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'LAW OF LARGE NUMBERS AND CENTRAL LIMIT THEOREM
FOR LINEAR CHEMICAL REACTIONS WITH DIFFUSION

BY PETER KOTELENEZ

Universitit Bremen

Two mathematical models of chemical reactions with diffusion for a single
reactant in a one-dimensional volume are compared, namely, the determinis-
tic and the stochastic models. The deterministic model is given by a partial
differential equation, the stochastic one by a space-time jump Markov pro-
cess. By the law of large numbers the consistency of the two models is proved.
The deviation of the stochastic model from the deterministic model is esti-
mated by a central limit theorem. This limit is a distribution-valued
Gauss—Markov process and can be represented as the mild solution of a
certain stochastic partial differential equation.

0. Introduction.

0.1. Mathematical models of chemical reactions. Mathematical models of
chemical reactions have been described by Gardiner, McNeil, Walls, and Mathe-
son [16], Haken [18], Nicolis and Prigogine [31], and Arnold [3]. Following
Arnold [3] there are two main principles according to which reactions in a spatial
domain are modeled:

(1) global description (i.e., without diffusion, spatially homogeneous, or “well-
stirred” case) versus local description (i.e., including diffusion, spatially inho-
mogeneous case);

(2) deterministic description (macroscopic, phenomenological, in terms of con-
centrations) versus stochastic description (on the level of partlcles taking into
account internal fluctuations).

The combination of these two principles gives rise to four mathematical models,
namely,

G.1 global deterministic model—ordinary differential equation;
G.2 global stochastic model—jump Markov process;

L.1 local deterministic model—partial differential equation;
L.2 local stochastic model—space-time jump Markov process.

The relation between the two global models G.1 and G.2 has been thoroughly
investigated by Kurtz in a number of papers (cf. [27], [28] and also references
therein), and the consistency of G.1 and L.1 as well as of G.2 and L.2 was proved
by Arnold [3]. Since the global models will not conecern us here we shall only
review the mathematical details of the local models as given by Arnold in [3].
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Following Arnold [3] and Arnold and Theodosopulu [6], we want to be
conceptual rather than computational and, consequently, shall only deal with the
case of one chemical reactant in a one-dimensional volume. Moreover, we shall
assume reflection at the boundary (zero flux boundary conditions) in both models
and that the reaction is linear.

L.1. Local deterministic model. Let C(r):= b(r)—d(r)=c;r + ¢4, r € R,
¢y =0, b(r)="br+cy and d(r)=dr, b,d > 0. A denotes the Laplacian and
D > 0 the diffusion coefficient. Then the concentration X(¢,gq), g € [0,1], is
given by the following PDE:

%X(t,q) = DAX(t,q) + C(X(t,q)),

d d
. —X(t,0) = —X(¢,1) =
(0.1) T X(6.0) = - X(81) =0,

X,€H, = {y € H? 30) = 3(1) = 0},

where H? is the space of real valued functions on [0, 1], twice differentiable in the
generalized sense with square integrable second derivative. Then to any 7,
po € R, there is a pr such that if 0 < X (¢) < p, then there exists a unique
global solution X € %[0, ), L,(0,1) N %([0, x0), H,) such that for all ¢t &
[0,T], T>0, 0<X(¢,q) < pp (Kuiper [25], Arnold and Theodosopulu [6]),
where L,(0, 1) is the space of real valued square integrable functions on [0, 1].

We shall consider DA here (and throughout the paper) as a closed operator
with domain H, from (0.1), and let U(¢) be the semigroup generated by
A = DA + c,. Then, by “variation of constants”

(0.2) X(t) = U(t)X, + /[O t]U(t— s)c, ds.

L.2. Local stochastic model. Divide the volume V into N cells of equal size
v = V/N, where neighboring cells are linked by diffusion and in each cell reaction
is going on. We set:

Xy ¥/ = number of particles of the reactant X in the jth cell at time ¢,

where the superscript indicates that for each cell the: process depends essentially
on the two parameters v (cell size) and N (number of cells), since the third
parameter, the volume V, is equal to vN. Hence,

o,N . v, N,1 v, N,N
XoN=(Xgh1,..., XgN)

is modeled as a jump Markov process with state space NV and the following
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transition intensities:

k;
pk,k+ej = Ub("—)

. j=1,...,N,
pk,k-—ej = vd(';;j_)
(0.3)
pk,k+ej+,—ej = DN2kj7 ] = 1,..., N — 1,
pk,k+ej_,—ej=DN2kj7 '=2,...,N,
Prm=0, otherwise.
'(kl’ k.. ky), Rte k+e ., —e, k+ meNV, e; the jth unit

vector in R N , and the birth and death rates are the functions from L.1. Note that
particles reflect at the boundary.

We shall assume that X N s deﬁned on some probability space
(Q, #, #>V, P), where %,V = o(X3 ¥, s < t). Under the above assumptions
the probab1ht1es

P(t) = P{X3 N =k}, keN,

are the unique solution of Kolmogorov’s backward equation (which is called
in the application-oriented literature the “multivariate master equation”) (cf.
Arnold [3)).

In order to compare L.1 and L.2 we map the volume onto the interval [0,1],
i.e., we divide by V, and the jth cell onto ((j — 1)/N, j/N]. To get the density
in each cell we divide X ,‘;’,’,V by v and, consequently, the description of the local
stochastic model can be given by

N 'N

Hence, X> " is a process with values in the space of real valued cadlag step
functions on [0, 1] with constancy intervals ((j — 1)/N, j/N], j=1,..., N. This
space will be denoted by H". We abbreviate

(H0,< ) '>0) = (L2(0’1)’< ) '>0)’

where ( -, - ), is the standard scalar product on L,(0,1), and we will denote the
corresponding norm by | - |,. Then we have

X N(t) e WY c H,,
X(t)e H,c H,, .

with X(¢) from (0.1) or (0.2). This means that we can compare X*" and X as
-processes with values in H,,. -

XN -1
(0'4) X N(t q) Ut ’ qE(J__’L]’j=]-’°"’N'

0.2. Statement of the problem. Following Arnold and Theodosopulu [6] and
Kurtz [27] we represent both X"~ and XM — X as solutions to stochastic
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evolution equations driven by a martingale:

(i) Define
Ay: Hy-» HNc H,
i+1/N /N i~1/N
(Av) @) =N*[" y(p)dp~2["" y(p)dp+ [ "¥(p)dp,
(0.5) J/N J=1/N Jj=2/N .
o =1 Jj] .
q € T’ﬁ,‘]=1’.”’N

Apn(t) = DAy + cy, Uy(t) = exp(tAy),

where we set

Wq)=y(-q), gq¢€ [—%,O],

¥Wqg)=y2-q), g€

1,1 1]
+ =
’ N

This last definition reflects the zero flux boundary condition in the approxima-
tion scheme A, and we obtain A is self-adjoint, dissipative and |(Ay — A)¢|,
— 0 for all ¢ € Hg == H, N ¢2[0,1] (Kotelenez [24]). Since both U(¢) and Uy(t)
are bounded by e’ this entails the strong convergence of Uy(t) to U(?)
uniformly on bounded intervals by the Trotter-Kato theorem (Davies [12],
Corollary 3.18 and Kato [22]).

(ii) Set

(0.6) ZoN(t) = X0 N(t) — XN — [0 ‘AyX0N(s)ds — te,.

By the subsequent Lemma 0.1 Z>" is a square integrable cadlag martingale
provided XV is a.s. uniformly bounded on H™.
Variation of constants yields:

0.7) X N(t) = UN(t)X(‘,”N+£UN(t— §)dZ*M(s) + /OtuN(t— s)ec, ds
and
(0.8) X*N(¢) = X(2) = UN(e)(X§N = Xo) + [Uy(t = 5) d2°(s) + en(2)
with

en(£) = [Un(8) = U] Xo + [Up(2 = 8) = Ut = 8)]ey ds
(0.9) X*N(¢) - X(¢) = U(s)( XN - X,) + /OtU(t ~ 5)dZ> V(s) + 8y(2)

with
Sy(t) = '{)t(AN — A)X*N(s) ds.

At this stage (0.9) is just a formal expression since, in the definition of &, XV
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is not in the domain of A. Therefore, we construct an extension of A to A on
Hilbert distribution spaces. Set

H,=9((-DA)"?), a€R,,

where (—DA)*/? (the a/2th power of (—DA)) is defined through the spectral
resolution of (—DA) (cf. Yosida [33]), and 2(-) denotes the domain of the
operator. Setting :

(@, 9) =((I-DA)"*p,(I-DA)*Y) , @,y €H,

I being the identity operator, then (H,,( -, - ),) becomes a real separable Hilbert
space. Since

{d)n = 2 cos(nm(-)), nzl}
P =1,
is a complete orthonormal system (CONS) of eigenvectors of A we have
H, = {f € Hy= L,(0,1): Y (f,,)3(1 +n?)* < oo}
n=0
and
<(p’ ‘Il>a = Z<q)) ¢n>0<q)7 ¢n>0(1 + Dn2,n,2)"“

Identify H, with its strong dual H{} and extend the scalar product { - , - ), to the
dual pairing (-, -) between H, and its strong dual H, =: H__. For a € R let

Iy o= {(an) € R™: %afl(l +n?)% < oo}.

Then we have

Thus, we obtain
(0.10) H cH,=H,cH_, a€c€R,
is isomorphic to
ly o ClygCly g
and we easily see that the imbedding
H, - Hy

is Hilbert—Schmidt iff « > 8 + ;. (Note that this is just Maurin’s theorem for
the standard Hilbert—Sobolev spaces H%(0, 1); cf. Adams [1]).
Moreover, for a« > 0 and ¢, y € H,,

(@) o= ((I—DA)"*q,(I- DA)™™*y),
by definition of H, and the dual norm, and U(t) = eP*%“* and (I — DA)~*/?
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commute. Therefore U(t) is extendible to a strongly continuous semigroup
U_J(t)on H__ s.t.

(0.11) U_ () |eu_,, =1U() |lon,) < e

(cf. Kantorovi¢ and Akilov [21]).

In (0.11) #(H_,) denotes the usual operator norm on H_,, a > 0, and we
used the fact that DA is dissipative. Let A _, denote the generator of U_ (¢).
Since | - |_,. ¢ is equivalent to the graph norm of A__ we have

(0’12) D(A—a) = H—a+2‘

Consequently, (0.9) has meaning as an equation on H _, for a > 2 if we substitute
A _, for A in the definition of J.

In what follows we will just write A and U(t) for any of the extended
operators A__,U_ (), a > 0,

Thus, returning to (0.8) and (0.9), we see that the limit behaviour of X'V — X
and YV := y(v, N)(X> " — X) (for a suitable renormalization constant y(v, N)
is essentially a consequence of the limit behaviour of the (locally s.i.c.) martingales
Z* "N and M "N = y(v, N)Z>" and of the properties of the stochastic convolu-
tion integral in (0.8) (resp. (0.9)) provided that e, and 8, suitably tend to 0. The
limit theorem for Y* " (Theorem 3.1) will be called the central limit theorem
(CLT).

0.3. Main lemmas. Let 8(-) denote the Fréchet derivative, o/~ the weak
infinitesimal operator of the pair process (X" N, Z* ") with state space H2" and
Z> N from (0.6), A’ M(x) the waiting time parameter, and % M(x, dw) the jump
distribution function of X* ",

LEmMMA 0.1 (Kurtz [27]). Let h be a bounded continuously differentiable
function of z € HN. Then h is in the domain of the weak infinitesimal operator
&N and

E(h(2%(¢ + ) = (2 N0) |7 V)
(F5N = o( X*N(u), u € [0, t]))
= E(?\”’N(XU’N(u))
[¢, t+s]

(0.13) _f” [h(w - X>NMu) +2>Mu)) - h(Z>N(u))

— (w0 = X M), 8h(2° M),
«0® N X Mu), dw)|F>N | du

(cf. also Arnold and Theodosopulu [6]).
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Let H be a real separable Hilbert space, M an H-valued square integrable
cadlag martingale and V(¢) a strongly continuous (s.c.) semigroup of operators on
H (cf. Curtain and Pritchard [10]).

DEFINITION 0.1.  [io V(¢ — 8) dM(s) is called a stochastic convolution-type
integral, which we will denote by stochastic *-integral.

DEFINITION 0.2. A s.c. semigroup of operators V() is of contraction-type on
[0, T'] if there is a p € [0, ) such that

V(&)L m) < e* forall t e [0,T].

REMARK 0.1. From Theorem 2 in Kotelenez [23] (also see this reference for a
more detailed description of the stochastic *-integral) we have for the contrac-
tion-type case, abbreviating [VdM = [, V(- — s) dM(s):

If M is cadlag, then / VdM has a cadlag version;

If M is continuous, then f VdM has a continuous version.

Note that U(¢) and U(t) are of contraction-type by (0.11).
The following lemma is a special case of Theorem 1 in Kotelenez [23].

LEmMA 0.2. If V(t) is of contraction-type, then for all § > 0:

4uT

e
228} <5z E|M(T) [,
H

(0.14) P{ sup

0<t<T

f[o t]V(t — s)dM(s)

Finally, we give an easily verifiable estimate on the speed of convergence of
Ay = A. Let ||| - ||| denote the sup-norm in r € [0,1] and ¢'*) the ith derivative
of @ € H,, (if it exists). Then there is constant ¢ < oo s.t. for all sufficiently
smooth ¢ € D(A).

1
(019) (& = )ell< cmin o2l 7 9”1l

Concluding remarks. 1. The choice of the H_ , rather than H™* := (Hg)* is
determined by the need to extend U(t) and A, in order to arrive at an SPDE for
the CLT in the Hilbert distribution space in which the limit of the martingale
sequence M? N(¢t) defines a (o-additive) measure M(t). (HS = HE(O0,1)) is the
subspace of H*(0,1) generated by the C>®-functions with compact support in
(0,1) (cf. Adams [1].) A representation of the elements from H _, can be found in
DaPrato and Grisvard [11]; e.g., H_, can be represented as the quotient space
(H,)?/Gp,, where Gp, is the graph of DA.
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2. The LLN in H, can also be proved by our method in the case of the
nonlinear (polynomial) reaction provided the leading coefficient in the reaction
polynomial f(r) is negative (Kotelenez [24]).

3. X" can be looked at as a branching random walk with immigration. Our
CLT is related in spirit to results obtained by Martin-Lo6f [30] and, especially, by
Holley and Stroock [19]. Holley and Stroock (loc. cit.) have investigated scaling
limit theorems for a sequence of critical branching Brownian motions on the
Schwartz space &’. The limit in their CLT is an infinite-dimensional
Ornstein—Uhlenbeck process (OUP) which is characterized by 1A, the unbounded
“drift,” generating a contraction semigroup 7(t), and the identity operator as
bounded “diffusion coefficient.” In our case the limit is characterized by the
unbounded “drift” DA + c,, generating U(¢), and the unbounded “diffusion
coefficient” F'/?°(¢), which measures the intensity of the fluctuations around
the deterministic limit X in terms of the Laplacian plus chemical reaction. Apart
from the fact that Holley arid Stroock look only at the critical case (¢, = 0)
without immigration (c, = 0), they simultaneously scale space and time and
arrive at a bounded “diffusion coefficient.” Moreover, they have a spatially
continuous model (Brownian motion and just one operator A = }A), whereas we
have a sequence of discrete models (branching random walks linked with a
sequence of operators A, — A) approximating the continuous model. Accord-
ingly, our sequence X* " depends on two parameters, the cell size v and the
number of cells N, and we derive under the general hypothesis N —» oo the LLN
(thermodynamic limit—cf. Nicolis and Prigogine [31]) in H, if N?/v - o0, in
H_ ,,a€[23]ifv— c,andin H_, a > 3,if oN — oo, i.e, the cell size v can
be kept constant. Intuitively, this means that for (fast) growing cells reaction in
the model becomes dominant and smoothes X> " so that it becomes close to X
even in the stronger norms. Moreover, we obtain the CLT in H_,, a > % if
v/N — 0. Consequently, the two parameters in our setup give us more freedom
concerning the limit behaviour of our discrete models.

4. The mathematical framework in our approach is the calculus of evolution
equations on Hilbert space which on the one hand allows us to make direct use of
weak compactness criteria for processes with values in complete separable metric
spaces (cf. Billingsley [7], Kurtz [28]) and on the other hand yields an easy and
straightforward representation of the OUP as the mild solution of an SPDE,
which allows us to describe the smallest Hilbert distribution spaces on which the
OUP lives.

5. Fmally, the central limit theorem can be considered as an example of how
to arrive in a natural way, namely through the internal noise of the system, at an
SPDE within the framework of semigroup theory. Moreover, we prove weak
convergence of solutions of evolution equations on Dy [0, 0) by using the
submartingale-type inequality for stochastic *-integrals (Lemma 0.2). For weaker
convergence usually used in SPDE see Viot [32].

. 6. The relation between evolution equations and branching diffusions as
measure processes has been investigated by Dawson [14] where a diffusion
approximation of the branching diffusion is given.
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0.4. Notation. Whenever possible we shall suppress the superindex v and
write just X7 instead of X7, etc.

1. The law of large numbers (LLN). The following assumption
(1.1) NXe N <K(v, N) as.

for some finite constant K(v, N) depending on v and N implies that Z> " is a
square integrable cadlag martingale. (1.1) will be assumed throughout the paper.
Simple estimates allow us to extend the validity of Lemma 0.1 to

h(z) =(z, 9%, Ze€H", ¢€H,
Let ¢ € H, and define gy, ¢ € HN by

i/N
N’
( ) ’[J 1)/N

(J) N? {( G+O/N pi/N )2 ( (J-1/N J/N )2}
onl o= 7= ¢ - ol + ¢ - ¢
N( N) V2 fj/N (i-1/N fu—m/N fu—n/N
where [2p = [%p(q) dg, [a, b] € [0,1], and we set |C|(r) == (b + d)r + c,.

1/2

LEMMA 1.1
(12) ECZN(8), 0¥ = — / E{ (9}, 1CI(XN(s)))o + (9%, 2DXN(s))o) ds

ProoFr. From Lemma 0.1 we obtain

BN, 9% = [ E(W(XYs)
[ = XNs) +2s), 933 = (ZN(s), 9

~(Z(5), 9w = X(5), )0 X(5), o)  ds

[, ENGEN) [ (0= X0), 0™ (XP(s), dw) |

Lz elelefsd)
+z”7”2{f,.:f;“%—f;ii/mrﬂ(s%)
e AT A O |

=0Nf E{(#% ICI(X(5)))o + (#%,2DX"(s))o} ds. O
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COROLLARY 1.1. There is a constant K(t) < oo, depending only on t, such
that for arbitrary ¢ € H,:
K(t)

oN

(1.3) E(ZN(t), @)% < (INEXN + ¢o){(I — DAN)®, @)o-

PROOF. The proof with
K (t) > max{t%xp(c,t)c,, t - exp(c,t) } (b + d + 2D)
is an easy consequence of (1.2), (0.7), and the fact that Uy(t) is positivity

preserving, i.e., maps positive functions onto positive ones (Davies [12], Theorem
7.16 and Kotelenez [24]). O

COROLLARY 1.2. Let a > 3. Then, there is a constant L(t) < oo, depending
only on t and a such that
L(¢)

oN
Proor. Let {¢,} be a CONS in H, Then
o0
EiZN)2. = X ECZN(t), 9,35

n=0

K EX{ o) v
. KOWEXI+ @) | & (I = DA)g,, P

(1.4) EiZN(¢t)?, < (EX] + co)-

- oN n=0
(NEX]N + o) i .
= 2 4K(t) ¥ (19,2 + Di,l2)
oN n=0
by
(1.5) (— DAN9,9)o < 4 — DAp,9),, @€ H,

and partial integration. Set

o0
L(t) = 4K(t)| X Ials + Dig,l3 |-

n=0

L(t) < o0, since H, = H, is Hilbert-Schmidt for a > 5.0

THEOREM 1.1(LLN). Let a € {0} U [2, 0) and assume

(D N — oo,
D), N2/v=V2/1® >0, ifa=0,
v o0, ifa€[2$]
oN = o0, if a > 3, .
I |X - X,|_, = 0 in probability, XN = X*N,
(V) supy|| EXy'||| < oo.

ThenforallT> 0,6>0
(1.6) lim P{ sup |XM(¢) — X(2)_, > s} - 0.

0<t<T
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ProoF. (i) In the case a = 0, (1.6) follows directly from (0.8), (1.3), Lemma
0.2, and &, — 0 in (0.8) (by the Trotter—Kato theorem), thus improving upon the
LLN obtained by Arnold and Theodosopulu [6].

(ii) In the case a > 2, (1.6) follows from (0.9), (1.4), Lemma 0.2, and 8,y — 0 on

2

H__, a > 5 by (0.15) and by
(1.7) H,-(H0,1)) =)¢™[0,1], y>m+ 3

(continuously imbedded into the m times continuously differentiable functions;
cf. Lions and Magenes [29]).

(iii) For a = 2 we cannot show that 8y — 0 on H_,. Therefore, we use (0.8).
Since Upy(t) does not commute with (I — DA)~" (which defines the | - |_, norm)
we introduce

(‘P"I’)N’= <(I—DAN)(P1(I_DAN)‘P>O: (p:\PEHO
as a norm approximating | - | _,, which satisfies the easily verifiable inequality
(1.8) (- DA) gy < 10|(1 = DAy)'9lo, ¢ € Hy.
Then (1.6) follows using (1.3), Lemma 0.2 wrt H,,, endowed with (-, - )y, (1.7), and
(I - DAN)I/ZLWHO) - |(I- DA)1/2LS,P(H(,)
(Kato [22] and for details Kotelenez [24]). O

REMARK 1.1. Condition (II), shows that for weaker distances between X N
and X we obtain more freedom concerning the limit behaviour of the cell size v.
This was first observed by Arnold [4].

_ 2. Weak convergence of the accompanying Martingale. Let DH_y[O, 0)
denote the complete separable metric space of H__-valued cadlag functions (cf.
Billingsley [7] and Kurtz [28]), y = 0. (1.2) shows that the sequence of variances

E(M™N(¢), 9)}
of the normalized martingales
MV := (oN)?zN,  ZN from (0.6),
tends to

f[o, t][<(¢)2’2DX(s)>O + (9%, |C|(X(S))>o] ds.
Integrating by parts we see that this expression is equal. to (setting 9, = 3/4q)
f[O, t][< — 3,(2DX(5)0,9), )0 + {9 1C)(X(s5)) @) ds.
Butwthis quadratic form on H, determines a unique (in distribution) process on

Dy [0,0), a> 3. Indeed, let J: H_, = H, denote the Riesz representation,
ie., for ¢* € H_,, ¢ € H,, we have (¢*,¢) = (¢, J(¢*)), (cf. Yosida [33]). Fix
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a > 4 and define a bounded operator B(¢) on H_, by
(B()o*, 4*) o= [ (F(s)J(g*), J(4*))o ds,
(2.1) [0, ¢]
F(t) = —d,(2DX(t)d,) + |C|(X(t)).
(i.1) B(t) is a nuclear operator on H_, because H, = H, is Hilbert-Schmidt.
(i.2) (B(t)e*, ¢*)_, is increasing and continuous in ¢.
Hence, (cf. 1t6 [20])

(ii) there is a unique (in distribution) H _ -valued Gaussian process M on some
probability space ({2, #, P) with independent increments, continuous sample
paths, and characteristic functional

(2.2) Eexp(i(M(t), 9*) ., = exp(= §(B(t)9*, ¢*) _,),
where E(-) = [(-) dP.
The following two lemmas show that the assumptions of Kurtz [28], Theorem
2.7, are satisfied for MV, and from the uniqueness of the limit point M we may
conclude that M" = M, where = denotes weak convergence.
LEMMA 2.1. Let a € [2, ) and assume

(I) N - oo,
D, v > o, if a €[2,2],
oN - o0, if a > 3,
(1) |X}' — X,|_, = O in probability, XN = Xo-N,
(IV) supyll EXJ|| < oo.

Then for any t > 0
(2.3) MN(¢t)= M(t) onH_,.

Proor. (A) Take ¢ € H,. Then
XMt, ¢) = Eexp(i(M™(¢), 9)), = exp( - %f[o LFs)e, q>>o)-

The proof follows that of Kurtz [27], Theorem 3.1; cf. Kotelenez [24].

(B) The relative compactness of P{M™(¢) € -} we obtain from Araujo and
Giné [2], Theorem 4.17, as follows: '

(B.i) Let Cov(N, t) denote the covariance operator of M™(t) € H_, (cf. Kuo
[26], Chapter 1, Theorem 2.1). Then

B(N, t) = [Cov(N, ¢)]'*
is Hilbert—Schmidyt.
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Let {<p,",‘} be a CONS in H_,. Then

sup Z |B(N, t)gt|>, = sup Y, (Cov(N, t)g¥, ¢k)_

N n=m N n=m

sup Z E(M™N(t), 95)_. (Kuo, [26], p. 15)

N n=m

sup Z E(MMN(t), J(o))s.

N n=m

[oe]
< 4K(0)( supll EXN + ) X () (< o0V m)

by (1.3) and the proof of Corollary 1.2
-0, ifm- .
(Bii) |1 - XMt ¢)2=2(1-ReX™(¢,9))
< (Cov(N, t)o*, ¢*) ., o¢*=J o)
= |B(N, t)¢*|2, (cf. Kuo[26],p.21).
Hence, P{M™(t) € -} is relatively compact.
(C) (A) and (B) together imply (2.3) (Buldygin [8]). O
LEmMMA 2.2. Let a > 2. Then for any T >0, s > 0 there exist random
variables y§(s) > 0 s.t. forall t €[0,T]
(2.4) E(1MN(t+s) - M”(t)P #") < E(v{(s)FN)
and lim, _  limsupy _, . E(v5(s)) =
Proor. (i) Let {py} be a CONS in H, such that all ¢, ¥*[0,1]. By
Lemma 0.1 (cf. Corollary 1.2):
E(IMM(t+s) — MN(t))2 A7)

= oNT [ E(N(XW) fw = X, ) (X w), dw) 7| du

< 22/ E(<(pn’ q)nlcl(XN(u))>O + <¢n’ ¢n2DXN(u)>OI'%N) du

(* *) n VIt t+s]
A (cf. (1.2))
s2L [ B @b+ X))o+ (b :2DX ()0l du
+2COZIq)nI?)s'

Frém(17)with/3=a— + —¢&> 2 for some ¢ > 0
(P> P X M) Y + (9, 9, XN(10) )y < C(D, B)lo,l5 sup (1, XN(2)),

0<t<T
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for some constant C(D, 8) depending only on D and B. Thus, (* *) can be
estimated from above by

[2C(D, B)(b + d + 2D) + ¢ ] Xlg,lzsup (1, XN(2))os = vi(s).
n t<T
Hence (2.4), since H, = Hj is Hilbert—Schmidt, and by Lemma 1.1

E(sup<1, XN(t)>0) < 20T+
t<T

(2.5)

b+d\?
X max(E(l,XéV)0+ Co,l) 1+ (—-EJ—V‘—') ) . a

THEOREM 2.1. Let a € (2, 00) and assume

(I) N - oo,
(D), v = 00, fa€ (23]
oN - o0,if a > 3,
(III) | XY — X,|_, — 0 in probability, XN = XN,
(IV)  supyl| EXQ||| < oo.

Then
M" = Mon D, [0,),

where M is the Gaussian independent increment process defined by (2.2).

Proor. (i) From Lemma 2.2 condition (b) and from Lemma 2.1 condition (a)
of Kurtz [28], Theorem 2.7 follows, i.e., M" is relatively compact.
(i) Weak convergence follows now from the uniqueness (in distribution) of M.
O
We will now represent M by a Wiener integral wrt a cylindrical Brownian
motion (cf. Dawson [13], [14], Kuo [26]). Therefore, we analyze the covariance of
M(¢t).

LEmMMA 23. If ¢ =0 and X(q) = 0 then X(t,q)=0 forallt,q. If ¢, > 0
or X,(q) # 0 then X(¢,q) > 0 for all q and all t > 0.

ProoF. The proof is an application of the Feynman-Kac formula. First we
show that

X(t,q) = EXy(&(T,q, T — t))exp(ct))
(26) + cO/ E(exp(c,(v — T + t)) dv,
(T-¢,T]

where £(¢, q,s), t € [s,T], g € [0,1] is a Brownian motion in [0, 1] with reflec-
tion at the boundary {0,1} and intensity 6% = 2D. Consequently,

(2.7) X(t,q)= f[o UXo(y)p(q,t, ¥) dy - exp(—|c,|T) + cot - exp(—|¢,|T),
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with p(q, t, y) the transition probability density of the Brownian motion
£(t, q,0), which is s‘rictly positive for all g, y, and ¢> 0 (cf. Dynkin [15],
Chapter 10, Section 6, (10.68")). From this the lemma follows since X, € H,
implies that X, is continuous by Sobolev’s imbedding theorem. For more details
see Kotelenez [24] as well as Gihman and Skorohod [17] Part 1, Section 23. O

By Lemma 2.3 we may without loss of generality assume that X(¢,q) is
strictly positive for all ¢#> 0. This implies that the symmetric positive un-
bounded operator F(t) from (2.1) has H, as its maximal domain in H,, (which can
be verified by partial integration). Consequently, F(¢) is self-adjoint (Davies [12])
and 2(F'/?(t)) = H,. This implies by interpolation (Lions and Magenes [29],
Chapter 1, Theorem 5.1)

(2.8) F2(¢t)e ¥(H,,H,_,) forallac[1,2],¢>0,

where F/%(¢) is equal to F/2(¢)] u, and considered as a bounded operator with

values in H,_,.
Fix a > 1. Since the imbedding i§: H, <= H, is Hilbert—-Schmidt we have

2
(i$, H,, H,) as an abstract Wiener space (Kuo [26]), and with the isometry from

H, to H, j° = (I — DA)~*/? we have
Q2= iy € Zy(H,)

(Hilbert—Schmidt operators on H,), @2 >0, and @2 is self-adjoint. Let
Q"/?" be the dual operator of @'/2. Then, Q12" € Z,(H_,), and

Q* 1= (Q(1/2)*)2 Egl(H_a),

(nuclear operators on H_ ).

Take an H__-valued Wiener process W on ( Q, #, P) (we may assume that
this is possible on (&, %, P)) with covariance operator @* and from (2.8) we
obtain for the dual operator of F0/?(¢): F/?(t)e ¥(H_,, H_,_,), whence

(2.9) [Faraw

is a well defined H_,_ ,-valued Gaussian martingale with continuous sample
paths (cf. Curtain and Pritchard [10]).

LEMMA 2.4. W is a cylindrical Brownian motion on H, and
D [ st sorn e
(2.10) M= f FA/2*dqW  (equal in distribution),
where M is defined by (2.2).

ProoF. (i) Let {y*},.n be a CONS in H_, consisting of eigenvectors of
Q®/?" and A, > 0 the corresponding eigenvalues. Then,

dW(t) = LA ¥% dB(t),

where B, are one-dimensional mutually independent standard Wiener processes
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(Curtain and Pritchard [10]). For ¢* € H_, | we obtain:

2
B( [ FO(s)dW(s),o*) = E(L[ FO7(s)\ 45 dB(s), 9"
[0, t] —a—1 n [O$ t]

2

—a—1

= I [ BRI ) ds
=T [ T, QVF(s) (97 s
= [, JQF (o) I ds

= [, JisBHs) (o) ds

B '/[.0 t]<F(s)J((p*), J(q)*)>0ds

= E<M(t)’ q)*>2—a—1'
Since both M and [F/»" dW are Gaussian with independent increments, (2.10)

follows.
(ii) If we take I (identity) instead of F(¢) in step (i) we obtain that W is a
cylindrical Brownian motion on H,. O

3. The central limit theorem (CLT)
LEMMA 3.1. Under the assumptions of Theorem 2.1

(3.1) [Oam™ = [OaM on Dy_[0,00).

PRroOOF. (i) Since Dy_[0, o) is complete and separable (Kurtz [28]), weak
convergence and convergence wrt the Prohorov metric, denoted by d,, are
equivalent (cf. Billingsley [7], Appendix III, Theorem 5).

(ii) Take a smooth CONS{¢*} for H_,. Denote by , the projection in H_,
onto Z(¢%,...,¢%), ie, onto the finite-dimensional subspace spanned by
%, ..., 9f, and m;t = I — m,. Set
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(ili) Note that {¢,) is a CONS in H,, where ¢, = J(¢}). Hence, Lemma 0.2
(cf. step (B) in the proof of Lemma 2.1) yields:

P{ sup > 26}

0<t<T
< g (pIEX + <o)

Uw damN
[0, ]

4K(T)

0
L Ieald+ DI%I%),
n=k+1

since mt dMN = dm;* MV. For fixed § and T the r.h.s. can be made arbitrarily
small lndependent of N by choosing k large enough. This ensues by the
definition of the metric # on Dy_ [0, o0) (cf. Kurtz [28]): For any ¢ > 0 thereis a
k(&) such that for all N and all & > k,(¢):

~ & €
P{,/(/kal dMN,O) > 5} <3
whence for all N and all & > k,(¢)
d(PV, PV:k) < g
(iv) Similarly, we obtain a k,(¢) such that for all & > ky(¢):
d(B, P*) < g

(v) Set k= max(k,(e), ky(¢)). Note that by the choice of {¢%,..., 9%}
7, MN(t) € 9(A). Hence, by partial integration (Kotelenez [24]):

j O(t — s)my dM™(s) = m,MN(¢) + [ Ut~ s)Am,M"(s) ds.
[0, £1 [0, £]
Since
9*() > (mg*) () + [ O(-= ) Amg*)(s) ds
is a continuous map from Dy_ [0, c0) into itself (cf. Kurtz [28]), MY = M entails
wadeN=> fﬁwde

(Billingsley [7], Chapter 1, Section 5, Theorem 5.1). Consequently, we may choose
an N(e) such that for 2 = max(k,(¢), ko(¢)) and all N > N(e)

d(PVH, P*) <

’

| o

whence from (iii) and (iv)
dp(PV,P) < e forall N> N(e). a

Let a > L and Y, be a square integrable H_,-valued random variable on

(2, #, P) such that there is an H__-valued random variable Y, on @, #, P),

Y, 2 Y,, and Y, independent of M(t) for all ¢> 0. Further, let ¥ denote an
arbltrary i UdM continuity set of Dy [0, 00) (cf. Billingsley [7]) and F an
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arbitrary element from o(Y,). We shall make the following asymptotic indepen-
dence assumption:

Y - Y, in probabilityon H_,_j,

(8.2) P{(/ﬁdM”e (g) np} - ﬁ{(/ﬁdMe %)}P{F}.

Y¥ - Y, in probability implies

()Y - U(-)Y,
on (%y_._ [0, ), 4), where 4|, is the metric &, restricted to %5__ [0, 00),
which is equivalent to the metric obtained from the uniform convergence on
bounded intervals (cf. Billingsley [7], Chapter 3, Section 14), and (KHW[O, 0)

denotes the continuous functions from [0, c0) into H_., y > 0.
Moreover, (0.15) and (1.6) imply

- K(D,a)
(3.3) sup [(Ay—A)XN(t)|_p_5 < N Sup 1, XN(t)),
0<t<T 0<t<T

for some constant K(D, a) < oo depending on D and «. This implies by (2.5)
E(/ [(oN)"*(Ay — A)XN(s)%,_3ds| > 0 forany T > 0,
[0,T]
if o/N — 0.

THEOREM 3.1 (CLT). Let a > } be an arbitrary number and assume

I v/N->0 }
(II) ovN = o0

II) supy||EXQ||| < oo, "
(IV) YN = Y, in the sense of (3.2), where Y, is independent of M and E|Y,|2 , <

entailing N - o,

0.
Then for YN == Y>V = (0N} X*N - X):
(i) Y¥=Y onDy [0, ) (convergesweakly),
where
(3.4) Y(¢) = U(¢)Y, + j O(t - s)FV2(s) dW(s)
[0, ¢]

is the mild solution of the stochastic partial differential equation
dY(t) = (DA + ¢,)Y(t) dt + FOV/27(¢t) dW(¢),

3.5 ’
(3:5) Y(0) = Y,.

(i) .
(3.6) Ye ¢, [0,T] as. forallT >0,
and (if ¢g> 0 or X(q)# 0 then) Y(t),t> 0, does not define a o-additive
measure on H_,, for y < 3, i.e., (3.6) is the maximal regularity of Y on the
Hilbert scale (0.10).
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(iii) Y is a Markov process, and its weak generator is given by

d -
o) F (089 = 8(6.07) + (DS + )og(t,07),9) 0y

+ %’I‘r{ QU R/ 4)82g(t, p* ) FV/DY(¢)Q1/2* } .

where g € B([0, T] X H_,_,) (real valued measurable functions g with domain
[0,T]x H_, ,)st. dg/dt, g, 8’2, and DA &g exist, are continuous in x and t,
and uniformly bounded in norm on [0,T1X H_,_,, and FO/94) is the dual
operator of F/?t) after identifying the duals of H_, and H_,_, with H__ and
H__,, respectively.

ProoFr. (i) The weak convergence follows from Lemma 3.1, our assumption
(3.2), (3.3), and the fact that the addition between continuous and arbitrary
elements from Dy  [0,00) yields a continuous map from %, [0, 00), &)
XDy ([0,00), &) = Dy___ ([0, 00), &) (cf. Billingsley [7], Chapter 1, Section 4,
Theorem 4.5, problem 7 and Section 5, Theorem 5.1 and Kotelenez [24]). The
representation (3.4) for Y follows from Lemmas 2.4 and 3.1.

(ii) The proof of (3.6) is an easy generalization of the proof of Proposition 5 in
Dawson [13], and we will just sketch the main steps: Let A > 0 and b(s) be a
one-dimensional standard Brownian motion. Then there is a constant K < oo s.t.
for all sufficiently large aA and for any T > 0

P{ sup ('/(;te_"“_s)db(s))2 > a}

(3.8) < K{(a}\)l/Zexp(—aA)[AT + log((a}\)l/z)]

+ (a}\)1/4exp( - %)(log((aA)l/Z))l/Zexp( —AT)}.

Take the eigenvectors {¢,} of (I — DA) with eigenvalues A, == (1 + Dn’r?) and
note that ¢} := X, */%¢, is a CONS for H,, y € R. Moreover, U(t)¢,” = e’ ' -
etag ", vy = 0.

Obviously, we may w.l.o.g. assume ¢, = 1. Then

[0t = 5)dM(s) = T [ dmy(s)g, "
0 n Y0
with .
mi(t) = (M(t),¢,")_,, ¥=0,

by Fourier expansion in H_,, where we will determine y in what follows. If
[m?](t) denotes the quadratic variation of mY(¢) then we have

[mi)(e) = [<F(s)ex, okyds  (F(s) from (2.1))
< C(T)tiejt = C(T)X,™
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for some constant C(T') by ||| X(¢)||| < py < o for ¢ < T. Note that mY(t) can be
written as b([m}](¢)). Now take y > ; and ¢ > 0 s.t. y — & > 1, which implies
YA, Y"¢ < c0. Then, as in Dawson (loc. 01t)

f’{ sup (/e"‘"("s) dm,,(s)) 2}\;7“}
0

0<t<T

< f’{ sup (fte""""‘s) db(s))2 > C(T)_l)\en‘l}.

0<t<T
Since A, X '= X, —> o0 we obtain (3.6) by Fourier expansion, (3.8), the
Borel- Cantelh lemma and the obvious fact that U(-)y, € Cu_,[0, ).
Since the convolution integral in (3.4) is Gaussian it must have a second
moment in order to define a o-additive measure on H _yFor0<s<t

B[00 a(p)| = X [ m almy)(p)

> C(t, s)the"”‘"“‘P’ ds A7+,

with C(¢, s) > 0 determined by inf, c (5 4 g e 0,1 X(, @) > 0 (unless X(u, ¢) =
contradicting our assumption, cf. (2.6))
~YXn =0 ify<i.
n

(iii) The Markov property follows from Arnold, Curtain, and Kotelenez [5];
(3.7) follows from Curtain [9], (6.1). O

REMARK. (i) For a > £, (3.6) follows from Kotelenez [23] since U(t) is of
contraction-type (cf. Remark 0.1.).

(ii) The maximal regularity shows in particular that our Gaussian approxima-
tion to the reaction and diffusion system does not live on the function space H,,.
Consequently, (nonlinear) operations which may have a meaning on H, do not
(necessarily) have a meaning in the limit.
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