 and let k: R — R
be a measurable function for which Ek*(X) is positive and finite and for which
Ek(X) vanishes. If K: R — R can be defined in such a way that it satisfies

(3.1) K(y)f(y) = f x (x, y)k(x)f (x) du(x), y ER,
then the inequality
3.2) var,G(X) = (E;K(X)g(X))?*(vark(X))™*

holds, with equality iff G is linear in k, f-almost everywhere.

PROOF. Analogously to (1.4) and in view of (3.1) we have
var,G(X)vark(X) = {EG(X)k(X)}?

2

- J, f f X(x Y)8(y) du(V)R) ) du(o)

= {f K(y)g(¥)f(¥) d;t(y)} = (EK(X)g(X))* D

The Cramér-Rao inequality as quoted in Lemma 2.2 of Cacoullos (1982) has
been used in that paper to derive lower bounds for var,G(X). Its relation to
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our Theorem 3.1 becomes clear when we substitute n = 1, f(x, ) = f(x) and
(8/30)log f(x, 8) = k(x).

Let us consider the case in which u is Lebesgue measure and x is as in (2.2)
or (2.3). Then [ x(x, ¥y)k(x)f(x) du(x) = [5 k(x)f(x) dx holds. If f is absolutely
continuous with derivative f’ and finite Fisher information I(f) with respect to
a location parameter, i.e., I(f) = [ (f'/f)’)f < ®, then we may choose & to be a
multiple of f’/f and (3.2) reduces to

(3.3) varyG(X) = (Eg(X))*/1(f).

For a characterization of those distribution functions F for which there exists a
positive constant d satisfying

(3.4) varrG(X) = d(Erg(X))*

for all absolutely continuous functions G with derivative g, the reader is referred
to Definition 4.1 and Theorem 4.2 of Huber (1981) concerning the Fisher
information. i

Some examples of (3.3) and, more generally, (3.2) are given in Table 3.1.

REMARK 2. Note that Examples 1, 6 and 7 of Table 3.1 yield the same lower
bounds as Propositions 3.2, 3.3 and 4.4 respectively of Cacoullos (1982). Choosing
in the normal case k(x) = x? — ¢% + 20%xE;g(X)(E;Xg(X))™" the lower bound

TABLE 3.1
The value of the lower bound of (3.2) for some choices of f and k with p Lebesgue measure and
x as in (2.2)
name f k (3.2)
1. normal (2wa?) V212 x X (Eg(X))?
2. Cauchy {ra(1 + 22672} ! (1 + x%67)! 20%(Esg(X))?
3. Laplace Yo he M= sgn x NEg(X))?
4. logistic 2A (e + e™™) 2 e —e™)(e™ +e™) ! %N HE;g(X))?
5. gamma {e°T(a)} xte™ " 1—(a—1)ox! o¥(a - 2(Eg(X))?, a=z=2
6. normal (2mg?) V22 x2 — o? v (B Xg(X))?
7. gamma {o°T (a)} x"le™*/° ac—x a N(EXg(X))?
TABLE 3.2

The value of the lower bound of (3.2) for some choices of f and k with u counting measure on the
integers and g the forward difference of G

name f k (3.2)
1. Poisson e M\Fx!) ! x— A ME®g(X))?
2. binomial ") p*(1 — p)"=* x—np P (En- X)g(X))?
x n(l - p)

- 1-
3. negative binomial (; _ i) p*1 —p)=* x—k/p _k_p (ErXg(X))®
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from (3.2) becomes ¢*(E;g(X))% + % (E;Xg(X))? which is the same one as in
Proposition 3.4 of Cacoullos (1982).

For u counting measure on the integers we choose x such that for all g and G
satisfying (2.5) we have g(x) = G(x + 1) — G(x). It is not difficult to verify that
x(x, ¥) = x(y, ¥) + 1ix>y and hence [ x(x, y)k(x)f(x) du(x) = Yy k(x)f(x)
hold in this case. Table 3.2 consists of a few examples for this situation.

REMARK 3. Note that in Examples 1 and 2 of Table 3.2 the same lower
bounds are obtained as in Propositions 5.1 and 6.1 of Cacoullos (1982).
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