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RECURRENCE CLASSIFICATION AND INVARIANT MEASURE
FOR REFLECTED BROWNIAN MOTION IN A WEDGE

By R. J. WILLIAMS

University of California at San Diego

The object of study in this paper is reflected Brownian motion in a two-
dimensional wedge with constant direction of reflection on each side of the
wedge. The following questions are considered. Is the process recurrent? If it
is recurrent, what is its invariant measure? Let £ be the angle of the wedge
(0 < £ < 2r) and let 6, and 6, be the angles of reflection on the two sides of
the wedge, measured from the inward normals towards the directions of
reflection, with positive angles being toward the corner (—7/2 < 8,, 8, < 7/2).
Set a = (8, + 6,)/%.

Varadhan and Williams (1985) have shown that the process exists and is
unique, in the sense that it solves a certain submartingale problem, when
a < 2. It is shown here that if « < 0, the process is transient (to infinity). If
0 =< a < 2, the process is shown to be (finely) recurrent and to have a unique
(up to a scalar multiple) o-finite invariant measure. It is further proved
that the density for this invariant measure is given in polar coordinates by
p(r, 8) = r=cos(ad — 0,).

1. Introduction. In [7], Varadhan and Williams resolved the question of
the existence and uniqueness of a strong Markov process with continuous sample
paths that loosely speaking has the following three properties.

(1.1) The state space is an infinite two-dimensional wedge, and the process
behaves in the interior of the wedge like ordinary Brownian motion.

(1.2) The process reflects instantaneously at the boundary of the wedge, the
direction of reflection being constant along each side.

(1.3) The amount of time that the process spends at the corner of the wedge is
zero (in the sense of Lebesgue measure).

Under those conditions for which the process exists and is unique, the following
questions are answered in this paper. Is the process recurrent? If it is recurrent,
what is its invariant measure?

A summary of the pertinent results in [7] (including the precise mathematical
characterization of the process), and of the main results of this paper, is given
below. For this, the following notation is needed.

The wedge state space is given in polar coordinates by

S={(r0:0<60=<¢ r=0}
where ¢ € (0, 27) is the angle of the wedge. The two sides of the wedge are
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denoted by 4S; = {(r, 0): 8 =0, r = 0} and S, = {(r, 8): 6 = £, r = 0}. The origin
0 is the corner of the wedge. The directions of reflection on the two sides of the
wedge are specified by constant vectors v; and v;, normalized such that forj =1,
2, vj - n; = 1, where n; is the unit normal vector to 4S; that points into S. For
each j, define the angle of reflection 6; to be the angle between n; and v;, such
that 6, is positive if and only if v; points towards the origin. Note that —=/2 < 6;
< 7/2. Define a = (6, + 0,)/£.

Let Cs denote the space of continuous functions w: [0, ©) — S. For each
t =0, let 4 = o{w(s): 0 = s < t}, the o-algebra of subsets of Cs generated
by the coordinate maps w — w(s) for 0 < s < t. Similarly, let .# = s{w(s):
0<s<x}.Foreachn€{0,1,2, ---} and F C R? let C"(F) denote the set of
real-valued functions that are n-times continuously differentiable in some domain
containing F. Let C}(F) denote the set of functions in C"(F) that together with
their partial derivatives up to and including those of order n are bounded on F.
If n = 0, the superscript n will be omitted. Define the differential operators

Dj=Uj'V, for j=1,2,

and let A be the Laplacian operator.

The precise mathematical formulation of the question of existence and unique-
ness of a process that heuristically satisfies (1.1)-(1.3) is in terms of a submar-
tingale problem. Given x € S, a solution of the submartingale problem starting
from x is a probability measure P, on (Cs, .#) that satisfies (i)-(iii) below.

(i) P.(w(0)==x)=1.
() EP([5 Low(s)) ds) = 0.
(iii) For each f € C%(S),

(1.4) fw(@) -3 fo Af(w(s)) ds

is a P,-submartingale on (Cs, .#, {#;}), whenever f is constant in a
neighborhood of the origin and satisfies

(1.5) Dif=0 ondS;, for j=1,2.

A family {P,, x € S}, where P, is a solution of the submartingale problem
starting from x, is simply called a solution of the submartingale problem.

The basic problem considered in [7] was the question of the existence
and uniqueness of a solution of the submartingale problem. A summary of the
major results obtained there follows. If @ < 2, then there is a unique solution
{P,, x € S} of the submartingale problem. Furthermore, for x # 0, w(-) reaches
the corner of the wedge with P,-probability zero if « < 0, or with P,-probability
one if 0 < o < 2. If a = 2, there is no solution of the submartingale problem
starting from any x € S. However, in this case, for each x € S, there is a unique
P, satisfying (i) and (iii); it is concentrated on those paths that reach the corner
and terminate there (corresponding to the process with absorption at the corner).
In either case (o« < 2 or o = 2), {P,, x € S} has the strong Markov property and
is Feller continuous (i.e., P, — P, weakly if x, — x).
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For o = 2, since the process associated with {P,, x € S} is absorbed at the
corner, it has the Dirac delta function at the corner as its invariant measure. On
the other hand, if « < 2, it is a nontrivial problem to determine the recurrence
classification and the invariant measure (when one exists) of the process associ-
ated with the unique solution of the submartingale problem. The way in which
this problem is resolved in this paper is outlined below. Henceforth, it is assumed
that o < 2.

For each t = 0 and w € Cg, define

(1.6) Z(t, w) = w(t).

We shall often write Z(t) for Z(t, -), following the usual convention. To ensure
that standard terminology and results on recurrence and invariant measures
can be employed, it is shown in Section 2 that Z and the associated family
{P., x € S} defines a Hunt process. More precisely, it is shown that there are
augmentations ¥ and % of the ¢-algebras .# and .#, such that

1.7 (Cs, & %, Z(t), b, P,)

is a Hunt process with state space (S, %s), where Zs denotes the Borel o-algebra
on S, and 6, is the usual shift operator given by

(1.8) Z(-, 6w)) = Z(- + t, w).

For the definition of a Hunt process and notational conventions see Blumenthal
and Getoor [3; pages 20, 45]. In Section 3 this Hunt process is shown to be
transient (to infinity) if & <0, and in Section 4 it is shown to be (finely) recurrent
if 0 = o < 2. The latter property is used in Section 5, together with results of
Azéma, Kaplan-Duflo and Revuz [1, 2], to show that up to a scalar multiple there
is a unique o-finite invariant measure for the process when 0 < « < 2. In Section
6, the density (with respect to Lebesgue measure) for this invariant measure is
shown to be given in polar coordinates by

(1.9) p(r, ) = r*cos(af — 6,).

Note that p is constant if @ = 0 and that p is integrable in each bounded
neighborhood of the corner because o < 2. Indeed, for « = 2, r~*cos(af — 6;) fails
to be integrable in any neighborhood of the corner; a fact which gives intuitive
support to the finding in [7] that there is no solution of the submartingale
problem when o = 2.

2. Hunt process. If u is a finite measure on (S, %s), define the finite
measure P, on (Cs, .#) by

(2.1) P,(A) = Lu(dx)Px(A) foreach A € 7.

The right member above is well-defined, since x — P,(A) is %s-measurable
(cf. [7]). Let (Cs, .#*, P,) denote the completion of (Cs, .#, P,) and .#* denote
the augmentation of .#; with respect to (Cs, .#*, P,). Define

(2.2) F =N, "
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and for each t = 0 let
(2.3) F =N At

In both (2.2) and (2.3), u ranges over all finite measures on s. It follows from
the Feller continuity and strong Markov property of {P,, x € S}, and Blumenthal
and Getoor [3; pages 20-21, 25-29, 42-45], that {#, t = 0} is right continuous
and

Z = (Cs, &, %, Z(t), 6;, P.)

is a Hunt process on (S, %s). (The killing time ¢{ for .2 is not explicitly mentioned
since P,({ = +x) = 1 for all x € S.) Some notions related to the recurrence
classification of the Hunt process .2 are recalled below.

A set B C S is called nearly Borel if for each finite measure u on s there are
two Borel sets B; and B,, depending on g, such that B, C B C B, and

P, {3t € [0, ®): Z(t) € B:\B,} = 0.
If B is nearly Borel then for B¢ = S\B,
Ts = inf{t > 0: Z(t) € B}
and
Tse = inf{t > 0: Z(t) & B}

are {#]}-stopping times (see Chung [4, page 96]). A set V C S is called finely
open (for ) if for each x € V there exists a nearly Borel set B C S such that
xE€BC Vand

P.(Tp->0) = 1.

The collection of all finely open subsets of S is a topology. It is called the fine
topology on S. For each x € S, let %;(x) denote the collection of all finely open
nearly Borel sets in S that contain x.

For a nearly Borel set B in S, define Rz C Cs by

Rp = {lim sup;.»15(Z(t)) = 1}.

A point x € S is called finely recurrent (for Z’) if for each B € % (x),
P.(Rg) = 1. It is called finely transient if there is a B € % (x) such that
P,(Rg) = 0. A point x € S is either finely recurrent or finely transient (see
Azéma, Kaplan-Duflo and Revuz [1, page 188] for a proof).

The Hunt process Z will be called finely recurrent/finely transient if each point
x € S is finely recurrent/finely transient. A priori, it is possible that .Z could be
neither finely recurrent nor finely transient; however, it will be shown in the
sequel that it is either one or the other.

The functions ® and ¥, defined below, were introduced in [7]. They will be
used often in the following sections. In polar coordinates (r, ), let

o(r, §) = {r"cos(aﬂ —6,), if a#0

(24) Inr+0tan b, if a=0.
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In [7], & was shown to satisfy

(2.5) A® =0 in S\{0}
and
(2.6) Di®=v; - V®=0 on 4S;\{0} for j=1,2.
Define ¥ on S\ {0} by
J'-'fI) if a>0
2.7 ¥=1e* if a=0
ll/‘l’ if a<O0,

and let ¥(0) = 0. Two important properties of ¥ are that it is continuous on S
and ¥ (r, ) is increasing with r for each fixed value of 6.

It was shown in [7] that for each x € S\{0}, 0 < 3 < ¥(x) < K < » and
7 =inf{t = 0: ¥(Z(t)) = n or K}, we have
(2.8) P.(r < o) =1.

Then, by applying the submartingale property (1.4) to a suitable extension of ®
outside {z € S: n < ¥(z) < K} and using (2.5)-(2.6) together with Doob’s stopping
theorem, we obtain:

(2.9) EP[®(Z(7))] = ®(x).
3. Transient if « < 0. The next theorem shows that ¥ is transient to

infinity if « < 0. It follows from this that .= is finely transient, because each
open set is finely open.

THEOREM 3.1. Suppose a <0,7>0and x € S. Then
3.1) P, (lim inf, ¥ (Z(t)) <7u) = 0.

PROOF. For each r = 0, define 7, = inf{t = 0: ¥(Z(t)) = r}. First it is shown
that
(3.2) P(r, <o) =1

whenever 0 < ¥ (z) < r. This clearly holds if ¥(z) = r. If 0 < ¥(2) < r, then it
follows from Varadhan and Williams [7] that 7o = », P,-a.s. and

(3.3) EP[7,] = (2 — &) (r7¥* — &(2)¥*).

To obtain the above from [7], the fact that (cos(af — 6,))¥¥~2 > 1 for 6 € [0, £]
and « < 0 has been used. Now (3.2) follows from (3.3). Finally, if 0 = ¥ (z) <r,
then z = 0 and using the Feller continuity of {P,, y € S} at y = 0, we obtain

(3.4) EP[r,] < lim inf,_oE®[r,].

By (3.3), since #(y) — ® as y — 0 and a < 0, the right member of (3.4) is
dominated by (2 — «)~'r"%% and (3.2) follows.
Let r> ¥(x)V ». Since ¥ = 1/® for « < 0, by setting x = y in (2.9), we obtain
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foreach K>randy€e S: ¥(y)=r,

(3.5) Py(r, <1x) = ((y) — K™)/(n7' — K™").

Since 7 — , P, — a.s. as K — o, it follows from (3.5) that
Py(r, < ®) = 12(y),

where the right member equals nr~ < 1, by the choice of y and r. By combining
this with (3.2), and the strong Markov property of {P,, z € S}, and induction on
n, we obtain for each n € N:

P,(lim inf, .V (Z(t)) <) < (pr™H)"

The desired result (3.1) follows by letting n — o in the above.[
4. Finely recurrent if 0 < a < 2.

DEFINITION. For x,y € S, y is said to lead to x (denoted y — x) iff for each
B € %(x), P,(Tg < ) > 0. It is said that x communicates with y iff y — x and
x — y. “Communicates with” is an equivalence relation.

In this section, it is shown that if 0 = a < 2, then the Hunt process 2" is finely
recurrent and for each x € S the equivalence class

(4.1) Z(x)={y€ES:x>yandy — x}
is all of S. The fine recurrence of the points in S° = S\dS is proved first.

THEOREM 4.1. Suppose 0 < a <2 and x € S°. Then each y € S leads to x and
x is finely recurrent.

PROOF. Let B € %(x), and U and V be nonempty open balls centered at x
such that UC U C V C S°. Then B =B N U € %(x). For each z € V, Z behaves
like Brownian motion under P, until it hits V= S\V D 4S. Since BC U C V,
it follows that B is a finely open nearly Borel set for Brownian motion and from
the fine recurrence properties of the latter that

(4.2) ¢ = infegP,(Ts < Tvwe) > 0.
For each r = 0, let
7, = inf{t = 0: W(Z(t)) = r}.
Then for each r >0and z € S,
(4.3) P,(r, <) = 1.

If « > 0, this can be proved using the strong Markov property and the properties
P,(ro < ®) =1 and Py(r, < ) = 1 (cf. Varadhan and Williams [7]). If « = 0 and
0 < ¥(z) <r, (4.3) follows by the same reasoning as used to prove (3.2) above. If
a =0 and ¥(z) > r, by similar reasoning to that which led to (3.5), recalling that
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¥ = e®? when « = 0, we have for each K > ¥ (z2):
P(r,<71x)=(In K- ®(z))/(In K — In r).

One obtains (4.3) from this by letting K — oo,

_ Since the distance from U to 8S is strictly positive, there is ¢ > 0 such that
UC {z € S: ¥(z) > ¢} (see Figure 4.1). It is shown below that for W= {z € S:
V(z) =¢},

(4.4) Cy = infzesz(Tﬁ < T,;/z) > 0.

For each z € S and closed set F in S, let d(z, F) denote the distance from z to F.
For each z € S\{0}, let arg z denote the polar angle 0 of z = (r, ). Let dp > 0
such that Wy, = {z € W: d(z2, 3S1) = do} C {2z € W: 0 < arg z < ¥¢} and
W, ={z € W:d(z, S2) = do} C {z € W: 24¢ < arg z < ¢}. Define W, =
W\ (W, U W,).

Let oo = Tss A 7./2. Since W, is disjoint from dS U ¥~'(¢/2) and for z € W,,
Z behaves like Brownian motion under P, until the time o, it follows from the
fine recurrence properties of Brownian motion that

(4.5) infzewon(TU < 0’0) > 0.

Let H, = 3S; U {z € S\{0}: arg z = «}. Let 61 = Th, A 7.o. Now W, is disjoint
from H, U ¥~1(¢/2). It follows from [8] that for each z € W;, Z(- A o) under
P, is equivalent in law to Z°(+ A ¢9) where

Z%(t) = X(t) + v1(—ming<s=X2(s))* forall t=0,
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for a two-dimensional Brownian motion X starting from z, and
o) = inf{t = 0: Z°(t) € Hy, U ¥ '(¢/2)}.

The probability that Z° hits the set W, N {z: £/3 < arg z < £/2} before hitting
H, U ¥ 1(¢/2) is strictly positive and continuous as a function of z € W,. Hence,

(4.6) inf,ew,P.(Tw, < o1) > 0.
Similarly, for H, = dS; U {z € S\{0}: arg 2 = £ — =} and o2 = Ty, A 7.2, we have
(4.7) infzewzpz(TWo < 0'2) > 0.

Since W= W, U W, U W,, (4.4) follows from (4.5)-(4.7) and the strong Markov
property. Now by (4.2), (4.4), and the strong Markov property, we have
(4.8) inf,ewP, (T < 7.2) = co = ¢1¢2 > 0.

By a standard iterative argument, using (4.3) with r = ¢ and ¢/2, together with
the uniform bound (4.8) and the strong Markov property, we have for each
y€ES: :

(4.9) P,(Ts <) =1,

and consequently, since B D B,

(4.10) P,(Tg < ®) = 1.

Th(is )proves that each y € S leads to x, because B was an arbitrary member of
B (x).

A simple proof by contradiction now shows that x is finely recurrent. For if x
is not finely recurrent, there is B € %;(x) and t* > 0 such that

P.(Z(t) € B for some t > t*) < 1.

Since the left member above may be rewritten as P,(Pzq+{Ts < o}), this
contradicts (4.10).0

COROLLARY 4.1. Suppose 0 < a < 2 and x € S°. Then % (x) defined by (4.1)
contains S° and is finely closed.

PROOF. It is an immediate consequence of Theorem 4.1 that #(x) contains
S°. Since x € S° is finely recurrent, it follows from Azéma, Kaplan-Duflo and
Revuz [1, pages 199-200] that Z (x) is finely closed. O

The next two results will be used to prove that each point of S is finely
recurrent.

LEMMA 4.1. Suppose B is a nearly Borel subset of S such that

EPx[J; 15(Z(t)) dt] =0, forall x€S.

Then B¢ = S\B is finely dense in S.
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PROOF. See Chung [4; Proposition 4, page 109]. 0

LEMMA 4.2. Suppose o« < 2 and x € S. Then
(4.11) EP’[f 1as(Z (t)) dt] =0.
0

PrROOF. By condition (ii) of the submartingale problem, P,-a.s., Z spends
zero time (in the sense of Lebesgue measure) at the corner of the wedge.
Therefore, it suffices to prove that for each ¢ > 0,

(4.12) EPx[ J; 1ss,(Z(t)) dt] =0

where 9S, = {z € 3S: ¥(2) > ¢}. But this follows from successively applying the
strong Markov property, together with the result of [7] that

Te/2
(4.13) EP‘[J; Losio1(Z(s)) dS] =0
for each z € S: ¥(2) = ¢/2 and 7./, = inf{t = 0: ¥(Z(t)) = ¢/2}.0
COROLLARY 4.2. Suppose 0 < a <2and x € S°. Then & (x) = S.

PROOF. By Lemmas 4.1 and 4.2, S° = S\4S is finely dense in S. By Corollary
4.1, Z(x) contains the fine closure of S°. Thus, S = (S°)/ C #(x) C S, where the
superscript f denotes the fine closure. 0

THEOREM 4.2. Suppose 0 < a < 2. Each x € S is finely recurrent and satisfies
Z(x)=S.

PRrROOF. For x € S° this follows from Theorem 4.1 and Corollary 4.2. By
[1, page 200], a finely recurrent point can only lead to a finely recurrent point.
Since each y € S° is finely recurrent and leads to every x € S, it follows that
each x € S is finely recurrent. Furthermore, since “communicates with” is an
equivalence relation and #(y) = S holds for any y € S9, it follows that #(x) = S
forallxe S.0

Since each x € S is finely recurrent, .2 is finely recurrent.
5. Invariant measure-existence and uniqueness. A ¢-finite measure u

on (S, %s) is an invariant measure for .2 iff for each nonnegative bounded Borel
measurable function h on S:

(5.1) Lu(dx)EPx[h(Z(t))]=J;p(dx)h(x), forall ¢t=0.

A o-finite invariant measure for .2 will be called unique iff it and its positive
scalar multiples are the only ¢-finite invariant measures for Z.
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REMARK. The integrals in (5.1) are nonnegative, but may be infinite for
some functions h.

THEOREM 5.1. Suppose 0 < a < 2. Then there is a unique o-finite invariant
measure for Z.

PROOF. By Theorem 4.2, S is the only equivalence class of points in S under
the relation “communicates with” and all points in it are finely recurrent. In the
terminology of Azéma, Kaplan-Duflo and Revuz [2, page 158], S is the “conserv-
ative class” for 2. The existence and uniqueness of a o-finite invariant measure
for 2 on S then follows from Theorem 1.3 of [2, page 162].0

6. Invariant measure-calculation. Throughout this section, it is as-
sumed that 0 < a < 2. For x = (r, §) € S\ {0}, define

(6.1) p(x) = r=cos(ad — 61),

and define p arbitrarily at the corner of S. Let p be the measure ‘defined in
(S ’ ‘%S) by

(6.2) w(B) = J;p(x) dx, for all B € %s.

The right member of (6.2) will sometimes be written in polar coordinates as
[\ p(r, 8)r dr db. The measure p is o-finite because u(B) is finite for each
compact set B. In particular, since a < 2, this applies to any compact set
containing the origin.

In this section, it is shown that for 0 < & < 2, u is an invariant measure for 2
and hence by Theorem 5.1 it is the unique (up to a scalar multiple) o-finite
invariant measure for 2.

Define vectors v}, j = 1, 2, in polar coordinates by

(6.3) v¥ = (tan 6,, 1) and v¥ = (tan 6,, —1).

Here the first component of v* is in the radial direction and the second component
is in the angular direction of the rotating polar coordinate frame of reference.
Forj=1,2,let

(6.4) ¥ =vf - V.

For each j, v¥ is the vector v; “flipped” around the normal to 4.; and D is the
adjoint boundary operator to D;.

Since p is a linear combination of the real and imaginary parts of the function
2~ for z = (r, 8), and Vp is given in polar coordinates by

(6.5) Vp = (3p/dr, (1/r)(3p/d0)) = —ar™"*(cos(ad — 6,), sin(afd — 61)),

it follows as in Varadhan and Williams [7] that p, defined by (6.1) in a domain
containing S\ {0}, satisfies the following adjoint boundary value problem:

(6.6) Ap=0 in S\{0}
6.7) D¥p=0 on dS;\{0} for j=1,2.
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This is the formal adjoint problem to that associated with the operators A and
{D;, j = 1, 2}, which appear in the submartingale characterization of the process.
When 0 < a < 2, p is not the unique (up to a scalar multiple) positive solution
of (6.6)—(6.7). For instance, the function that is identically one is also a positive
solution of these equations. To ensure uniqueness, an additional condition at the
corner or at infinity is needed. Even when the appropriate uniqueness condition
is satisfied, it is not trivial to verify that the solution is the density of an invariant
measure for the process, because of the discontinuity in the directions of reflection
and in the smoothness of the boundary at the corner of the wedge. Nonetheless,
finding positive solutions of (6.6)—(6.7) is a good way to obtain candidates for the
density of the invariant measure. If it can be verified that the measure associated
with one of these candidates is an invariant measure, then it follows by the
uniqueness established previously that it is the invariant measure.

The following procedure is used in Theorem 6.1 to verify that u is an invariant
measure for .Z. A sequence of smooth bounded domains with associated smooth
vector fields on their boundaries are chosen to approximate S and its associated
vector fields v; on 3S;\{0}, j = 1, 2. The sequence is chosen such that for each
domain, the Brownian motion with oblique reflection in the direction of the
associated vector field at the boundary has u as an invariant measure, and such
that when appropriate weak limits are taken, the invariance of u follows for Z.
The adjoint boundary conditions associated with these smoothed domains and
vector fields involve the derivative of the tangential component of the direction
of reflection. For « # 0, this derivative is not identically zero, i.e., the tangential
component of the direction of reflection is not the same on 4S; and dS, and
therefore cannot be kept the same on an arc joining dS; smoothly to 3S;. As a
consequence, the function that is identically one cannot be an invariant density
for these reflected processes on smoothed domains when « # 0. The appropriate
“corner condition” on p that emerges from this and pertains even when a = 0 is
as follows. For any sufficiently smooth arc 2 lying in S\dS and joining 4.S;
smoothly to dS;, we have

a
6.8) _ 50 d7 = tan(~0,)p(b) ~ (tan :)p(a),
where d/ denotes the infinitesimal element of arc length along = and d/dn
denotes differentiation in the direction of the normal to ¥ that points to the
right as 2 is traversed from 35S, to dS., and a and b are the end points of Z that
respectively lie in 4.S; and 4S,.

THEOREM 6.1. Suppose 0 < a < 2. The o-finite measure u given by (6.1)-(6.2)
is an invariant measure for Z.

PROOF. Since the density p of u is integrable with respect to Lebesgue
measure on each compact set, it follows by approximation that to show u is
invariant, it suffices to prove that (5.1) holds for all nonnegative h € C.(S), the
space of all continuous functions on S that have compact support.
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Let 0 <e <1< K < », Define
(6.9) Fr={z€8S:e=V¥(z) = Kj}
and let U.x be a bounded domain in R? having the following properties (a)-(d).

(@) Ux = {z € R% ¢(2) > 0} and dU.x = {z € R? ¢(z) = 0} for some
¢ € Ci(R?) such that for some 3> 0, | V¢ | =8> 0on dU.

(b) FxCUxC{zES:¢/2=<V¥(2) =K+ 1}.

(¢) 8S;N AUk is connected for j =1, 2.

(d) For each fixed K> 1, dU.x N {z € S: ¥(z) = K} is the same for all
0<e<l.

The function p will be used to define a vector field v.x on d U that equals v;
on 3S; N dU.x for j = 1, 2 and satisfies (6.13) below. For fixed ¢ and K, let n
denote the unit normal vector field on d U,k that points into U,k and let # denote
the unit tangent vector field to d U,k oriented such that U,k is on the right as one
moves in the direction of # on dU.x (see Figure 6.1). Let 3/dn = n - V and
9/97 = 7 - V. Choose 2y € 3S; N dU,x. Define

(6.10) U:‘K =V n= 1 on OU,,K,
(6.11) vik(2) = (vk - 2)(2) = ftan 01)p(zo);(zf)z., iy d/,

for all z € dUeK, where the integral with respect to d/ is the line integral along

FiG. 6.1
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dU.x with respect to arc length in the direction of the unit tangent vector Z By

Gauss’ theorem and (6.6):
f P 4, =0
U, 0N

Thus the integral with respect to d7 in (6.11) is well-defined. Furthermore, it is
readily verified from (6.11) that for any z* € dU :

vix(z*)p(z*) + [Z (dp/dn) dr

(6.12) vi(z) = , forall z € dUx.

p(z)
The vector field v.x was defined so as to satisfy the “adjoint boundary condition”
(6.13) 8/07)(vkp) = dp/dn on AU.

It is verified below that v.x equals v; on I'; = 8S; N dU.x for j = 1, 2. The
remainder of the boundary of U,k is composed of the two arcs

T1=0UxN{z€ 8% ¥(z) <&}
and
T,=90UxN {z € 8% ¥(z) = K}.

By condition (d) above on dU.k, for each fixed K > 1, the arc Z, is the same
for all 0 < e < 1. By (6.7), on I'; we have vf - Vp = 0 or equivalently,

(6.14) dp/dn = (tan 6,)(dp/97).

Thus, by (6.11), vik(z) = tan 6, for all z € 'y, and since v = v, + n =1, it follows
that v.x = v, on T';.

For the proof that v.x = v on I'y, let z; be the closest point of I'; to the corner
and let z, be the closest point of T'; to the corner. Choose ro: 0 <ro < |2z,| A | 24]
and such that {(ro, 8): 0 < 6 < &} does not intersect U.x. Let 2o = (ro, 0) and
23 = (ro, £) (see Figure 6.1). Since v/x(z) = tan 6; on T';, we have by (6.12):

(tan 6,)p(z1) + [% (dp/dn) ds
p(z4) ’

The integral from 2; to z, here is along the arc £,. By Gauss’ theorem and
(6.6), this can be replaced by the integral along the piecewise smooth curve
A = A; U Ay U Aj, where A, is the closed line segment in 4S; from z; to 2o,
Ap = {(ro, 0): 0 < 0 < £}, Az is the closed line segment in dS; from 23 to z4, and
dp/dn is defined except at z;, 22, 23 and 24, as the derivative of p in the direction
of the normal pointing into the domain bounded by A U (—Z,). Then in the same
way that (6.12) follows from (6.11), letting d/ denote the infinitesimal element
of arc length, even off d U,x, we obtain

vik(23) p(23) + [, (dp/On) d7

(6.15) vik(zs) =

(6.16) vik(z4) =
Dp(z4)
where
«(22) p(22) + [, (3p/dn) dr
(6.17) vilzs) = ZEKEIP 20 T J 4y 20D ,

p(z3)



REFLECTED BROWNIAN MOTION IN A WEDGE 771

and
(tan 6,)p(z,) + [, (dp/dn) d/

p(22) )
It is readily verified using (6.7) and (6.18) that vZx(z;) = tan 6,. By substituting
this and 2z, = (ro, 0) in (6.17), and using dp/dn = dp/dr = —ar™*"*cos(afd — 6,)
on A,, we obtain

(6.18) vik(z2) =

(tan 6;)rg%cos(6,) — arg®™! [§ cos(ad — 6,)ro dO

(6.19) Vi) = ro*cos(6z)
= —tan 0,.
Then, substituting (6.19) into (6.16) and using
(6.20) 0=v4f+Vp=29p/dn + tan 6:(dp/d7) on As,
and (6.12), we obtain
(6.21) vix(z) = —tan 6, for all z € I',.

Note that we have just verified that p satisfies the corner condition (6.8).

Since the domain U.x and vector field v.x on dU,x are sufficiently smooth for
the theory of Stroock and Varadhan [6] to apply, it follows that for each x € U.x
there is a unique probability measure P on (Cs, .#) satisfying (i)’-(iii)’ below.

(i)’ Pfw(0)=x)=1

(i)’ PXw(t) € Uxforallt=0)=1.

(iii)’ For any f € C}2([0, ©) X R?) satisfying v.x + Vf= 0 on [0, ©) X dU.,

we have

ft, w()) — J; lugx(w(S))<g—f + % Af)(s, w(s)) ds

s
is a PX-submartingale.

Here C}2%([0, ©) X R?) denotes the set of functions f(¢, x) that together with
their first ¢t-derivative and first two x-derivatives are continuous and bounded on
[0, ©) X R2

It follows immediately from substituting suitable modifications of f(¢, ) = —t
in condition (iii)’ above that:

(6.22) EPi"[ J; Lou, (w(s)) ds] =0.

Moreover, a consequence of the uniqueness of {P, x € U,k} is that (cf. [6, page
196] and [7]):

x — P%X(A) is Borel measurable on U.,x for each A € ~.
Next it is shown that for each bounded Borel measurable function s on U.k:

(6.23) J:_/ EP¥Th(w(t))]p(x) dx=J:_j h(x)p(x) dx, forall t=0.

el
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For this, by approximation, Fubini’s theorem, and the uniqueness of the Laplace
transform, it suffices to show that for each vy > 0 and h € C(U,x):

(6.24) J: EP;‘I'J‘ e "h(w(t)) dt}p(x) dx = 1 J: h(x)p(x) dx.
Uk 0 Y Y Ux

For such ¥ and h, since U,k and v.x are sufficiently smooth, it follows from
Gilbarg and Trudinger [5; pages 122-124, 130-131] that there is a function
g € Ci(R?) satisfying

(6.25) (A —v)g =—-h in Uy,
(6.26) U,k ° Vg =0 on aUcK.

By applying the submartingale property (iii)’ of P2 to f(t, x) = e ™g(x) and
—f(t, x), taking expectations, letting t — o and using (6.22), it follows that

(6.27) gx) = EPf‘"{f e "h(w(t)) dt], for all x € Uk.
0

Since the integrals in (6.24) are the same over U,k and U, it follows from (6.25)
and (6.27) that (6.24) holds if and only if

(6.28) J; Ag(x)p(x) dx = 0.

But this holds because, by the choice of v.x, p satisfies the adjoint boundary
value problem to that satisfied by g, namely, Ap = 0 in U, and (6.13) holds on
dU.,x. The detailed verification of (6.28) using Green’s second identity and
integration by parts on dU,x is left to the reader. Thus (6.23) holds, which means
that p is the density of an invariant measure for the strong Markov process
associated with the family {PX, x € U,x}. To deduce from this that x is an
invariant measure for Z, the next lemma on weak convergence is needed. For
this, let

Fx=1{2€8S:0=V¥(2) = K},
Ux=1{z€ S% 0= ¥(2) = K} U Uk,
and vk be a vector field defined on d U\ {0} by

v =Y on @S\{0}) N 3Fk, j=1,2
X vk on dUxN{z€ S: ¥(z) = K}

where vk is independent of 0 < ¢ < 1, by condition (d) on dU,x.
For each 0 < ¢ < 1 < K, define the probability measure P on (Cs, .#) by

1
"L(UEK )
Note that by setting h = 15 in (6.23) and dividing by u(U.x), it follows that

(6.29) PXA) = J:‘/ PX(A)p(x) dx, forall A € #.



REFLECTED BROWNIAN MOTION IN A WEDGE 773

for any B € %s:

PX(w(t) € B) = PX(w(0))
(6.30)

=L(t17_)~£7 15(x)p(x) dx, forall ¢= 0.
K K

LEMMA 6.1. Ase | 0, the family {P, 0 < ¢ < 1} converges weakly on (Cs, .#)
to the unique probability measure PX on (Cs, .#) that satisfies (I)-(IV) below.

() PXw(0) € B) = u(B)/u(Uk) for all Borel sets B C Uk.
1) PK(w(t) € Uk forallt = O) =1.
(II1) E*® [fo Ly (w(s)) ds] =
(Iv) For each f € C%(S),

fw®) - 3 f Af(w(s)) ds

is a PX-submartingale whenever f is constant in a neighborhood of the
origin and satisfies

k- Vf=0 on dUx\{0}.

PrROOF. The uniqueness of a probability measure PX on (Cs, .#) that satis-
fies (I)-(IV) is proved as follows. Let PJ denote a regular conditional proba-
bility distribution (r.c.p.d.) of PX|.# and let ¢ = inf{t = 0: ¥(w(t)) = K}.
Then it follows from the uniqueness of the solution P, of the submartingale
problem starting from w(0) that for PX-almost every w, we have PY = P, on
M, (cf. [7] and Stroock and Varadhan [6; Theorem 5.6, page 193]). By combin-
1ng this with (I), we see that PX is uniquely determined on M, , Where

= inf{t = 0: ¥(w(t)) = K}. Let P"l denote an r.c.p.d. of PX|.#, and for each
w E {o1 < } define P on (Cs, #) by

(6.31) P3(A) = P3(w: w(- + 1) EA), forall A€ #.

Define 7, = inf{t = ¢;: ¥(w(t)) < 1}. By using the technique employed in [8], for
extending the submartingale property from functions f € C3(S) to functions
f € CE%([0, ) X R?), and using the uniqueness of the solution of the submartin-
gale problem associated with (i)’-(iii)’ above, we may conclude that there
is a PX.null set N, € #,, such that for w & N, U {al = o} and 7(w) =
inf{t = 0: ¥(w(t)) < 1}, we have Pg = P:X,)on #,. Here P, , on #, is the same
for all 0 < e < 1, by condition (d) on U,k and the remark following the definition
of vg. By combining the above, we conclude that PX is uniquely determined on
A, . Continuing in this manner, it follows that for the increasing sequence of
stoppmg times oy, 71, 02, T2, * * + at which w alternately hits the arcs ¥~!(K) and

¥71(1), P¥ is uniquely determmed on .#, and .#, for all n.Since 7,> g, 1 ® as
n — o, by the continuity of w(-), it follows that PX is uniquely determined
on.Z.
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In view of the above uniqueness and the weak metrizability of the set of
probability measures on (Cs, .#), to show that {P, 0 < ¢ < 1} converges weakly
to a Py satisfying (I)-(IV), it suffices to show that given ¢, | 0 as n — o,
{PoX}n, is weakly relatively compact and any weak accumulation point satisfies
properties (I)-(IV).

The weak relative compactness follows in a similar manner to that in [7] (see
also Theorem 4.2 and Lemma 7.3 of [8]). Properties (I), (II), and (IV), are readily
verified to hold for any weak accumulation point PX of {P%¥}2_,. To verify
property (III) for such a P, let 0 < < 1. By setting B={z € S: 0 = ¥(2) < 1}
in (6.30), then integrating over a finite time interval and using Fubini’s theorem,
we obtain for all ¢t = 0:

t
#(UcK)

By letting ¢ | 0 through a sequence such that the associated P:¥ converge weakly
to P¥, it follows that

(6.32) EPZ"[ fo Lo (¥ (w(s))) ds = fv Lo, (¥ (x)) p(x) dx.

(6.33) Epf[f Lio.m (¥ (w(s))) dSJ <L f_ Lio,n (¥ (x)) p(x) dx.
0 w(Uk)

Uk

Then by letting #n | 0 and invoking Fatou’s lemma on the left and monotone
convergence on the right, we obtain:

t
(6.34) EPi‘[ f Loy (¥ (w(s))) ds] < 0.
(1]
Since ¥ (x) = 0 if and only if x = 0, and ¢ was arbitrary, property (III) follows. [

We shall now show that (5.1) holds for each nonnegative h € C.(S). In
deducing this from (6.23), some care is needed, because y is only a o-finite
measure, not a finite measure on S. It follows from the invariance property (6.23),
together with the definition (6.29) of P:¥ and the weak convergence established
in Lemma 6.1, that for any given nonnegative h € C.(S):

(6.35) w(Ox)EP¥Th(w(t))] = L h(x)p(x) dx.
Define
ok = inf{t = 0: ¥ (w(t)) = K}.

By the uniqueness argument in the proof of Lemma 6.1 we have P? = P, on
#,,, where P, denotes an r.c.p.d. of PX| #,. Thus, the left member of (6.35) is

oK
equal to

p(O)EPE [h(w () (Lie<og + Limag)]
(6.36) = J:_] Lo, (¥ (x))EP<[h(w(t)); t < ok]p(x) dx

+ w(Ox)EPHR(w(t)); t = o).
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By monotone convergence and the definition of x, to complete the proof of (5.1),
we must show that the last term in (6.36) tends to zero as K — . By conditioning,
this term equals

(6.37) w(Ox)EPok < t; EP5(h(w(t)) | #,,)].

Since h has compact support, there is M > 1 suchthat h=0o0n {z € S: ¥(z) =
M]}. Suppose henceforth that K > M. Then, using similar reasoning to that in
the proof of uniqueness in Lemma 6.1, it follows that (6.37) is dominated by

(6.38) J:—, EP[ok = t; Pilplrm < t} R1|]1p(x) dx

e

where 7y (w) = inf{t = 0: ¥(w(t)) < M},
I Il = sup.es| h(2)| = supwe<m| h(z)| < ,

and (6.38) is independent of 0 < ¢ < 1. The following lemma is used to verify
that (6.38) tends to zero as K — oo,

LEMMA 6.2. Foreacht = 0and x € {z € Uk: ¥(z) = M}, we have

tATy
(6.39) Epiﬁ[exp(—J; q(w(s)) ds); ™= t] < g(¥(x)),

where for (r, 8) € S\{0},

(r, 0) = Yoa®(cos(af — 60,))¥)72 jf 0<a<2
ar l/zezetanel(l + tan201) if oa = O’

andfor M = y<wandv = a/2,

(6.40)

Y Fr(aK ) 5 faly A K)) + S 1(aKV*).Z(aly A K)V)
M Fr(aKV). I (aM ) + Fps(aKV) T aMY )]
(6.41) g(y) = if 0<a<?2

Fa(K) Ay A K) + F(K)Z(y A K)
TAK)A(M) + F1(K) (M)

if a=0,

where %, and %, denote the modified Bessel functions of order +y.

PROOF. To obtain (6.39), a technique from [7] was used. Namely, functions
of the form f = g(¥) were considered, because they automatically satisfied the
homogeneous boundary conditions:

(6.42) v+ Vf=0 ondUxNaS; for j=1,2.

Then g was chosen to satisfy a suitable one-dimensional boundary-value problem,
such that through the submartingale property (iii)’ of P, the estimate (6.39)
was obtained. Details of the verification of (6.39) are given below.

Using the properties of modified Bessel functions (see, for example, Abramo-
witz, M., and Stegun, I. A., Handbook of Mathematical Functions, National Bureau
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of Standards, 1972, pages 375-378) one can verify that g € C3([M, K) U (K, «))
satisfies the following differential equation if 0 < o < 2:

(2/a)—2
. ]y g(y) for M<y<K
(6.43) 8" (y) = ‘{0 for y> K,

or if a = 0 it satisfies

” -1 7 P g(y) fOI' M<y<K
(6.44) g’ (y) +y7'g (y)—‘{o for y> K.

Furthermore, since .7 (y) and %, (y) are positive for y > 0 and y = 41, and

(d/dy)(y’' A (y) = y' 51 (y),
and
d/dy)(y* Z(y)) = =y' Z-1(y),

it follows that g € C}([M, «)) and

(6.45) &M) =1,

(6.46) g(y)=0 for all y= M,
(6.47) g'(y)=g'(K)=0 forall y=K,
(6.48) g(y) = g(K) for all y= K.
From (6.42) and (6.48) we conclude that

(6.49) vk - Vf=0 on dUgN {z € S: ¥(z) = M}.

Moreover, by the definitions (2.4) and (2.7) of ® and ¥, on {z € Ux: M < ¥ (2)
< Kor K< ¥(z)} we have

Af(z) = g"(¥(2))| V¥ (2)|* + ' (¥(2))A¥ (2)

(6.50) _ {g"(\wz))(\v(z))z-z/“zq(z) i 0<a<?2
(8" (¥(2)) + (¥(2)) g’ (¥(2)))2q(z) if a=0.

By combining (6.50) with (6.43)-(6.44), it follows that for z € Uk:

(6.51) WBAf(z) = {(()fQ)(z) gg; I‘I\,l(:) Z(;{) <K

Fix x € {z € Uk: ¥(z) = M}. Although fis not twice continuously differentiable
across {z € Uk: ¥(z) = K}, the submartingale property (iii)’ of P, with t A 7
and 1y,\v-xk; respectively in place of ¢ and 1y, does hold for f. This can be
verified by a standard approximation argument, using suitable approximations
f. € C3(R?) to f, together with Doob’s stopping theorem and the property:

EPi“[ J; Ly nvek (W(s)) ds] = 0.

The latter is a consequence of the fact that under P, inside Uk, w(-) behaves
like Brownian motion up to the time 75, (cf. [7] or [8, Lemma 3.3]). Thus, in
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view of (6.49), we have
tATy
(6.52) m(t) = f(w(t A 7n)) — % J; (Lyne=ryAf)(w(s)) ds

is a P¥-martingale. Let
tATy
(6.53) b(t) = exp(— J; q(w(s)) ds).

Since ¢ = 0 on S\{0}, b is a bounded, decreasing process on (Cs, .#, P¥). By
applying the product formula of stochastic calculus to b(¢) f (w(t A 7ar)) and using
(6.52), we obtain PX-a.s. for all ¢t = 0:

b()f(w(t A 7u)) — f(x)

tAry tATp
(6.54) = J; b(s) dm(s) + ';' fo b(s) Ay niv=rAf) (w(s)) ds

thry
- f f(w(s))g(w(s))b(s) ds.

The stochastic integral with respect to dm(s) in (6.54) is a P¥-martingale and
the sum of the terms following it is nonpositive, by (6.51) and the nonnegativity
of f, g and b. Hence, b(t) f(w(t A 7)) is a P¥-supermartingale and therefore

EP(e) fw(t A 7a))] < f(x).
The desired result (6.39) follows from this and (6.45)-(6.46). O

It is readily verified that for g given by (6.40),
go = sup(.pesio g (r, §) < ce.

Hence, it follows from Lemma 6.2 and (6.48) that for each t = 0 and
x € {z€ Uk: ¥(2) = K}:

(6.55) PH(ry < t) < e"'g(K).

The asymptotic properties of the modified Bessel functions are such that, as
Yy — %,
ey

HAH(y) ~ {1+ 0(y™)}

2wy
0
() ~ \/%e-yu +0(y7™).

O(KO-Ye)/2 —aKV= if 0<a<?2
(6.56) g(K) = {OEK‘We‘fop( oK) ;f o _—.3,

Hence, as K — o,
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The final estimate that we need is:

n(Ux) = L p(x) dx = L rY*r dr df
(6.57) K ¥
~JE(K+ 1)C)**/(2 - a) if 0<a<?2
VeE (K + 1)%Itntl if a=0,

where
C. = (mingepogjcos(ad — 6;))72.

This follows from the definitions of Ux and V¥, because z = (r, §) € Uy implies
¥ (2) < K + 1 and consequently

rr=K+1)C, if 0<a<2
or
r< (K + l)et!=al jf o =0. )
By combining (6.55), (6.56), and (6.57), we see that (6.38) is dominated by
r(Ux)e®g(K)| k|,

and that this tends to zero as K — . [1
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