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ON ALMOST SURE CONVERGENCE OF CONDITIONAL
EMPIRICAL DISTRIBUTION FUNCTIONS

By WINFRIED STUTE

University of Giessen

We investigate the almost sure convergence of a kernel-type conditional
empirical distribution function both in sup-norm and weighted sup-norms. As
an application we get a strong law for the Nadaraya-Watson estimate of a
regression function m(x) = E(Y|X = x) under a weak moment condition
on Y.

0. Introduction and main results. In this paper we derive almost sure
convergence results for conditional empirical distribution functions. These
functions may be viewed as nonparametric estimates of a conditional
distribution function. To be precise, consider a random vector ¢ = (X,Y) in R?
defined on a probability space (L, «,P), where X = (X..., X%) e R%,
Y=(Y,...,Y")eR%, and d=d, + d,. Write m(y|x) for the conditional
probability that Y < y (componentwise) given that X = x. The function m(-|-)
contains the full information on the dependence structure of X and Y.

Now, let §,, &,,... denote a sequence of independent random vectors with the
same distribution as ¢, say H. Let K be the naive kernel on R%, i.e.,

K(x,...,x,) =1 if —j<x,<jfori=1,...,d,
and zero elsewhere, and put, for given x € R%,
x — X;
K,(xX,) = K,(X,) = K| .
an
Here (a,), is a sequence of bandwidths satisfying
(1) a,—>0 and na? - oo.
Now, put
Z:l= ll{Y, < y}Kn(XL)
?= lKn(Xi)
In other words, m ,(y|x) is a normalized number of Y; such that Y, < y subject
to the constraint K (X;) = 1. When a, > 0 is small m (-|x) is thus reflecting the
spatial distribution of those data points Y, ..., Y, for which X, is close to x. This

construction is also basic to many nonparametric estimates of the regression
function

(2) m,(y|x) =

m—(x) = E(Y'|X = x).

Received October 1984; revised April 1985.

AMS 1980 subject classifications. Primary 60F15, 62G05; secondary 62J02.

Kev words and phrases. Conditional empirical distribution function, Glivenko-Cantelli conver-
gence, weight functions, Nadaraya—Watson estimator.

891

e [
Institute of Mathematical Statistics is collaborating with JSTOR to digitize, preserve, and extend access to [ 5
The Annals of Probability. STOR

. ®
www.stor.org



892 W.STUTE

See Collomb (1981) for a survey. In fact, replacing 1,y _, by Y;! in (2), we arrive
at the so-called Nadaraya-Watson estimate of m(x). Cf. Nadaraya (1964) and
Watson (1964). For more details see Section 1 below.

Returning to m(y|x), along with m ,, we have to consider

. _ ” l{Y,sy}Kn(Xz)
¥ M) = B ek (X))
whenever defined. Clearly
mx(y|x)
(4) m,(y|x) = i)
where
n K, (X))
ha(x) = igl nE(K (X))
= m*(oo|x).

Hence, as to almost sure convergence of m,, we may confine ourselves to m?*. The
main results of this paper will be proved under no conditions whatsoever on the
distribution of £.

Typically, the statements will be true for almost all x, i.e., for all x & N where
N is such that P(X € N) = 0. Our first result establishes Glivenko-Cantelli
convergence of m, to m, under very weak assumptions on the bandwidths.

THEOREM 1. Assume that a,, — 0 in such a way that
(5) Y exp[—pnaff'] <o forallp>0.
nx>1
.Then, as n = o, for almost all x

(6) D,(x) = D, = sup |m,(y|x) - m(y|x)| -0
yeR"

with probability one.

Actually, we shall prove more than (6) in that we show that for each ¢ > 0,
Y, . P(D, > ¢) < oo,ie, D, > 0 completely.

Condition (5) is always satisfied whenever In n = o(na®). It holds true for all
reasonable choices of a bandwidth.

The Glivenko-Cantelli convergence (6) may be used in a straightforward
manner for proving consistency of estimates which can be written as a sup-norm
continuous function of m,(-|x). For example, (6) immediately implies almost sure
convergence of the Nadaraya—Watson estimate whenever Y' is bounded.

More generally, it follows from Theorem 1, that for almost all x, m (dy|x) —
m(dy|x) weakly, i.e., )

[i@m,(dyix) ~ [i(y)m(dy|x)

for all bounded continuous functions f on R“:.
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To handle also the unbounded case one has to introduce weight functions
leading to stronger concepts of convergence (topologies). See Wellner (1977) and
Mason (1982) for a discussion of this in the field of usual (unconditional)
empirical distribution functions.

To be specific, let A be any positive function on R% nondecreasing in each of
its arguments. Put

D,(h) = D,(h,x) = sup(L ‘m,,(ylxi)l(;)m(ylxﬂ

It turns out, that D,(h) — 0 under a weak moment condition on A~ '(Y), but
with more restrictions on the bandwidths.

THEOREM 2. We have D,(h,x) — 0 with probability one for almost all x
whenever

(7) /h"(Y) dP < o0 forsomer > 1
provided that ¢, = In n/na satisfies ¢, |0 and Ycl, < .

REMARK. The results of this paper are easily seen to hold also true when K
is a kernel of bounded variation with bounded support. Use integration by parts
to reduce the general case to that considered in (2).

1. A strong law for the Nadaraya-Watson estimate. In this section we
shall state a result on almost sure pointwise consistency of the Nadaraya-Watson
estimate

m(X) = S ) " Jym(dyix)

under a weak moment assumption on Y (= Y, with d, = 1). Of course, for the
true hypothetical regression function

m(x) = E(Y|X = x)

to be well defined, it suffices to assume that Y has a finite first moment.

The almost sure convergence of m,(x) has been investigated before by many
authors. A crucial assumption throughout the papers has been that |Y| < ¢ for
some finite c. Nadaraya (1970) studied the case of a £ admitting a Lebesgue
density, the kernel K being of bounded variation. For such a K, upon integrat-
ing by parts, the convergence to zero of the stochastic error is then an easy
consequence of the exponential bounds for univariate and multivariate empirical
processes as given by Dvoretzky, Kiefer, and Wolfowitz (1956) and Kiefer (1961).
The existence of densities was necessary only to treat the bias. Devroye and
Wagner (1980) considered the case when only X had a Lebesgue density. The
stochastic error was treated by applying a standard Bernstein exponential bound
to the sum of the (bounded) i.i.d. random variables Y, K((x — X,)/a,,). The
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assumption of absolute continuity could be dispensed with in Devroye (1981).
This was possible because of consideration of a general result from Wheeden and
Zygmund (1977) on differentiation of integrals w.r.t. arbitrary measures.
Greblicki, Krzyzak, and Pawlak (1984) obtained similar results, under a weaker
condition on the bandsequences [our condition (5)] and on the kernel, again for
bounded Y ’s. As we shall see, the last assumption may be substantially weakened
by using the convergence of conditional empirical distribution functions in
weighted sup-norm metrics. In fact, the SLLN for m (x) will be valid under

(8) E(]Y|"*?) < o0 forsomer > 1andp >0,

which is only slightly stronger than requiring the existence of finite first mo-
ments. Note that no additional assumption on the distribution of £ is needed.

THEOREM 3. Under (8) for almost all x

lim m,(x) = m(x) with probability one
provided that ¢, |0 and ¥c}, < co.

2. Lemmas and proofs. A fundamental tool in our analysis will be a slight
extension of Lemma 1.2 in Stute (1984). This is concerned with the local behavior
of the multivariate empirical process at a fixed point z in R For further
reference, denote with

n
Hn(z) EI:In(zl"'ﬂ‘?:d) =n_lzl(—oo,z](§i)7 zERd,
i=1

the empirical distribution function (d.f.) pertaining to an independent sample
with d.f. H. Write
a,(z) = n'?[H,(z) — H(z)], zeRY

for the corresponding empirical process. Throughout we shall adopt the represen-
tation

(9) an(z) =&n(F1(21)7""Fd(zd))’

where @, is the empirical process of an i.i.d. sample with underlying distribution
function C, the copula function of H. This means that C is a d.f. on [0,1]¢ with
uniform marginals factorizing H in terms of its marginals F, ..., F,, say:

(10) H(z,,...,24) = C(F(z,),..., Fy(24)).

Hence in what follows we may and do assume (first) that H has uniform
marginals. Write a, for a, and consider the case 0 = z € [0, 1]%. We then have

LEMMA 4. Given 0 < 8 < 1, there exist some finite C(8) and c(8) > 0 such
that for all a € [0, 1]1¢ with H(a) < 8/4 and s > 0 with s > ¢(8)/H(a)/n and
32 < (s8(1 — 28))?

(11) n»( sup a(t) > s\/H(a)) < C(3)P(a,(a) > s(1 - 28)/H(a) ).

O<t<a
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Proor. Whenever a = (a,,...,a,) is such that @, < | for i =1,...,d and
2 < synH(a) the assertion is identical with that of Lemma 1.2 in Stute (1984).
For d =1 the first growth assumption on s is superfluous [cf. Lemma 1.1. in
Stute (1984)]. When d = 2, observe that the crucial Lemma 6.1 in Stute (1984) is
equally valid for all ¢, <1 —p and 0 <a, <1 with 0 <p <1, ie., for all
(a,, a,) with a, being bounded away from 1. Such a constraint is necessary in
order to bound the probability of success p in the binomial conditioning argu-
ment appearing in the proof there. By interchanging the role of a, and a, we
thus obtain that (11) holds for a = (a,, a,) such that min(a,, a,) <1 — p. The
condition 2 < synH(a) entailed p < 8synH(a,, a,) /2, which was crucial for
bounding, e.g., the level y on page 375 of the above cited paper. The same bound
is also valid, however, under the (asymptotically) weaker assumption s >
c(8)yH(a)/n by observing that p < H(a)/(1 — p). The constants c(8, p)
and C(§, p) typically increase as p|. Now, if p >0 is so small that
H(@1 - p,1 — p) > %, we automatically have min(a,, a,) < 1 — p, since otherwise

2

H(a) > ;. This proves the lemma for d = 2. For d > 3 use induction on d [cf.

Lemma 6.2 in Stute (1984)]. O

In a sense, both growth conditions on s are of the same type since (at least for
large n) s > ¢(8) - JH(a)/n is satisfied whenever 32 < (s(1 — 28))%

Also a bound corresponding to (11) is valid for the probability that
inf,_,_,a,(t) < —s/H(a), so that in summary

(12) u»( sup |a,(t)] > s\/H(a)) < C(8)P(|a,(a)| = s(1 — 28)“H(a) ).

O<t<a

Now, bounding the sup over all 0 <t < a is only a matter of convenience.
Likewise, a corresponding bound holds for the sup extended over any (small)
rectangle. To be precise, denote with I, , = [T (2y;, 24,] the rectangle in [0, 1]¢
pertaining to z, = (2,;,..., 2,4) < Zy = (2g1,-.-, 294). Fix z=(2,,...,2,) €
[0,1]¢ and write p and p, for the distributions of H and H,, respectively.
Inequality (12) now becomes, in obvious notation,

IP( Sup Ian(Iz~a,t)| > SVI“"(Iz—a,era) )

(13) z—a<t<z+a
< COP(lay(L,_qpea)| > s(1 = 28) (T, o1 i) ),
where a = (a,,...,a,) = 0.
Now, recall d=d, +d, and fix x=(x,...,x,)€[0,1]% Take z=
(Xp5-es Xy brees3) €[0,1]7 and put a = (3a,...,%a,4,...,3). Observe that

Bo(I, o, a)is the relative number of data points ¢, = (X},..., X&, Y}, ..., Y%)
such that

a . a
x},_§<)(i!5xj+E forl <j<d,.
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Note that

d, a, dy
m:':(tl,...,td.zlx)=un(ﬂ(x,— 5 ]x [1[o, t])/u(
Jj=1

Put
d, dy

it a2 =] 11 (5= Som s ] T 00]

J=1

the expectation of m}, and notice that sup, ,_;_,.al®,(I, o) is an upper
bound for

sup  n'Au(l, ,,..)|mi(t, ... t,|x) — mA(t,,..., tq,|x)|.
0=t <1
J=1,..., d,

Inequality (13) thus yields for ¢ > 0

P sup ‘m,";(tl,..., td2|x) - m*(t,..., td2|x)‘ > e)
0<t <1

J=1,..., dy
< COOWP(|ay(I,—qpia)| > e(1 = 28) 0 2u(1,_,,..)),

provided that s =e/nu(I, ,,,,) satisfies the usual growth conditions. By
Lemma 2.2 of Devroye (1981) we have s > oo for almost all x whenever
na — oo, so that (14) is true for at least all n > n(x). The right-hand side of
(14) may be bounded from above by applying some standard exponential bound.
See, e.g., inequality (1.2) in Stute (1982). In particular, since we are only
interested in small ¢ > 0, we may assume w.l.o.g. that the first growth condition
in (1.2) is satisfied. We have thus arrived at the following

(14)

LEMMA 5. Given 0 < 8 < §, we have for all 0 < ¢ < &,(8) and n > n(x, 8, ¢)

P sup 'm:(tl,...,td2|x) —th:(tl,...,thx)' > g
0<t <1
J=1,..., d,

< 2C(8)exp[ - (1 = 8)(1 — 28)“e*nu(1, ,,..)/2).

Recall that for Lemma 5 we had tacitly assumed that H has uniform
marginals. For an arbitrary H, remember (9) and (10). Make the transformation
t;=F(x;) for 1 <j<d, and t;= F(y,) for d; <j < d. In the fundamental
1nequahty (13) the sup now has to be extended over the set of t’s for which

an a .
F;(xj—y)ﬁtjﬁﬁ;(xj‘l' —2"), J=1"“’d|'

Since in no other step of the proof has the assumption of marginal uniformity
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been crucial this shows that Lemma 5 remains true also in the general case, with
0 < t; < 1 replaced by y; € R. We are now in a position to give the

PRrROOF OF THEOREM 1. It follows from the proof of Lemma 2.2 in Devroye
(1981) that, as a = @, » 0, with z = (x,..., x4, ETRERTE )}
Il—ﬂ z+a
w — ¢(x) for almost all x,
a;

for some positive ¢(x), possibly infinite. We thus get for all small ¢ > 0 and
n=>n,
P([|mx(-|x) — mx(-|x)| > ¢) < K exp[ —c(e)nad],
where K < o0 and c(g) > 0. Use Borel-Cantelli to get
[m*(-|x) — m*(-|x)|| = 0 almost surely

for almost all x. To prove Theorem 1 it remains to show [use (4)] that

sup |7x(yl|x) — m(y|x)| > 0.

yeR(l.z

For y fixed, m#*(y|x) = m(y|x) follows from standard results in real analysis [cf.,
e.g., Wheeden and Zygmund (1977), page 189], with the negligible set of x’s
depending on y. To find a universal null set use monotonicity of m*(-|x) and
m(-|x) and apply a standard Polya-Cantelli-type argument [cf. Polya and Szego
(1972), page 81, example 127]. Alternatively, one could also apply one of the
available more sophisticated ““uniform convergence of measures” concepts. See
Billingsley and Topsee (1967) or Gaenssler and Stute (1976). O

PrROOF OF THEOREM 2. In view of Theorem 1, to treat a weighted dis-
crepancy, it remains to show that

[m,(y]x) — m(y|x)]
h(y)

uniformly on the set of y’s for which at least one of its coordinates is small. To be
precise, fix some small ¢ > 0 and observe that

- m(yIx) m(y|x)
D(h)<c¢c 'D(1)+ sup —F—— sup .
y: h(y)<c h(y) y: h(y)<c h(y)

By Theorem 1 for almost all x the first term converges to zero with probability
one. By Markov’s inequality, the third summand is less than or equal to

(15) f{h e I)h"(z)m(dz|x).

-0

Since A~ !(Y) has finite expectation, we have that A™' is m(:|x)-integrable for
almost all x. For such an x the integral (15) may be made arbitrarily small by
letting ¢ | 0.
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So far, the method of proof has been similar to the unconditional case, with
the usual Glivenko-Cantelli theorem replaced by statement (6) of this paper [see,
e.g., Wellner (1977)]. While, in the classical setup, the ordinary strong law of large
numbers is then in place in order to treat the middle summand, such a complete
result is not at hand in the case of m,. Instead we shall use a factorization

m(y|x)
h(y)
where Z is nonrandom and X is a reverse martingale, to which an exponential

bound of Wellner (1978) applies.
Because of (4) it remains to show that

mi(y|x)
(16) sup —————
y: h(y)<c h(y)

=X, (x, y)Z,(x,y) = X(y)Z(y),

gets small with probability one for ¢ sufficiently small. Since, by monotonicity of
h,Y, < y implies A(Y;) < A(y) (16) is bounded from above by

m*( y|x
(17) sup __'il__)_ s
0<y<c Y
where m* now pertains to the transformed A(Y;), i = 1,2,... . In other words, in

what follows we may assume w.lo.g. d, =1, with Y; =Y, positive and & the
identity function on (0, c0). Now, for 0 < y, write

mO) (),
where
w1, — a,/2, %, + a,/2] % [0, ¥])
X(y) = y
,"‘(I—[jl=l(xj - an/z’xj + an/2] X [07 y])
and
Z(y) _ 'u(n;il(xj B an/2’xj + an/2] X [0’ y]) )

(L, ania)y

For studying the X-process, because of (9) and (10), it suffices to consider the case
when Y; has a continuous distribution function. Given 0 < ¢ < 1, define y,, as to
be the infimum of those y’s for which

d, a, a, ‘ m
o n(xj— *2",xj+ —2":, X [0, y] =q nu(Iz—a,z+a)'

J=1
By continuity, y,, is well defined for m > 0, with y, possibly being infinite. Also
¥, | . Choose m, so that
ym“+l <c< ym“,
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and let m,; = m,(n) be defined by

Inn

dl
n

qml+l < = C‘nS qm,.

na

We then have for each ¢ > 0 and every n € N
m( y|x)
P sup —— > ¢
Imys1SyY<c

Since X as a process in y has the same distribution theory as a univariate
empirical distribution function (and, in particular, is a reverse martingale) we
may apply Lemma 1 in Wellner (1978) to get

< Zl P| sup X(y)zqu"(ym+1))-

m=m, Im+1 =Y

P| sup X(y)> qu‘l(ymH)) < exp| —ng™ W(I,_a,ea)(9Z (i),

Im 1S
provided that
(18) 6qZ" (Y1) = 1.
Here
hA(x)=x(Inx—-1)+1, x>0.
As to (18) note that
E(lges, ...0v=aY ')
#(I azia) ’

Z(ym+1) <

which converges to
E(1y. oY '[X = x]

for almost all x as n > . The last term can be made arbitrarily small by letting
¢ — 0. Thus the left-hand side of (18) can in fact be made arbitrarily large
uniformly in m, at least for all large n, by choosing ¢ sufficiently small.
Furthermore,

IZ'BZ a
p( o ) o e®) > 0
Cln'

for almost all x. In summary, since m, = O(In n),

m3( y|x) .

P e| =0(n?%)

yml +1 S)’< ¢
for ¢ sufficiently small. Borel-Cantelli yields
m( y|x)
— < ¢

limsup sup
n—ax yml,|5_)’<(' y
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with probability one. Furthermore,

m(y|x)
— <

sup X( Y, +1)e

Cn/ESY =Yy 41

which is easily seen to be of order O(e).

Next we shall show that m?(c,/¢) = 0 eventually with probability one,
establishing the proof of the theorem. For this, since ¢, |0 by assumption, it
suffices to show that P(Y < ¢, /¢), n > 1, is summable. This follows, however,
immediately from the fact that 1/Y has a finite rth moment and ¢/, n > 1, is
summable. O

REMARK. The assumption Xc], < oo has been needed only to guarantee
my(c,/e) = 0 eventually. As we shall see, under absolute continuity of X, the
growth conditions on ¢, (and hence on a,) may be substantially weakened. In
fact, when a, |0 and c, |0, m¥(c,/e) = 0 eventually also follows from the
summability of

d, a

n aﬂ
IP(XE l_[(xj——,xj+ ?],YSCH/E), nx>1.

=1 2

Under a finite rth moment assumption this is easily seen to be of order
dl

an an
X e ]_[(xj— —2-,xj+ —2‘"})

J=1

r
c,P

From differentiation theory, the last probability is of order a? for Lebesgue
almost x € R% and thus, by absolute continuity, for X-almost all x. The
summability criterion thus becomes

rd
chan' < 00.

ProoF oF THEOREM 3. First of all, a version of Theorem 2 also holds true
with m,(y|x) replaced by 1 — m,(y|x), with & nonincreasing. Just replace Y, by
—Y,. We may also assume that the Y’s are nonnegative.

The result then follows from the equation

o (1= m,(y1x) = (1 - m(y[x)))h(y) dy
m,(x) — m(x) = [) 7(y) )

where
1 fory<i,

h(y)={ o

y fory>1,

and where p > 1 is so small that pr < r + p. By assumption E(A~"(Y)) < co.
Since A is Lebesgue-integrable,' the result is an immediate consequence of Theo-
rem 2. O

Acknowledgments. Thanks to a referee and an associate editor for their
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