ASYMPTOTIC BEHAVIOUR OF STABLE MEASURES NEAR THE ORIGIN

By M. Ryznar

Wrocław Technical University

We investigate the lower tail of $q_r = (\sum_{i=1}^\infty |\alpha_i \theta_i|^r)^{1/r}$ seminorms on R^∞ , where $r \geq 1$ and θ_i are standard p-stable real random variables. We prove that for $p < r \leq 2$ we have $P\{q_r \leq t\} \geq \exp\{-ct^{-pr/(r-p)}\}$ in some neighbourhood of 0, where c is a nonnegative constant. If $r \leq p$, then for any positive, increasing function f, we can find q_r such that $P\{q_r \leq t\} \leq f(t)$ for $t \leq 1$. We also give a new characterization of Banach spaces of stable type p in terms of the behaviour of $\mu\{\|\cdot\| \leq t\}$ near 0, where μ is a symmetric and p-stable measure.

1. Introduction. In [2], Hoffmann-Jörgensen, Shepp, and Dudley have studied properties of Gaussian seminorms on R^{∞} . For example, they have shown that for norms $q = \sup |\alpha_n f_n|$ or $q = (\sum \alpha_n^2 f_n^2)^{1/2}$, where f_n are independent standard normal random variables, we have $P\{q \leq t\} \downarrow 0$ when $t \downarrow 0$ as rapidly as desired.

In this paper we consider p-stable seminorms, $0 . Contrary to the Gaussian case, distribution functions of norms as above, when <math>f_n$ are standard p-stable, cannot tend to 0 as $t \downarrow 0$ in an arbitrary way.

In Section 4 we show that if $q_r = (\sum |\alpha_n|^r |f_n|^r)^{1/r}$, $p < r \le 2$, then in some neighbourhood of 0, we have

$$P\{q_r \leq t\} \geq \exp\{-ct^{-rp/(r-p)}\},$$

where c is a constant determined by q_r . For $r \le p$ the situation is different: For any increasing function f, f(0) = 0, we can find a seminorm q_r such that $P\{q_r \le t\} \downarrow 0$, as $t \downarrow 0$ faster then f.

In Section 5 we show that for a separable Banach space E the following conditions are equivalent:

- (i) E is of stable type p.
- (ii) There exist positive numbers ρ and t_0 such that for every symmetric p-stable random vector X with spectral measure m, m(E) = 1, we have

$$P\{\|X\| \le t\} \ge \exp(-t^{-\rho})$$

for $t \leq t_0$.

2. Preliminaries. (E, \mathcal{B}) is called a measurable vector space if E is a real vector space and \mathcal{B} is a σ -field of subsets of E such that addition and multiplication by scalars are measurable operations.

Received March 1984; revised December 1984.

AMS 1980 subject classifications. Primary 60B11; secondary 60E07.

Key words and phrases. Stable measures, seminorm, lower tail, space of stable type p.

A function $q: E \to [0, \infty]$, q(0) = 0, is called a seminorm if it is subadditive and homogeneous. Throughout this paper we will only consider measurable seminorms.

A probability measure μ on (E, \mathcal{B}) is called p-stable, 0 , if for every independent <math>E-valued random vectors X, Y with distributions μ and every $\alpha, \beta > 0$ we have

(2.1)
$$\mathscr{L}(\alpha X + \beta Y) = \mathscr{L}((\alpha^p + \beta^p)^{1/p} X + z),$$

where $z \in E$ and where $\mathcal{L}(X)$ denotes the distribution of X. If for every $\alpha, \beta > 0$, z can be taken to be 0, μ is called strictly p-stable.

Throughout this paper θ will denote a real stable random variable with the characteristic function $\exp(-|t|^p)$, $0 ; <math>\{\theta_i\}$ will denote independent copies of θ .

A Banach space E is said to be of stable type p, 0 , if for each <math>p', 0 < p' < p, there exists a constant C such that for all $n \in \mathcal{N}$ and any $x_1, \ldots, x_n \in E$

$$\left(E\left\|\sum_{i=1}^n \theta_i x_i\right\|^{p'}\right)^{1/p'} \le C\left(\sum_{i=1}^n \|x_i\|^p\right)^{1/p}.$$

A theorem of Maurey and Pisier [6] and Krivine [3] states that a Banach space E is of stable type $p,\ p<2$, if and only if l_p is not finitely representable in E. We recall that l_p is finitely representable in E if for each $\varepsilon>0$ and each $n\in\mathcal{N}$ one can find $x_1,\ldots,x_n\in E$ such that for all $\beta_1,\ldots,\beta_n\in R$ the following holds:

$$(2.2) \left(1-\varepsilon\right)\left(\sum_{i=1}^{n}|\beta_{i}|^{p}\right)^{1/p} \leq \left\|\sum_{i=1}^{n}x_{i}\beta_{i}\right\| \leq \left(1+\varepsilon\right)\left(\sum_{i=1}^{n}|\beta_{i}|^{p}\right)^{1/p}.$$

We will also refer to Banach spaces of Rademacher type $p, 1 \le p \le 2$. E is said to be of Rademacher type $p, 1 \le p \le 2$, if there exists a constant B such that for all $n \in \mathcal{N}$ and any $x_1, \ldots, x_n \in E$

(2.3)
$$\left(E \left\| \sum_{i=1}^{n} r_{i} x_{i} \right\|^{p} \right)^{1/p} \leq B \left(\sum_{i=1}^{n} \|x_{i}\|^{p} \right)^{1/p},$$

where $\{r_i\}$ is a Rademacher sequence.

It is well known (see, e.g., [8]) that if E is a separable Banach space then for any p-stable, symmetric, E-valued random vector X the characteristic functional has the representation:

$$E\left[\exp(ix^*X)\right] = \exp\left(-\int_E |x^*x|^p \, dm(x), \qquad x^* \in E^*,$$

where m is a finite measure concentrated on the unit sphere of E. m is called the spectral measure of X.

We will also use the following consequence of the Three Series Theorem. Let 0 . Then

- (i) For 0 < r < p the series $\sum |\alpha_i \theta_i|^r$ converges a.s. if and only if $\sum |\alpha_i|^r < \infty$.
- (2.4) (ii) $\sum |\alpha_i \theta_i|^p$ converges a.s. if and only if $\sum |\alpha_i|^p log(1 + 1/|\alpha_i|)$ $< \infty$.
 - (iii) For r > p the series $\sum |\alpha_i \theta_i|^r$ converges a.s. if and only if $\sum |\alpha_i \theta_i|^p < \infty$.
- 3. Lower tail of p-stable random vectors, 0 . We first consider the situation when <math>0 . Let <math>q be a measurable seminorm on a measurable vector space (E, \mathcal{B}) and let X be an E-valued strictly p-stable random vector. Assume that q(X) is finite a.s.

Proposition 3.1. If $0 then for <math>t \le s$ we have

(3.1)
$$P\{q(X) \le t\} \ge \exp\{-c(s)t^{-p/(1-p)}\},$$
 where $c(s) = -2s^{p/(1-p)}\log P\{q(X) \le s\} \ge 0.$

PROOF. Let Y be an independent copy of X. By (2.1) $\mathcal{L}(2^{1/p}X) = \mathcal{L}(X + Y)$. Therefore,

$$(P\{q(X) \le s\})^2 = P\{q(X) \le s, q(Y) \le s\}$$

$$\le P\{q(X+Y) \le 2s\} = P\{q(2^{1/p}X) \le 2s\}$$

$$= P\{q(X) \le \alpha s\},$$

where $\alpha = 2^{(p-1)/p} < 1$.

Iterating (3.2) we get

$$(3.3) \qquad \left(P\{q(X) \le s\}\right)^{2^n} \le P\{q(X) \le \alpha^n s\} \quad \text{for } n \ge 0.$$

Because $q(X) < \infty$ a.s., there exists a value s such that $P\{q(X) \le s\} > 0$ and since $\alpha^n \to 0$ then, by (3.3), $P\{q(X) \le s\} > 0$ for every s > 0. Taking logarithms of both sides of (3.3) we obtain

$$\left(\alpha^{n}s\right)^{p/(p-1)}s^{p/(1-p)}\log P\{q(X)\leq s\}\leq \log P\{q(X)\leq \alpha^{n}s\}.$$

If $\alpha^{n+1}s < t \le \alpha^n s$ then $t^{p/(p-1)} \ge (\alpha^n s)^{p/(p-1)}$, so we have

$$\begin{split} t^{p/(p-1)} s^{p/(1-p)} \log P \big\{ q(X) \leq s \big\} &\leq \left(\alpha^n s \right)^{p/(p-1)} s^{p/(1-p)} \log P \big\{ q(X) \leq s \big\} \\ &= \left(\alpha^{n+1} s \right)^{p/(p-1)} \!\! \left(\alpha s \right)^{p/(1-p)} \!\! \log P \big\{ q(X) \leq s \big\} \\ &\leq \alpha^{p/(1-p)} \!\! \log P \big\{ q(X) \leq \alpha^{n+1} s \big\} \\ &\leq (1/2) \!\! \log P \big\{ q(X) \leq t \big\}. \end{split}$$

Taking exponents of both sides we obtain (3.1).

As we will see later (Remark 4.7), the exponent -p/(1-p) in the formula (3.1) cannot be improved even when E=R.

If $p \ge 1$ the following example taken from [7] shows that it is possible that $q(X) < \infty$ a.s. and $P\{q(X) \le t\} = 0$ holds for some t > 0.

EXAMPLE 3.2. Let $\{a_k\}$, $\{n_k\}$ be sequences such that $(1/a_k) \sum_{i=1}^{n_k} |\theta_i| \to 1$ a.s. Such a choice is possible by virtue of a version of Weak Law of Large Numbers ([1], Chapter 7, page 236). Now, if we take $E = R^{\infty}$ with its cylindrical σ -field, $q(x) = \limsup_{k \to \infty} (1/a_k) \sum_{i=1}^{n_k} |x_i|$ and $X = (\theta_1, \theta_2, \ldots)$, then

$$P\{q(X) \le t\} = \begin{cases} 0 & t < 1, \\ 1 & t \ge 1. \end{cases}$$

4. l_r seminorms on R^{∞} . In this section E will stand for R^{∞} with its cylindrical σ -field. We study here the behaviour of the lower tail of the seminorms $q_r(x) = (\sum_{i=1}^{\infty} |\alpha_i x_i|^r)^{1/r}$ for the R^{∞} -valued p-stable random vector $X = (\theta_1, \theta_2, \ldots)$.

We will use in the sequel the following well known fact (see [1], Chapter 6).

LEMMA 4.1. Let $p < r \le 2$ and η be a positive random variable with Laplace transform $\exp(-t^{p/r})$ and let ξ be a random variable with characteristic function $\exp(-t^r)$. If η and ξ are independent then

(4.1)
$$\mathscr{L}(\theta) = \mathscr{L}(\xi \eta^{1/r}).$$

Now, we state and prove one important fact used in the sequel. First, we introduce some notation. Denote by

$$c(s, r, p) = -2(2E|\xi|^p)^{r/(r-p)} s^{p/(r-p)} \log P\{\eta \le s\},$$

where $p < r \le 2$, s > 0, and ξ , η are as above. Denote $\|\{\alpha_i\}\|_p = (\sum_{i=1}^{\infty} |\alpha_i|^p)^{1/p}$.

Proposition 4.2. If $p < r \le 2$ and $\|\{\alpha_i\}\|_p < \infty$, then

$$(4.2) P\{q_r(X) \le t\} \ge (1/2) \exp\{-c(s, r, p) (t/\|\{\alpha_i\}\|_p)^{-rp/(r-p)}\},$$

$$for \ t \le 2^{1/p} s^{1/r} (E|\xi|^p)^{1/p} \|\{\alpha_i\}\|_p.$$

PROOF. By part (iii) of (2.4) we have that $q_r(X)$ is finite a.s. Let $\{\xi_i\}$, $\{\eta_i\}$ be sequences of independent random variables defined on probability spaces $(\Omega_1, \mathcal{B}_1, P_1)$, $(\Omega_2, \mathcal{B}_2, P_2)$, respectively, such that $\mathcal{L}(\xi_i) = \mathcal{L}(\xi)$ and $\mathcal{L}(\eta_i) = \mathcal{L}(\eta)$. On the product space, $\{\xi_i\}$ and $\{\eta_i\}$ are independent, therefore, by (4.1),

(4.3)
$$\mathscr{L}(\{\theta_i\}) = \mathscr{L}(\{\xi_i\eta_i^{1/r}\}).$$

Since η is strictly (p/r)-stable, by (2.1) we have

$$\mathscr{L}\left(\sum_{i=1}^{n}\beta_{i}\eta_{i}\right)=\mathscr{L}\left(\left(\sum_{i=1}^{n}\beta_{i}^{p/r}\right)^{r/p}\eta_{1}\right),\qquad\beta_{i}\geq0.$$

By (4.3), (4.4), and Fubini's theorem and since η_1 is positive and (p/r)-stable

$$\begin{split} P\big\{q_r\big(X\big) \leq t\big\} &= P\bigg\{\sum_{i=1}^{\infty} |\alpha_i|^r |\theta_i|^r \leq t^r\bigg\} \\ &= P_1 \times P_2 \bigg\{\sum_{i=1}^{\infty} |\alpha_i|^r |\xi_i|^r \eta_i \leq t^r\bigg\} \\ &= P_1 \times P_2 \bigg\{\bigg(\sum_{i=1}^{\infty} |\alpha_i|^p |\xi_i|^p\bigg)^{r/p} \eta_1 \leq t^r\bigg\} \\ &= P_1 \times P_2 \big\{Z\eta_1 \leq t^r\big\}, \end{split}$$

where $Z = (\sum_{i=1}^{\infty} |\alpha_i|^p |\xi_i|^p)^{r/p}$. Therefore, for $\alpha > 0$ we have

$$(4.5) P\{q_r(X) \le t\} \ge P_1 \times P_2\{Z \le 1/\alpha, \eta_1 \le \alpha t^r\} \\ = P_1\{Z \le 1/\alpha\} P_2\{\eta_1 \le \alpha t^r\}.$$

By Chebyshev's inequality we have

$$\begin{split} P_1 \big\{ Z \leq 1/\alpha \big\} &= 1 - P_1 \big\{ Z > 1/\alpha \big\} \geq 1 - E Z^{p/r} \alpha^{p/r} \\ &= 1 - \| \big\{ \alpha_i \big\} \|_p^p E |\xi|^p \alpha^{p/r}. \end{split}$$

Applying (3.1) for $\alpha t^r \leq s$, we obtain

$$\begin{split} P_2\{\eta_1 \leq \alpha t^r\} \geq \exp \left\{2s^{p/(r-p)} \log P\{\eta \leq s\} \alpha^{p/(p-r)} t^{-rp/(r-p)}\right\}. \\ \text{Choosing } \alpha = (2^{1/p} \|\{\alpha_i\}\|_p (E|\xi|^p)^{1/p})^{-r}, \text{ we get } (4.2). \end{split}$$

Remark 4.3. If r>2 then the inequality (4.2) holds whenever we put r=2 in the right-hand side of this inequality. It is a consequence of the elementary fact that $q_r \leq q_2$, r>2. If $q_{\infty}=\sup|\alpha_i x_i|$ then $q_{\infty}(X)$ is finite a.s. if and only if $\|\{\alpha_i\}\|_p<\infty$ by the Borel-Cantelli lemma. Because $q_{\infty}\leq q_2$, (4.2) holds for r=2 in the right-hand side.

Next, we try to give an upper bound of $P\{q_r(X) \le t\}$. Our approach follows that in [2], which considers the Gaussian case.

Let λ_n denote the Lebesgue measure on \mathbb{R}^n and

$$B_n^r(t) = \left\langle x \in \mathbb{R}^n : \left(\sum_{i=1}^n |x_i|^r \right)^{1/r} \le t \right\rangle, \quad r, t > 0.$$

As an easy application of the formula for the Dirichlet integral ([9], Section 7.7, page 178), we have that

(4.6)
$$\lambda_n \{B_n^r(1)\} = (2/r)^n (\Gamma(r^{-1}))^n (\Gamma(nr^{-1}+1))^{-1}.$$

Lemma 4.4. There exist positive constants A and B (determined by r) such that

(4.7)
$$(Bn^{-1/r})^n t^n \leq \lambda_n \{B_n^r(t)\} \leq (An^{-1/r})^n t^n,$$
 for all $t > 0$ and all $n \in \mathcal{N}$.

PROOF. Obviously, it is enough to prove (4.7) for t = 1. Let us estimate $\Gamma(nr^{-1} + 1)$:

$$\Gamma(nr^{-1}+1) = \int_0^\infty x^{n/r} e^{-x} \, dx \ge \int_n^\infty x^{n/r} e^{-x} \, dx \ge n^{n/r} e^{-n}.$$

Because $\sup_{r>0} x^{n/r} e^{-x/2} = (2nr^{-1})^{n/r} e^{-n/r}$, hence

$$\Gamma(nr^{-1}+1) = \int_0^\infty x^{n/r} e^{-x/2} e^{-x/2} dx \le 2((2r^{-1})^{1/r} e^{-1/r})^n n^{n/r}.$$

If we put $A = 2r^{-1}\Gamma(r^{-1})e$ and $B = (2^{-1}er)^{1/r}r^{-1}\Gamma(r^{-1})$, then (4.7) follows immediately by (4.6).

Let g be the density of the distribution of θ and let $M = \sup_{x \in R} g(x) < \infty$. Assume that $\alpha_i > 0$ for all $i \in \mathcal{N}$. As a consequence of the above lemma and the following inequality

$$q_r = \left(\sum_{i=1}^{\infty} \alpha_i^r |\theta_i|^r\right)^{1/r} \ge \left(\sum_{i=1}^{n} \alpha_i^r |\theta_i|^r\right)^{1/r}, \qquad n \in \mathcal{N},$$

we get

LEMMA 4.5. For all $n \in \mathcal{N}$ and t > 0

$$(4.8) P\{q_r(X) \le t\} \le \left(\prod_{i=1}^n 1/\alpha_i\right) (M \cdot An^{-1/r})^n t^n.$$

Example 4.6. Let r > p and $\alpha_i = (MAi^{(1/p+\epsilon)})^{-1}$, $\epsilon > 0$, where M and A are as in Lemma 4.5. Then

$$P\big\{q_r(X) \leq t\big\} \leq e \cdot \exp\big\{-\big(et\big)^{-rp/(r-p)+\delta}\big\} \quad \text{for } t \leq e^{-1},$$

where $\delta = r^2 p^2 \varepsilon (r - p + r p \varepsilon)^{-1} (r - p)^{-1}$.

Indeed, by part (iii) of (2.4) we have $q_r(X) < \infty$ a.s. Therefore, by (4.8),

$$P\{q_r(X) \leq t\} \leq \left(\prod_{i=1}^n i^{1/p+\epsilon}\right) (n^{-1/r})^n t^n \leq (n^{1/p-1/r+\epsilon}t)^n.$$

If we take $n = [(et)^{-pr/(r-p)+\delta}]$, where [x] stands for the integer part of x, we get for $t \le e^{-1}$

$$\begin{split} P\big\{q_r(X) \leq t\big\} &\leq \exp\Big\{-\Big[\big(et\big)^{-pr/(r-p)+\delta}\Big]\Big\} \\ &\leq e \cdot \exp\Big\{-\big(et\big)^{-rp/(r-p)+\delta}\Big\}. \end{split}$$

This example shows that for every $\varepsilon > 0$ there exists a sequence $\{\alpha_i\}$ such that $q_r(X) < \infty$ a.s. and

$$(4.9) P\{q_r(X) \le t\} = o\left(\exp\{-t^{-pr/(r-p)+\epsilon}\}\right) as t \downarrow 0$$

if p < r. Therefore, the exponent -pr/(r-p) in the right-hand side of (4.2) cannot be improved.

REMARK 4.7. Let η be a positive random variable with the Laplace transform $\exp(-t^p)$, p < 1, then for every $\varepsilon > 0$

$$(4.10) P\{\eta \le t\} = o\left(\exp\{-t^{-p/(1-p)+\varepsilon}\}\right) as t \downarrow 0.$$

PROOF. If $q_1(X) < \infty$ a.s. by (4.5) there exists a positive constant K (determined by q_1) such that

$$KP\{\eta \leq t\} \leq P\{q_1(X) \leq t\}.$$

If we take q_1 such that (4.9) is fulfilled (with r = 1) we get (4.10).

Note that (4.10) is stronger then the result in [1], page 448, obtained there via Tauberian theorems, for a more refined estimate see [4].

LEMMA 4.8. Let $0 < b_1 < b_2$, $\varepsilon > 0$ and let $r \le p$. Then there exist an a > 0 and $n \in \mathcal{N}$ such that

$$P\left\langle b_1 < \left(1/a\right) \sum_{i=1}^n |\theta_i|^r \le b_2 \right\rangle \ge 1 - \varepsilon.$$

PROOF. Suppose that we can find positive constants $\{a_n\}$ such that

$$(1/a_n)\sum_{i=1}^n |\theta_i|^r \to (b_1 + b_2)/2$$
 in probability if $n \to \infty$.

Indeed, for r = p this follows from [1], page 236, for r < p it is a consequence of the strong law of large numbers (with a.s. convergence). Therefore, we have

$$P\left\{b_1<\left(1/a_n\right)\sum_{i=1}^n|\theta_i|^r\leq b_2\right\}\to 1\quad \text{if }n\to\infty.$$

Example 4.9. Let $1 \le r \le p$ and let $f: R_+ \to R_+$ be increasing. Then there exists a sequence $\{\alpha_i\}$ such that q_r is finite a.s. and for $0 < t \le 1$

$$P\{q_r(X) \leq t\} \leq f(t).$$

Let us define numbers p_k by

$$p_0 = f(1/2), \qquad p_k = f(2^{-k-1})/f(2^{-k}) \quad \text{for } k \ge 1.$$

By Lemma 4.8 we find a_k and n_k such that

$$P\left\langle \left(1/a_k\right)\sum_{i=1}^{n_k}|\theta_i|^r \le 2^{-kr}\right\rangle \le p_k$$

and

(4.11)
$$P\left\{ (1/a_k) \sum_{i=1}^{n_k} |\theta_i|^r > 2^{(-k+1)r} \right\} \le 2^{-k}.$$

Let us define numbers $m_k = n_0 + \cdots + n_k$, $k \ge 0$ and put

$$N_0(x) = (1/a_0) \sum_{i=1}^{n_0} |x_i|^r, \qquad N_k(x) = (1/a_k) \sum_{i=m_{k-1}+1}^{m_k} |x_i|^r \text{ for } k \ge 1.$$

First, using arguments of Höffmann-Jorgensen et al. ([2], Theorem 3.5.), we will show that for $N=\sup_{k\geq 0}N_k$ we have

$$P\{N(X) \le t^r\} \le f(t) \quad \text{for } 0 < t \le 1.$$

Let $F_k(t) = P\{N_k(X) \le t\}$. Since $N_k(X)$ are independent, for $2^{-k-1} < t \le 2^{-k}$ we obtain by (4.11):

$$P\{N \le t^r\} = \prod_{i=0}^{\infty} F_i(t^r) \le \prod_{i=0}^k F_i(t^r) \le \prod_{i=0}^k F_i(2^{-kr})$$

$$\le \prod_{i=0}^k F_i(2^{-ir}) \le \prod_{i=0}^k p_i = f(2^{-k-1}) \le f(t).$$

Next, if we take $q_r(x) = (\sum_{k=0}^{\infty} N_k(x))^{1/r}$, then $q_r^r \ge N$ and

$$P\{q_r(X) \le t\} \le P\{N(X) \le t^r\} \le f(t).$$

By (4.11) we have

$$P\{N_k(X) > 2^{(-k+1)r}\} \le 2^{-k} \text{ for } k \ge 0,$$

So by the Borel-Cantelli lemma $q_r(X)$ is finite a.s.

Now, once again following methods developed in [2] we give a lower bound of $P\{q_r(X) \le t\}$ for r < p.

First, we estimate the density g of the distribution of θ . Let η be a positive, (p/2)-strictly stable random variable with the Laplace transform $\exp(-t^{p/2})$ and let G be the distribution of $(2\eta)^{1/2}$. Then, by Lemma 4.1, we get the following estimate:

$$g(t) = (2\pi)^{-1/2} \int_0^\infty x^{-1} \exp\left\{-2^{-1} (tx^{-1})^2\right\} G(dx)$$

$$\geq (2\pi)^{-1/2} \int_1^\infty x^{-1} \exp\left\{-2^{-1} (tx^{-1})^2\right\} G(dx)$$

$$\geq C \exp\left\{-2^{-1} t^2\right\}, \qquad t > 0,$$

where $C = (2\pi)^{-1/2} \int_1^{\infty} x^{-1} G(dx)$.

Next, let $\{\alpha_i\}$, $i \geq 1$ be a decreasing sequence of positive numbers such that $\sum \alpha_i^r < \infty$. Denote $m_r = E|\theta|^r$ and let $\psi_n = m_r \sum_{i=n}^{\infty} \alpha_i^r$. By part (i) of (2.4), $q_r(X)$ is finite a.s.

LEMMA 4.10. There exists a positive constant D such that

$$(4.13) P\{q_r(X) \le t\} \ge \left(\prod_{i=1}^n \alpha_i^{-1}\right) D^n n^{-n/r} s^n \\ \cdot \exp\left\{-2^{-1} \left(s\alpha_n^{-1}\right)^2\right\} \left(1 - \psi_{n+1} (t^r - s^r)^{-1}\right)$$

for all $n \in \mathcal{N}$ and all 0 < s < t.

PROOF. Let $n \ge 1$ and let 0 < s < t. Then

$$P\{q_r(X) \leq t\} \geq P\bigg\{\sum_{i=1}^n \alpha_i^r |\theta_i|^r \leq s^r\bigg\} P\bigg\{\sum_{i=n+1}^\infty \alpha_i^r |\theta_i|^r \leq (t^r - s^r)\bigg\}.$$

Since $r and <math>\{\alpha_n\}$ is decreasing, we have for $(x_1, \ldots, x_n) \in B_n^r(s)$:

$$\sum_{i=1}^{n} \left(\alpha_{i}^{-1} x_{i} \right)^{2} \leq \left\{ \sum_{i=1}^{n} \left(\alpha_{i}^{-1} |x_{i}| \right)^{r} \right\}^{2/r} \leq \alpha_{n}^{-2} \left(\sum_{i=1}^{n} |x_{i}|^{r} \right)^{2/r} \leq \left(\alpha_{n}^{-1} s \right)^{2}.$$

By this inequality and by Lemma 4.4 and (4.12), we obtain

$$P\left\{\sum_{i=1}^{n} \alpha_{i}^{r} |\theta_{i}|^{r} \leq s^{r}\right\} = \int_{B_{n}^{r}(s)} \prod_{i=1}^{n} \left(\alpha_{i}^{-1} g\left(x_{i} \alpha_{i}^{-1}\right)\right) \lambda_{n}(dx)$$

$$\geq \left(\prod_{i=1}^{n} \alpha_{i}^{-1}\right) C^{n} \int_{B_{n}^{r}(s)} \exp\left\{-2^{-1} \sum_{i=1}^{n} \left(x_{i} \alpha_{i}^{-1}\right)^{2}\right\} \lambda_{n}(dx)$$

$$\geq \left(\prod_{i=1}^{n} \alpha_{i}^{-1}\right) C^{n} B^{n} \exp\left\{-2^{-1} \left(s \alpha_{n}^{-1}\right)^{2}\right\} s^{n} n^{-n/r},$$

where B is the constant appearing in (4.7).

By Chebyshev's inequality we get

$$(4.15) \quad P\left\{\sum_{i=n+1}^{\infty} \alpha_i^r |\theta_i|^r \le \left(t^r - s^r\right)\right\} = 1 - P\left\{\sum_{i=1+n}^{\infty} \alpha_i^r |\theta_i|^r > \left(t^r - s^r\right)\right\} \\ \ge 1 - \psi_{n+1} \left(t^r - s^r\right)^{-1}.$$

Putting D = CB and combining (4.14) and (4.15) we obtain (4.13).

Now we are able to construct the following example, which is a modification of Example 4.9 [2].

Example 4.11. Let $f: R_+ \to R_+$ be an increasing function such that for all $n \in \mathcal{N}$

$$f(t) = O(t^n)$$
 if $t \to 0$.

Suppose that r > 0. Then there exist a sequence $\{\alpha_i\}$, $i \ge 1$ and $t_0 > 0$ such that $\{4.16\}$ $P\{q_r(X) \le t\} \ge f(t)$ for $t \le t_0$.

We first consider a situation when r < p. There exist constants A_n such that for all $n \in \mathcal{N}$

$$f(t) \le A_n t^{n+r} \quad \text{for } 0 < t \le 1.$$

Denote $E = \exp\{-2^{-1}((4/3)m_r)^{2/r}\}$ and for $n \ge 2$ let

$$\beta_n = (3^{-1/r}D)^n E(16m_r)^{-1} A_n^{-1}.$$

Next, define inductively a sequence $\{\alpha_n\}$. Put $\alpha_1 = 1$ and let $\alpha_n^r = \min\{\beta_n, \alpha_{n-1}^r 2^{-1}, \dots, \alpha_1^r 2^{-n+1}\}$ for $n \ge 2$. Since $\alpha_n \le 2^{(-n+1)/r}$, we get

(4.17)
$$\left(\prod_{i=1}^{n} \alpha_i^{-1}\right) n^{-n/r} \ge \left(2^{n-1} n^{-1}\right)^{n/r} \ge 1.$$

Let $n \ge 2$ and let $2\psi_{n+1} \le t^r \le 2\psi_n$. Then we have

$$(4.18) t^r \le 2\psi_n \le 2m_r (\alpha_n^r + 2^{-1}\alpha_n^r + \cdots) = 4m_r \alpha_n^r \le 4m_r \beta_n.$$

If we take $s = 3^{-1/r}t$ we obtain

$$(4.19) \qquad \exp\left\{-2^{-1}\left(s\alpha_n^{-1}\right)^2\right\} \ge E \quad \text{and} \quad 1 - \psi_{n+1}(t^r - s^r)^{-1} \ge 4^{-1}.$$

Therefore, applying (4.13) and the inequalities (4.17), (4.18), and (4.19), for $2\psi_{n+1} \le t^r \le 2\psi_n$ and $0 < t \le 1$, we get

$$\begin{split} P\big\{q_r(X) \leq t\big\} &\geq 3^{-n/r} 4^{-1} E t^n D^n \\ &= A_n t^{n+r} t^{-r} 4 m_r \beta_n \geq A_n t^{n+r} \geq f(t). \end{split}$$

So (4.16) holds for $t \le t_0 = \min\{1, \psi_2^{1/r}\}.$

For the case when $r \geq p$, we first find a sequence $\{\alpha_i\}$ and $t_0 > 0$ such that $P\{q_{p/2}(X) \leq t\} \geq f(t)$ for $t \leq t_0$. The conclusion now follows by the inequality $(\sum \alpha_i^{p/2} |\theta_i|^{p/2})^{2/p} \geq (\sum \alpha_i^r |\theta_i|^r)^{1/r}$ valid for $r \geq p$.

5. Banach spaces of stable type p. Throughout this section E will denote a separable Banach space, \mathcal{B} will be its Borel σ -field.

Let X be a symmetric, p-stable, 0 , E-valued random vector with the spectral measure m. Let us denote <math>||m|| = m(E) and $c'(s, r, p, B) = 2^{p/(r-p)}B^{rp/(r-p)}c(s, r, p)$, where p < r, s, B > 0, and c(s, r, p) is as defined in Section 4.

Theorem 5.1. If E is of Rademacher type r, p < r, then

(5.1)
$$P\{||X|| \le t\} \ge (1/4) \exp\{-c'(s, r, p, B)(t/||m||^{1/p})^{-rp/(r-p)}\}$$
 for $t \le 2^{(1/p+1/r)} B s^{1/r} (E|\xi|^p)^{1/p} ||m||^{1/p}$, where B is the constant appearing in (2.3).

PROOF. Since every symmetric, p-stable measure on (E, \mathcal{B}) is the weak limit of some sequence of measures $\{\mu_n\}$, where $\mu_n = \mathcal{L}(\sum_{i=1}^{k_n} x_{in}\theta_i)$, $x_{in} \in E$, (see [5]), it is enough to prove (5.1) for X of the form $X = \sum_{i=1}^{n} x_i\theta_i$, $x_i \in E$.

Let $\{r_i\}$, $\{\theta_i\}$ be defined on probability spaces $(\Omega_1, \mathcal{B}_1, P_1)$, $(\Omega_2, \mathcal{B}_2, P_2)$, respectively. On the product space both sequences are independent and

$$\mathscr{L}(\lbrace r_i\theta_i\rbrace)=\mathscr{L}(\lbrace \theta_i\rbrace).$$

Then

$$\mathscr{L}(X) = \mathscr{L}\left(\sum_{i=1}^{n} x_i r_i \theta_i\right).$$

Next, for t, $\alpha > 0$, let us define events

$$A(t,\alpha) = \left\{ \left\| \sum_{i=1}^{n} x_i r_i \theta_i \right\|^r \le \alpha^r \sum_{i=1}^{n} \|x_i\|^r |\theta_i|^r \right\},$$

$$B(t,\alpha) = \left\{ \sum_{i=1}^{n} \|x_i\|^r |\theta_i|^r \le (t/\alpha)^r \right\}.$$

Thus, we have

$$(5.2) P\{A(t,\alpha)\cap B(t,\alpha)\} \leq P\{\|X\|\leq t\}.$$

Using Fubini's theorem we get

(5.3)
$$P\{A(t,\alpha) \cap B(t,\alpha)\} = E_1 E_2 \mathbb{1}_{A(t,\alpha)} \mathbb{1}_{B(t,\alpha)} \\ = E_2 (\mathbb{1}_{B(t,\alpha)} E_1 \mathbb{1}_{A(t,\alpha)}),$$

where E_i denote the expectation with respect to P_i , i = 1, 2. By Chebyshev's inequality and (2.3)

(5.4)
$$E_{1} \mathbb{I}_{A(t, \alpha)} = 1 - P_{1} \left\{ \left\| \sum_{i=1}^{n} x_{i} r_{i} \theta_{i} \right\|^{r} > \alpha^{r} \sum_{i=1}^{n} \|x_{i}\|^{r} |\theta_{i}|^{r} \right\}$$

$$\geq 1 - \left(E_{1} \left\| \sum_{i=1}^{n} x_{i} r_{i} \theta_{i} \right\|^{r} \right) \left(\alpha^{r} \sum_{i=1}^{n} \|x_{i}\|^{r} |\theta_{i}|^{r} \right)^{-1}$$

$$\geq 1 - \left(B/\alpha \right)^{r} \quad \text{a.s. } P_{2}.$$

Thus, the inequalities (5.2), (5.3), and (5.4) yield:

$$P\{\|X\| \le t\} \ge \left(1 - \left(B/\alpha\right)^r\right)P\left\{\sum_{i=1}^n \|x_i\|^r |\theta_i|^r \le \left(t/\alpha\right)^r\right\}.$$

Taking $\alpha = 2^{1/r}B$ and writing $\sum ||x_i||^p$ as ||m|| we see that (5.1) is an immediate consequence of Proposition 4.2 (with $\alpha_i = ||x_i||$).

THEOREM 5.2. Let $1 \le p < 2$. The following conditions are equivalent:

(i) There exist positive numbers ρ and t_0 such that for every symmetric, p-stable, E-valued random vector X with the spectral measure m, with ||m|| = 1, we have

$$P\{||X|| \le t\} \ge \exp - t^{-\rho} \text{ for } t \le t_0.$$

(ii) E is of stable type p.

PROOF. (ii) \Rightarrow (i). By assumption (and Theorem 1 of [6]), there exists a r, p < r < 2, such that E is of Rademacher type r. Therefore (i) follows from Theorem 5.1 and the elementary inequality: $A \exp(-\alpha t^{-\rho_1}) \ge \exp(-t^{-\rho_2})$ for $t \le t_0$ if $A, \alpha > 0$; $0 < \rho_1 < \rho_2$, and t_0 is small enough.

Now, we prove (i) \Rightarrow (ii). Suppose that E is not of stable type p. Therefore, l_p is finitely representable in E. If $0 < \varepsilon < 1$, by (2.2) there exist $x_{in} \in E$ such that for every $\beta_i \in R$

$$(5.5) (1-\varepsilon)\left(\sum_{i=1}^{n}|\beta_{i}|^{p}\right)^{1/p} \leq \left\|\sum_{i=1}^{n}x_{in}\beta_{i}\right\| \leq (1+\varepsilon)\left(\sum_{i=1}^{n}|\beta_{i}|^{p}\right)^{1/p}.$$

In particular,

$$||x_{in}|| \le 1 + \varepsilon.$$

Let a sequence $\{\alpha_i\}$ be such that $\sum_{i=1}^{\infty} |\alpha_i|^p = 1$. Put $X_n = \sum_{i=1}^n x_{in} \alpha_i \theta_i$ and notice that X_n has the spectral measure $m_n = \sum_{i=1}^n |\alpha_i|^p \|x_{in}\|^p \delta_{\{\alpha_i x_{in}/\|\alpha_i x_{in}\|\}}$. Then if we take $Y_n = \|m_n\|^{-1/p} X_n$ by (5.5), we obtain

$$P\left\{(1-\varepsilon)\|m_n\|^{-1/p}\left(\sum_{i=1}^n|\alpha_i\theta_i|^p\right)^{1/p}\leq t\right\}\geq P\{\|Y_n\|\leq t\}.$$

Because the total variation of the spectral measure of Y_n equals 1, (i) implies

$$P\bigg\langle (1-\varepsilon)\|m_n\|^{-1/p}\bigg(\sum_{i=1}^n|\alpha_i\theta_i|^p\bigg)^{1/p}\leq t_0\bigg\rangle\geq \exp{-t_0^{-\rho}}=\varepsilon'>0.$$

By (5.6) $||m_n|| \le (1 + \varepsilon)^p$ and therefore,

$$P\left\langle \sum_{i=1}^{n} |\alpha_i \theta_i|^p \leq \left((1-\varepsilon)^{-1} (1+\varepsilon) t_0 \right)^p \right\rangle \geq \varepsilon'.$$

Letting n to infinity we get

$$P\bigg\{\sum_{i=1}^{\infty}|\alpha_i\theta_i|^p<\infty\bigg\}>0.$$

By The Kolmogorov 0–1 Law the last probability equals 1. Therefore, the convergence of $\Sigma |\alpha_i|^p$ would imply the a.s. convergence of $\Sigma |\alpha_i \theta_i|^p$. It contradicts part (ii) of (2.4).

REFERENCES

- FELLER, W. (1971). An Introduction to Probability Theory and its Applications 2, 2nd ed. Wiley, New York.
- [2] HOFFMANN-JÖRGENSEN, J., SHEPP, L. A. and DUDLEY, R. M. (1979). On the lower tail of Gaussian seminorms. *Ann. Probab.* 7 319–342.
- [3] KRIVINE, J. L. (1976). Sous-espace de dimension finie des espaces de Banach reticulés. Ann. of Math. 104 1-29.
- [4] LINNIK, YU. V. (1954). On stable probability laws with exponent less than one. Dokl. Akad. Nauk SSSR 94 619-621.
- [5] MARCUS, M. B. and WOYCZYŃSKI, W. A. (1979). Stable measures and central limit theorems in spaces of stable type. Trans. Amer. Math. Soc. 251 71-102.
- [6] MAUREY, B. and PISIER, G. (1976). Series de variables aleatoires vectorielles independantes et proprietés geometriques des espaces de Banach. Studia Math. 58 45-90.
- [7] SZTENCEL, R. (1984). On the lower tail of stable seminorms. Bull. Acad. Polon. Sci. Sér. Sci. Math. 32 715-719.
- [8] TORTRAT, A. (1976). Sur les lois $e(\lambda)$ dans les espaces vectorielles. Applications aux lois stables. Z. Wahrsch. verw. Gebiete 27 175–182.
- [9] WILKS, S. S. (1962). Mathematical Statistics. Wiley, New York.

Institute of Mathematics Technical University Wybrzeże Wyspiańskiego 27 Wrocław 50-370, Poland