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RECURRENCE OF RANDOM WALKS ON COMPLETELY
SIMPLE SEMIGROUPS

By P. B. CERRITO

University of South Florida

A completely simple semigroup has the form S = X X G X Y. This paper
considers the relationship between S and G. Given a recurrent random walk
on S we determine under what conditions G is also recurrent and conversely.
In particular we generalize the results of Larisse.

1. Introduction. Let S be a locally compact, Hausdorff, second countable
semigroup and let {X;} be a sequence of i.i.d. random elements of law p defined
on S. Let X, of law p, be independent of X; for all ¢ where g, is not necessarily
equal to p. Then XOZ,, = X,X, --- X, is a right random walk on S. Note that
Z, has law p* where p” denotes the n-fold convolution of p. For properties of Z,
on S see Mukherjea and Tserpes [3].

We introduce some terminology concerning Z,. Write x — y 1f there exists
some n > 0 such that P(Z,€ N,)=P(Z,€ x 1N ,) > 0 for any neighborhood
N, of y and x - y i.o. if Px(ZnENy i0) =1 for any N, of y. Also x €S is
recurrent if x — x i.o. If there exists some recurrent x € S then we say Z, is
recurrent. We also can say S is recurrent if there exists some recurrent random
walk defined on S where the support of the measure generates S.

A nonempty subset I of S is a right ideal if IS C I, a left ideal if SI c I, and
an ideal if IS c I and SI C I. An element e € S is idempotent if e? = e. It is a
primitive idempotent if ef = fe = e for any other idempotent element f of S. S is
completely simple if it contains no proper ideals and contains a primitive
idempotent. If S is completely simple then we can write S = X X G X Y where
G is a group and X, Y are sets such that there exists a mapping ®: Y X X - G.
The multiplication in S is defined by

(x, 8 y)(x,» g, y/) = (x, g(I)(y, x,)g,’ y,)°

We may assume ®(y, x) = yx. Also X and Y are left and right zero semigroups,
respectively. Note that x is a left zero semigroup means that for any x, y € X,
xy = x. For properties of S see Paalman-deMiranda [4].

Random walks defined on completely simple semigroups have been extensively
studied (see Mukherjea and Tserpes [3]). They represent the first major step
beyond the compact case in the field of probability theory on semigroups. Also
the results can be applied to the study of random walks defined on matrices.

In this paper we study the random walk Z, on the completely simple
semigroup S. In Section 2, we show that the recurrence of p is equivalent to the
recurrence of p”* for some n > 0. In Section 3, we show some conditions for which
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1412 P. B. CERRITO

the recurrence of S implies the recurrence of G and conversely. For recurrence
properties of random walks on groups see Revuz [5].

2. The recurrence of p"”. Let S be a completely simple semigroup: S =
XX GXY and let X,Z, be defined as above. We will show that X,Z, is
recurrent independent of the choice of the initial element X, if and only if
po(xD) = 1 for some x € S, where D is the semigroup of S generated by the
support Sp of the measure pu, D =U,(Sk)". If S is a group, the result will hold
for any X, where the support of u, is contained in D. From this it will follow
that p is recurrent if and only if u” is recurrent for some (any) n > 0.

To show these results we require some preliminary lemmas. The first two are
from Mukherjea and Tserpes [3]. A simple compactness argument will prove the
third.

LEMMA 1. Z, is recurrent on S if and only if there exist some elements x, y
such that

2 P(Z,eN,)) = oo

n>1

for all neighborhoods N, of y.

LEMMA 2. LetD =U,(Su)" be the semigroup generated by the support S of
p. If Z,, is recurrent, x — yi.o. if and only if y € xD.

LEMMA 3. Z, is recurrent if and only if there exists a compact set K and an
element x € S such that

L P(Z,€K) = .

n>1

THEOREM 1. Let X, have law .. If there exists a compact set K C S such
that P(XyZ, € K i.0.) =1 (i.e.,, X,Z, is recurrent) then Z, is recurrent on S.
Conversely if Z,, is recurrent then X,Z, is recurrent if and only if there exists
x € S such that p(xD) = 1.

Proor. Suppose P(X,Z, € K i.0.) =1 for K compact and Z, is not recur-
rent. By Lemma 3, P(Z, € K i.0.) = 0 for all y € S. Therefore,

P(X,Z, € K i0.) = f P(Z, < K i.0.)uy(dy)

= foﬂ'o(dy) =0.

This is a contradiction and Z, is recurrent.
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Conversely, assume Z, is recurrent and let x € S. Then for any open set N
containing x,

P(X,Z, € Nio) = f P/(Z, € Nio.)u(dy)

= f _P(Z, € Nio)udy) + f _P(Z, € NioJuo(dy)

X.
= po(xD).
Therefore x € S is recurrent with respect to X,Z, if and only if py(xD) = 1. O

COROLLARY . If u” is recurrent for some n > 0 then so is p. If p is recurrent
then so is u" for any n.

Proor. If p” is recurrent then by Lemma 3,
E Px(anEK) =
k>1
for some compact K (Z, has law p”). This implies that
Y P(Z,€K) =0
k=1
and p is recurrent. Conversely, suppose

n—1

w= Y P(Z,€K)= ) } P(Z,.;€K).

k>1 0 kx>1
Then there exists some j € {0,1,2,..., n — 1} such that
Y. P(Zpj€ K) = 0.
k>1

By applying Theorem 1 to X, = xX, --- X;, y" is recurrent. O

If S is a group then for any x in the subgroup D of S generated by p and any
open set containing an element of D, Z, is recurrent and X, has law p,

P(X,Z, € Nio.) = [P(Z, € Nio.)udr)

= .”'O(D)

so that X,Z, is recurrent for any X, such that the support of u, is contained
in D.

3. The relationship between S and G. For S = X X G X Y it has been
conjectured that S is recurrent if and only if G is recurrent. Mukherjea, Sun, and
Tserpes [2] showed the result when G is a compact group. Larisse [1] considered
discrete semigroups and showed the result when G is abelian or locally finite. G is
locally finite provided every finite subset generates a finite group. We will expand
the result of Larisse using a much shorter proof utilizing the properties of
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Lemmas 1, 2, and 3. We will also prove the conjecture in the special case where
S =G X Y (S =X X G) is aright (left) group. By definition, S is a right group
if it contains an idempotent and has no proper right ideals. It can easily be shown
that any left group has the foorm S= G X Y.

LEMMA 4. Suppose S =X X G X Y and p = v X o is recurrent on S where
v, o are defined on X X G and Y, respectively. Then there exists a recurrent
measure on S.

ProoF. Let x = (x,, x5, x3) € S be recurrent with respect to p. Let X; =
(X1, Xi9, X;3) have law p and let Z, = X, X, --- X, . Then for any neighbor-
hood N, of x, N, = N, X N, X N;, P(Z, € N, i.0.) = 1. Therefore,

1=P(Z,€ N, io0.)
= P(x; € Ny, X3 € Ny, 23X, X5 X153 -+ X, _1,3X,1X5,2 € Ny i0.)
< P(Y,Y, -+ Y,e N, io0.)
where
Yo = x,%3X, Xy5, Y= XXy 1 Xiyp, forix 1

Since X, is independent of X,; and X, for all i, by Theorem 1, Y,Y; --- Y, isa
recurrent random walk on G. O

COROLLARY . Let S be a right group, S = G X Y. Then S is recurrent if and
only if G is recurrent.

PROOF. Any measure defined on S satisfies the conditions of the above
lemma. Conversely, if p, is recurrent on G and p, is any measure on Y then
pg X p, is recurrent on S. O

Consider the following example. Let S consist of the nonzero complex numbers
with multiplication defined by a: b = |a|b. Then S is a right group with
G = (R, ), the positive real numbers under multiplication and Y = {a € C:
|a| = 1}. Since (R ™, -) is isomorphic to (R, +) we define a recurrent measure on G
as follows: Let o be a normal distribution with mean zero. Define

po(B) = o{x: e* € B}

for any Borel set in S and define p,, to be normalized arclength on Y. Then
pg X p, is recurrent on S.

We close this section with an extension of a result of Larisse [1] concerning
discrete groups that are either abelian or locally finite.

THEOREM 2. Let G be discrete and locally finite. Then any measure defined
on G is recurrent.

ProoF. Let p be an arbitrary measure defined on G = (a,, a,,...) where
{a,, a,,...} are the elements of the support of u. Then p(a;) > 0 for all i and
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w(x) = 0 for all x # a,. Define G, = (a,,...,a,) for all n. Then since G is
locally finite, G, is a finite group such that G, 1 G. Define a measure p,, on G, by
f"‘n(ai) = I"‘(ai)’ i= 19“‘:"’7
p(e)=n(e)+ Y p(a;) where e is the identity of G.

izn+1

Since G, is compact, p, is recurrent on G. Also p, = p setwise. Let Z,, =
X,,X,, -+ X, be a random walk on G, of law p,. Then

P(Z,, =€) = p(e)

)y Ea(X)Ba(%2) + 0 pa(xy)

XXy Xp=e
x;€{ay, ay,..., a,}

Youa(ay) o pa(x)na(e)*,
K

where
K={xx, - x;=e,x,#e, j<k,x; € G, forall i}.

Therefore,

ZP(an— e)= X Yux)  pulx)pa(e)”

k>1

= T ple) T onx) - plx)
k=0 xl;i;xé—e

= Y ue)*- M.
k>0

Suppose M < oo. Then the above sum is also finite since p,(e) < 1. However,
E P (an = e) = ®

k=1
since p,, is recurrent. This is a contradictionandso M = ©.If Z, = X, X, --- X,
is a random walk on G of law p then M < L P(X,, = e). Therefore p is recurrent
on G.O

COROLLARY . Suppose S = X X G X Y where G is discrete and locally finite.
Then S is recurrent.

PROOF. Let p be any measure on S and let p,,p,, i, be the marginal
distributions defined on X, G, Y, respectively. By Theorem 2, p,, is recurrent on
G. By Lemma 4, p, X p, X p, is recurrent on S. O

Note that although G defined above is discrete, there are no restrictions on X
and Y. For example suppose X = Y =R and G = (al, Ay .) such that a? = a;.
Define ®: Y X X — G such that (y, x) = a; where i is the greatest 1nteger less
than or equal to x + y. Then any measure deﬁned on S is recurrent.
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We now consider the case where G is a discrete abelian group and p is a
recurrent measure defined on G.

LEMMA 5. Let G be discrete and abelian. If G is recurrent then any
subsemigroup of G containing the identity is recurrent.

ProOF. Let p be a recurrent measure on G = {a,, a,,...) where A =
{a, ay,...} is the support of u. Let H be any subsemigroup of G. Then H is
generated as a semigroup by the set B C A and H contains no element of the set
A\ B except possibly the identity. We define a measure o on H as follows:

o(a;) =p(a;) ifa,€B and
o(e) = L n(ay).
a;&€B
Let Z, = X, X, -+ X, be a random walk of law p defined on H. Then

P(Z,=e)= X ofx)o(x;) - o(x,)

XX, =e

x,€B
n—k
= 2o(x) -+ o(x,)o(e)" ",
K
where
K={x, - x,=e,x;#e,x, € Bforall i}.
That is,

P(Z,=e)= Yoo(x) - o(xy) X plxge) - plx,)

k>0 x;€B
Xps1" " Xp=e
Y wp(x,)--- p(x,) since G is abelian.
X, x,=e
x,€A

Therefore X, P(Z, = e) = oo since p is recurrent on G and ¢ is recurrent on H.O

THEOREM 3. Let S = X X G X Y where G is discrete and abelian. If G is
recurrent then so is S.

PrROOF. Let p be recurrent on G. Then YX is a subsemigroup of G (Y C eS,
X c Se, G = eSe). Define a measure o on YX using the method of Lemma 5.
Then o is recurrent on YX. By using the procedure in Lemma 5 to relate o to p
and applying Theorem 1 to the result, ¢ * p is recurrent on G.

Let {X,} and {Y;} be sequences of random variables such that Y, X; has law o
for all i and j. The procedure for doing this is as follows: Let »; and », be
measures on X and Y, respectively. Then »,*», is defined on X X Y. Let
A, = {(x, ¥): yx = g}. Define a measure » on X X Y such that

»(B) = ZGVI* (BN Ag) -o(g) /v, * Vz(Ag).



RECURRENCE OF RANDOM WALKS 1417

Then for any g, »(A,) = o(g). Let {G;} be a sequence of i.i.d. random variables
of law p. Then

P(XY,---Y,_,XG, - G,eN,io.)=1.
Therefore
P(ee N,,Y,eN,, XGY, --- Y, ,X,G,€ N,io.) = 1.
That is,
P((X,,G.,Y,) - (X,,G,,Y,) €N, X N,x N,io0.) =1.

This holds for any neighborhood of e in S. Therefore if Z;, = (X,,G,,Y,) then
Z\Z, --- Z, is a recurrent random walk on S. O
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