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ASYMPTOTIC BEHAVIOUR OF STABLE MEASURES NEAR
THE ORIGIN

By M. RYzNAR

Wroclaw Technical University

We investigate the lower tail of g, = (£ ,|;0;|")!/" seminorms on R*®,
where r > 1 and 0, are standard p-stable real random variables. We prove
that for p<r <2 we have P{gq, <t} > exp{—ct™P/"~P)} in some
neighbourhood of 0, where c¢ is a nonnegative constant. If r < p, then for any
positive, increasing function f, we can find ¢, such that P{q, < t} < f(¢) for
t < 1. We also give a new characterization of Banach spaces of stable type p
in terms of the behaviour of u{|| - || < ¢} near 0, where p is a symmetric and
p-stable measure.

1. Introduction. In [2], Hoffmann-Jorgensen, Shepp, and Dudley have
studied properties of Gaussian seminorms on R®. For example, they have shown
that for norms g = sup|a,f,| or g = (Za2f2)/?, where f, are independent
standard normal random variables, we have P{q < ¢} | 0 when ¢ | 0 as rapidly as
desired.

In this paper we consider p-stable seminorms, 0 < p < 2. Contrary to the
Gaussian case, distribution functions of norms as above, when f, are standard
p-stable, cannot tend to 0 as ¢ | 0 in an arbitrary way.

In Section 4 we show that if g, = (X|a,|"|f,]")"/", p <r <2, then in some
neighbourhood of 0, we have

P{q, <t} > exp{ —ct™ P/~ P},

where c is a constant determined by q,. For r < p the situation is different: For
any increasing functien f, f(0) =0, we can find a seminorm ¢, such that
P{q, < t}]0, as t | 0 faster then f.

In Section 5 we show that for a separable Banach space E the following
conditions are equivalent:

(i) E is of stable type p.

(ii) There exist positive numbers p and £, such that for every symmetric
p-stable random vector X with spectral measure m, m(E) = 1, we have

P{|X|| <t} > exp(—t*)

for ¢t < t,.

2. Preliminaries. (E, %) is called a measurable vector space if E is a real
vector space and # is a o-field of subsets of E such that addition and
multiplication by scalars are measurable operations.
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288 M. RYZNAR

A function q: E — [0, 0], q¢(0) = 0, is called a seminorm if it is subadditive
and homogeneous. Throughout this paper we will only consider measurable
seminorms.

A probability measure p on (E, &) is called p-stable, 0 < p < 2, if for every
independent E-valued random vectors X,Y with distributions p and every
a, B > 0 we have

(2.1) ZL(aX + BY) =2((a? + BP)PX + 2),

where z € E and where #(X) denotes the distribution of X. If for every
a, B > 0, z can be taken to be 0, p is called strictly p-stable.

Throughout this paper 6 will denote a real stable random variable with the
characteristic function exp(— |¢[?), 0 < p < 2; {6;} will denote independent copies
of 6.

A Banach space E is said to be of stable type p, 0 < p < 2, if for each p’,
0 < p’ < p, there exists a constant C such that for all n € 4" and any x,,...,x,,
e E

p’'\1/p

n 1/p
E < C( > ||xiup) -

i=1

n
> b;x;
i=1

A theorem of Maurey and Pisier [6] and Krivine [3] states that a Banach space E
is of stable type p, p < 2, if and only if /, is not finitely representable in E. We
recall that /,, is finitely representable in E if for each ¢ > 0 and each n € 4" one
can find x,,..., x, € E such that for all 8,,..., 8, € R the following holds:

n n 1/p
YxBi<1+ 8)( > |.3i|p) .
i=1 i=1

(22) (- e>( ém,-v’)l/p <

We will also refer to Banach spaces of Rademacher type p, 1 <p < 2. E is
said to be of Rademacher type p, 1 < p < 2, if there exists a constant B such
that for all n € A4 and any x,,...,x,€ E

p\1/p n 1/p
) < B( )y ”xi”p) ,
i=1

where {r;} is a Rademacher sequence.

It is well known (see, e.g., [8]) that if E is a separable Banach space then for
any p-stable, symmetric, E-valued random vector X the characteristic functional
has the representation:

(2.3) E

n
Z rx;
i=1

E[exp(ix*X )] = exp — f |x*x|P dm(x), x* € E*,
. E

where m is a finite measure concentrated on the unit sphere of E. m is called the
spectral measure of X.
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We will also use the following consequence of the Three Series Theorem. Let
0 < p < 2. Then

(i) For 0 < r < p the series X|a,0,|" converges a.s. if and only if

Llay|” < o0.
(2.4) (ii) X|a,0,/° converges a.s. if and only if XY|e;Plog(l + 1/|a;])
< o0 .

(iii) For r > p the series ¥|a,0,|” converges a.s. if and only if
Y|a;0,P < oo.

3. Lower tail of p-stable random vectors, 0 < p <1. We first consider
the situation when 0 < p < 1. Let g be a measurable seminorm on a measurable
vector space (E, #) and let X be an E-valued strictly p-stable random vector.
Assume that g(X) is finite a.s.

ProposITION 3.1. If 0 < p'< 1 then for t < s we have
(3.1) P{q(X) <t} > exp{ —c(s)t™#/0~P},
where c(s) = —2sP/1"Plog P{q(X) < s} > 0.

PrOOF. Let Y be an independent copy of X. By (2.1) Z(2V/?X)=2L(X + Y).
Therefore,

(P{g(X) <s})"= P{q(X) <s,q(Y) < 5}
(3.2) < P{g(X +Y) <25} = P{q(2V7X) < 25}
=P{q(X) < as},

where a = 2(P~V/P < 1,
Iterating (3.2) we get

(3.3) (P{q(X)SS})znsP{q(X)sa"s} forn > 0.

Because ¢(X) < o a.s., there exists a value s such that P{q(X) < s} > 0 and
since a” — 0 then, by (3.3), P{q(X) < s} > 0 for every s > 0. Taking logarithms
of both sides of (3.3) we obtain

(ans)P/P~Vgp/0-Plog P{q(X) < s} < log P{q(X) < a”s}.
If a”*'s < ¢t < a”s then t?/(P~D > (a”s)P/(P~D 50 we have
tp/(P=Dgp/0-P)log P{g(X) < s} < (a"s)?/ P~ Vsr/0-P 1og P(q(X) < 5)
= (a"* ls)p/(p-l)(as)p/(l_p)logP{q(X) < s}
< a?/4"Plog P{q(X) < a™*'s}
< (1/2)log P{q(X) < t}.

Taking exponents of both sides we obtain (3.1).
As we will see later (Remark 4.7), the exponent —p/(1 — p) in the formula
(3.1) cannot be improved even when E = R.
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If p > 1 the following example taken from [7] shows that it is possible that
q(X) < o0 a.s. and P{q(X) < t} = 0 holds for some ¢ > 0.

ExXAMPLE 3.2. Let {a,}, {n,} be sequences such that (1/a,) X7, |6, — 1 as.
Such a choice is possible by virtue of a version of Weak Law of Large Numbers
([1], Chapter 7, page 236). Now, if we take E = R® with its cylindrical o-field,
g(x) = limsup,, , (1/a,)X}%, |x;| and X = (6, f,,...), then .

Plam=n={y 13}

4. I, seminorms on R®. In this section E will stand for R* with its
cylindrical o-field. We study here the behaviour of the lower tail of the semi-
norms ¢,(x) = (X2, |a;x,|")"/" for the R®-valued p-stable random vector X =
(0., 0,,...). .

We will use in the sequel the following well known fact (see [1], Chapter 6).

LEMMA 4.1. Letp < r < 2 and 1 be a positive random variable with Laplace
transform exp(—t?’") and let ¢ be a random variable with characteristic
function exp(—t"). If n and ¢ are independent then

(4.1) 2(0) =2(¢n/7).

Now, we state and prove one important fact used in the sequel. First, we
introduce some notation. Denote by

e(s,r,p) = —2(2E|§P)""" P sp/~Plog P{n < s},

where p <r <2, s >0, and £, 1 are as above. Denote |{a;}||, = (Z2, |o,|P)"/7.
PROPOSITION 4.2. Ifp <r <2 and |{a}|, < oo, then

(42)  P{g(X) <t} > (1/2)exp{~c(s, 7, p)(¢/l{a}l,) "),

for t < 2V/PsT(EEP)/P|{a;}l -

ProOF. By part (iii) of (2.4) we have that ¢,(X) is finite a.s. Let {£,}, {n;} be
sequences of independent random variables defined on probability spaces
(917 gl’ Pl): (92’ ‘@2’ P2): reSPeCtively, such that g(gz) = ,?(g) and g(n;) =
Z(m). On the product space, {£;} and {7} are independent, therefore, by (4.1),
(43) 2({6}) =2({tm)"}). .

Since 7 is strictly ( p/r)-stable, by (2.1) we have

. n ’ n r/p
(4.4) g( > Bi'h‘) =$(( )y .Bip/r) "h), B; = 0.
i=1 i=1
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By (4.3), (4.4), and Fubini’s theorem and since 7, is positive and ( p/r)-stable

P{q(X) <t} = P{ élael’leil' < t'}

=P X Pz{ X el €l < tr}

i=1

0 r/p
=P, X Pz{ ( )y |a,-|"|s,~|") M < t'}

i=1
= P, X Py{Zn, < t"},
where Z = (X2, |a;|P|£,/P)"/P. Therefore, for @ > 0 we have
P{g(X)<t}) > P X Pf{Z<1/a,n, < at"}
‘= P{Z <1/a}Pyn, < at”}.
By Chebyshev’s inequality we have
P{Z<1/a}=1—-P{Z>1/a)} > 1— EZP/"aP/"
= 1 = [{a}IZEEPa?’".
Applying (3.1) for at” < s, we obtain
Py{n, < at”} > exp{2sP/""Plog P{n < s}aP/ PP/ (r=P)}
Choosing a = (2V7||{a;}|| (E|£P)'/P) ", we get (4.2).

(4.5)

REMARK 4.3. If r > 2 then the inequality (4.2) holds whenever we put r = 2
in the right-hand side of this inequality. It is a consequence of the elementary
fact that g, < g,, r > 2. If g, = sup |a,x;| then ¢ (X)) is finite a.s. if and only if
[{a;}|l, < oo by the Borel-Cantelli lemma. Because g, < g,, (4.2) holds for
r = 2 in the right-hand side.

Next, we try to give an upper bound of P{q,(X) < t}. Our approach follows
that in [2], which considers the Gaussian case.

Let A, denote the Lebesgue measure on R™ and

n 1/r
Bi(1) = { e R ( 5 |x,-|') < t}, rt>o0.
i=1

As an easy application of the formula for the Dirichlet integral ([9], Section 7.7,
page 178), we have that

(4.6) M Bi(1)) = 2/r)"(T(r 1)) (T(nr~t + 1)) .
LEMMA 4.4. There exist positive constants A and B (determined by r) such
that
(477) (Bn~Vr)"t" < ANABI(t)} < (An~V")"¢m,
forallt >0 andalln c 4.
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ProOOF. Obviously, it is enough to prove (4.7) for ¢ = 1. Let us estimate
L(nr=!'+1):

o0 oo
[(nr-'+1) =f x"/"e™* dx 2/ x"/e"*dx > n"/"e”".
0 n

Because sup, . ox"/"e™*/% = (2nr~')"/"e "/, hence
[(nr-'+1)= foo:)c"/'e_"ﬂe_"/2 dx < 2((2r‘1)1/re_1/’)'nn”/’.
0
If we put A =2r 'T(r Ve and B = (27 %er)/"r 'I(r ), then (4.7) follows
immediately by (4.6).
Let g be the density of the distribution of 6 and let M = sup, .  8(x) < 0.

Assume that «; > 0 for all i € 4. As a consequence of the above lemma and the
following inequality

0 1/r n 1/r
q,=(za:|air) z(Za:w)  new,

i=1 i=1

we get

LEMMA 4.5. Forallne AV andt>0
(4.8) P{g(X)<t} < (Hl/ai)(M-An_l/’)"t".
i=1

EXAMPLE 4.6. Let r > p and a; = (MAi"/?P*9)~!, ¢ > 0, where M and A
are as in Lemma 4.5. Then

P{g(X) <t} <e-exp —(et)—rp/(r_p)w} fort<e!,
where 8 = r2p%e (r —p + mpe) (r—p) .
Indeed, by part (iii) of (2.4) we have q,(X) < o a.s. Therefore, by (4.8),
n
P{q,(X) < t} < (nil/p+e)(n—l/r)ntn < (nl/p—l/r+et)n'
i=1

If we take n = [(et) P/ ~P)*®] where [x] stands for the integer part of x, we
getfort <e!

P{qr(X) < t} < exp{ - [(et)‘Pr/(r—p)+s]}
<e- exp{ —(et)_rp/(’—p)+8}.

This example shows that for every ¢ > 0 there exists a sequence {a;} such that
g, (X) < o0 a.s. and

(4.9) P{q(X) <t} = o(exp{—¢P7/"P*}) ast|0

if p < r. Therefore, the exponent —pr/(r — p) in the right-hand side of (4.2)
cannot be improved.
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REMARK 4.7. Let 1 be a positive random variable with the Laplace transform
exp(—tP), p <1, then for every ¢ > 0

(4.10) P{n <t} =o(exp{—tP/1~P*}) ast|0.

Proor. If ¢,(X) < oo as. by (4.5) there exists a positive constant K (de-
termined by q,) such that

KP{n <t} < P{q\(X) < t}.

If we take q, such that (4.9) is fulfilled (with r = 1) we get (4.10).
Note that (4.10) is stronger then the result in [1], page 448, obtained there via
Tauberian theorems, for a more refined estimate see [4].

LEMMA 4.8. Let 0 < b, < by, ¢ > 0 and let r < p. Then there exist an a > 0
and n € A& such that :

P{b1 <(1/a) i 16" < b2} >1-—e

i=1
PRroOOF. Suppose that we can find positive constants {a,} such that

(1/a,) Y. 164" - (b, + b,)/2 in probability if n — oo.

i=1

Indeed, for r = p this follows from [1], page 236, for r < p it is a consequence of
the strong law of large numbers (with a.s. convergence). Therefore, we have

P{bl <(1/a,) X 16/ < bz} -1 ifn— co.

i=1

EXAMPLE 4.9. Let 1 <r <p and let f: R,— R, be increasing. Then there
exists a sequence {a;} such that g, is finite a.s. and for0 <t <1

P{g/(X) <t} <f(¢).
Let us define numbers p, by

po=1(1/2), pp=1f@7*")/i(@27*) fork=>1.
By Lemma 4.8 we find a, and n, such that

g
P{(l/ak) 2164 < 2_'"} < Py
i=1
and

ng
(4.11) P{(l/ak) Y10 > 2(-““*} <27k
i=1
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Let us define numbers m, = ny+ --- +n,, k£ > 0 and put
o mg
Ny(x) = (1/a0) X |x7, Ny(x)=(1/ay) X |xf" fork=x>1.
i=1 i=my_;+1

First, using arguments of Héffmann-Jorgensen et al. ([2], Theorem 3.5.), we will
show that for N = sup, . , N, we have

P{N(X) <t} <f(t) for0<t<l.

Let F,(t) = P{N(X) < t}. Since Ny(X) are independent, for 27%*~1 <t < 27*
we obtain by (4.11):

00 k k
P(N<t'}= inOF,-(t’) < gﬂ(t’) < LI()E(T”)

k k
<TIE@ ™) < [Ipi= 27+ < 1(0).

Next, if we take g,(x) = (X2 Ny(x))'/7, then g/ > N and
P{g(X) <t} < P{N(X) <t} <f(t).
By (4.11) we have
P{N,(X)>20**r} <27% fork >0,
So by the Borel-Cantelli lemma ¢q,(X) is finite a.s.

Now, once again following methods developed in [2] we give a lower bound of
P{g(X) <t} forr<p.

First, we estimate the density g of the distribution of 6. Let n be a positive,
(p/2)-strictly stable random variable with the Laplace transform exp(—¢?/?)
and let G be the distribution of (27)/2. Then, by Lemma 4.1, we get the
following estimate:

g(1) = (2m) ™" [“xtexp{ ~27 (& ™")") G (k)
(4.12) > (27)_1/2fwx_lexp{—2‘1(tx‘1)2}G(dx)

> Cexp{ —27't?}, t>0,

where C = (27) V%[ x~1G(dx).

Next, let {@;}, i > 1 be a decreasing sequence of positive numbers such that
Ya! < oo. Denote m, = E|0|” and let ¥, = m,X¥ , al. By part (i) of (2.4), ¢,(X)
is finite a.s.

LEMMA 4.10. There exists a positive constant D such that

(4.13) P{g(X) <t} > (ﬁlxi—l)D"n—n/rsn

-exp{—2‘1(sa;l)2}(1 — Y, (- s’)_l)
forallne A andall 0 <s < t.
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ProOF. Let n>1andlet 0 <s < t. Then
n o0
P{g(X)<t}> P{ 2 afl6)" < s'}P{ Y a6l < (¢ - s')}.
i=1 i=n+1
Since r < p < 2 and {a,,} is decreasing, we have for (x,,..., x,) € B;(s):
n 2/r

é(a:lxi)z < { Y (o )’}M < a;“’( élxir) < (a7's)"

i=1

By this inequality and by Lemma 4.4 and (4.12), we obtain

P{ f allf)” < s'} = j;:(s)i]:[nl(a[ﬂg(xia[l))An(dx)
)c
C

) anexp{_2—1(sa;1)2}snn—n/r’

(4.14) > ( n fB ;(s)exp{ —2_1i§1(xia[1)2}>\n(dx)
>

|

where B is the constant appearing in (4.7).
By Chebyshev’s inequality we get

s p{ ¥ a,r|o,.|rs(tr—sr)}=1—p{ ¥ a;|o,.|r>(tr-sr)}

i=n+1 i=1+n

n
[To;!
i=1

n
[Ta!
i=1

=1~ ‘Pn+1(tr - sr)_l-
Putting D = CB and combining (4.14) and (4.15) we obtain (4.13).

295

Now we are able to construct the following example, which is a modification of

Example 4.9 [2].

ExXAMPLE 4.11. Let f: R,— R be an increasing function such that for all

news
f(¢)=0(t") ift— 0.

Suppose that r > 0. Then there exist a sequence {«;}, i > 1 and ¢, > 0 such that

(4.16) P{g(X) <t} =f(t) fort<t,.

We first consider a situation when r < p. There exist constants A, such that

forall ne st
f(¢) <A """ for0O<t<l1.
Denote E = exp{ —2~((4/3)m,)*"} and for n > 2 let
B.=(37V'D)"E(16m,) A",
Next, define inductively a sequence {a,}. Put a;, =1 and let a

min{B,, a,_,27%,...,aj27 "1} for n > 2. Since a,, < 2(""*D/", we get

n
(4.17) (r[a,.-l)n-"/' > (2"t )Y > 1.
i=1
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.

Let n > 2 and let 2¢,,,, < ¢t" < 2¢,,. Then we have

(4.18) <2y, <2mal +2 % + -+ ) = dm,al, < 4m,B,.
If we take s = 37!/t we obtain

(4.19) exp{—2-1(sa;1)2} >E and 1—-49, (" —s") '>4"L

Therefore, applying (4.13) and the inequalities (4.17), (4.18), and (4.19), for
2¢,, 1 <t"<2¢,and 0 <t < 1, we get
P{q(X) <t} >3 "4 Et"D"
=At""t74m B, = A, t"T > f(¢).
So (4.16) holds for ¢ < t, = min{1, y/"}.
For the case when r > p, we first find a sequence {«;} and ¢, > 0 such that
P{q,,(X) < t} = f(t) for t < t;. The conclusion now follows by the inequality
(ZaP’?|0,/P/?)2/P > (Sall6,)")"/" valid for r > p.

5. Banach spaces of stable type p. Throughout this section E will denote
a separable Banach space, # will be its Borel o-field.

Let X be a symmetric, p-stable, 0 < p < 2, E-valued random vector with the
spectral measure m. Let us denote |m| = m(E) and c/(s, r, p, B) =
2p/r=P)BTP/(r=Pe(g, r, p), where p < r, s, B> 0, and c(s, r, p) is as defined in
Section 4.

THEOREM 5.1. If E is of Rademacher type r, p < r, then
(5.1)  P{IXIl <t} > (1/4)exp{ (s, 7, p, B)(t/|Im|['/7) """~}

for t < 24/P+1/NBs/T(E|£P)V/P||\m||'/P, where B is the constant appearing in
(2.3).

PROOF. Since every symmetric, p-stable measure on (E, %) is the weak limit
of some sequence of measures {p,}, where p, = LTk x,,.0,), x,, € E, (see [5]),
it is enough to prove (5.1) for X of the form X = Y ,x,6,, x, € E.

Let {r;}, {0;} be defined on probability spaces (2,, %,, P,),(R,, %,, P,), respec-
tively. On the product space both sequences are independent and

g({rioi}r) =2({6.}).
Then

2(X) =$( iz;';lx,.r,.o,.).

Next, for ¢, @ > 0, let us define events

A(t,a) = {

r

> x;1,0;

i=1

n
<a" Z IIinI’IﬂiI’} ’
i=1

Bltya) = { L1161 < (/).

=1
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Thus, we have
(5.2) P{A(t,a) N B(t,a)} < P{||X|| < t}.
Using Fubini’s theorem we get
P{A(t,a) N B(t,a)} = E\El 4. ol B2, )
= EQ(]IB(t a)E nA(t,a))’

where E; denote the expectation with respect to P,, i = 1,2. By Chebyshev’s
inequality and (2.3)

(5.3)

r n
>a" ) leill’lf’il’}

i=1
n r n -1

E1 Z x;1,0; (ar Z ”xi”rloilr)
i=1 i=1

>1-(B/a)" as. P,
Thus, the inequalities (5.2), (5.3), and (5.4) yield:

EnA(t n) {

(5.4)

P(IXI< 0) = (1= (B/0))P{ L Iail16) < (/a) .

Taking a = 2/*B and writing Y||x,||? as ||m|| we see that (5.1) is an immediate
consequence of Proposition 4.2 (with a; = ||x;|)).

THEOREM 5.2. Let1 < p < 2. The following conditions are equivalent:

(i) There exist positive numbers p and t, such that for every symmetric,
p-stable, E-valued random vector X with the spectral measure m, with |m| = 1,
we have

P{|X|| <t} >exp—t " fort<t,.
(i) E is of stable type p.

ProOF. (ii) = (i). By assumption (and Theorem 1 of [6]), there exists a r,
p <r<2, such that E is of Rademacher type r. Therefore (i) follows from
Theorem 5.1 and the elementary inequality: A exp(—at™ ") > exp(—t¢~*2) for
t<t,if A,a > 0; 0 <p, <p,, and ¢, is small enough.

Now, we prove (i) = (ii). Suppose that E is not of stable type p. Therefore, [,
is finitely representablein E. If 0 < ¢ < 1, by (2.2) there exist x;, € E such that
for every B, € R

69 -0 Limr] <

In particular,
(5.6) l;all < 1 + e

- p
2Bl < (1 + 8)( g. IBilp) .

n
Yox
i=1
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Let a sequence {a;} be such that £, |a,|” = 1. Put X, = ¥, x,,a;0; and notice
that X, has the spectral measure m, = ¥, |a,? ||xm|| P8\ o5, /N,y Then if we
take Y, = ||m,||~?X, by (5.5), we obtain

n 1/p
P{(l - e)nmnn—‘/"( ) |ai0,-|") < t} > P(IY,)l < ).
i=1

Because the total variation of the spectral measure of Y, equals 1, (i) implies

n 1/p
P{(l - E)Hmn”_l/p( )y |ai0i|p) = to} exp — tp* =¢ > 0.

i=1

By (5.6) ||m,|| < (1 + &)” and therefore,

n )
P{ Z |ai0i|p < ((1 - E)_l(l + £)t0)p} > ¢
i=1
Letting n to infinity we get

[oe]
P{ Y |e;0P < oo} > 0.

i=1

By The Kolmogorov 0-1 Law the last probability equals 1. Therefore, the
convergence of ¥|a,|” would imply the a.s. convergence of ¥|a,6;|°. It contradicts
part (ii) of (2.4).
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