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EMPIRICAL PROCESSES INDEXED BY
LIPSCHITZ FUNCTIONS!

BY EvARIST GINE AND JOEL ZINN

Texas A & M University

Necessary and sufficient conditions on P for the unit balls of BL(R) and
Lip(R) to be functional P-Donsker classes are obtained.

1. Introduction and results. Given an interval A C R, we let
BL(A) = {f: A>R,|Ifll, < oo, |Ifll, < o0}
where
e 17(2) = £(s)]
L s+t,s,t€EA |t_ S|
is the Lipschitz pseudonorm of f and ||f||,, = sup, < 4| f(s);
BL(A) = {f€BL(A): |Ifl, <L, IIfll,<1};
Lip(A) = {f: A> R, ||f|l, < o} and Lip,(A) = {f € Lip(A): || f||, < 1}.

Let P be a Borel probability measure on R and let X; be i.i.d. random variables
with law P (which we assume to be the coordinates of the infinite product
probability space (RN, BN, PV)). The empirical measure corresponding to { X} is
i=1
A class of measurable functions F C B is a functional P-Donsker class if and
only if n'/?(P, — P) converges weakly as a sequence of random variables with
values in [®(F'). For the exact definitions as well as proofs we refer to [1], [2], and
[6]. (Actually, in the unbounded case we consider some classes such that
sup; ¢ p| f(8)| = o; in this case we say that F is functional P-Donsker if
Fc {f+c f€ @G, ceR}and G is a functional P-Donsker class according to
the usual definition.)
The purpose of this note is to prove the following

THEOREM 1. A necessary and sufficient condition for BL,(R) to be a func-
tional P-Donsker class is

M ¥ [or(i—1<1XI < /)] < o0,

J=1

where L(X) = P.

Received December 1984; revised May 1985.

!Research partially supported by National Science Foundation grants DMS-83-18610 and MCS-
83-01367.

AMS 1980 subject classification. Primary 60F17.

Key words and phrases. Empirical processes, functional Donsker classes, Lipschitz and bounded
Lipschitz functions.

1329

Institute of Mathematical Statistics is collaborating with JSTOR to digitize, preserve, and extend access to OZz
The Annals of Probability. STOR ®
WWW.jstor.org



1330 E. GINE AND J. ZINN
In the process of studying this problem we also noticed that

THEOREM 2. A necessary and sufficient condition for Lip,(R) to be a func-
tional P-Donsker class is

(2) T [pr{IX]> j}]"? < o,
Jj=1
where L(X) = P.

It turns out that almost any method works for Theorem 1. For example, one
can

1. show that BL(R) is the dual of a cotype 2 space, in fact of an L, space, thus
reducing the problem to the well known central limit theorem in L, (see
Proposition 1 below), or

give an essentially direct random entropy argument, or

obtain Theorem 1 as a corollary of Theorems 3.2 (5.1, 5.4) of [8], or

give a direct proof using summation by parts and the usual approximation

([12], [6D).

We became intrigued by this problem because of Stute’s remark [16] to the
effect that the techniques of [8] are not useful in the case of smooth functions.
Nonetheless we are able to prove Theorem 1 by method 3 above. We also give a
direct proof because it is reasonably elementary. We use method 1 in the proof of
Theorem 2, and for this we must examine the relationship between Donsker
classes and the central limit theorem in Banach spaces. Methods 2 and 4 also
work for Theorem 2, which is in fact easier to prove than Theorem 1.

The norm induced by BL,(R) on measures of finite total variation (the dual
bounded Lipschitz norm dg;.) metrizes weak (i.e., weak-star) convergence of
probability measures and because of this it has some interest in statistics (see,
e.g., [9]). In particular, it is interesting to obtain speeds of convergence in
probability for the limit dg,«( P,, P) = 0. For instance, by Theorem 1, if P
satisfies (1) then the sequence {n'/?d g, .( P,, P)}<_, converges in distribution and
is therefore bounded in probability.

As far as we know, the first result on the problem considered here is found in
Strassen and Dudley [14] where, as an application of their central limit theorem,
they show (in present terminology) that BL,(R) is functional P-Donsker if P has
bounded support. In [15] Stute considers the case of P with unbounded support.
However, only boundedness in probability of {n'/?dg;.(P,, P)}?_, is obtained
there, and assuming both a condition stronger than the existence of second
moment for P, and a smoothness condition (on P). Notice that the condition in
Theorem 1 is “between” E|X| < 0 and E|X|'*® < oo for some & > 0.

The problem in two or more dimensions seems to be of a different nature. For
one thing, the identification Lip(R)/R < L_(R) given by f — f’ does not extend
to R?% d > 1. Also, Strassen and Dudley show in [14] that BL,(R?) is not
P-pregaussian if P is Lebesgue measure on the unit square.

Ll
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2. Proofs. It can be easily proved (see, e.g., [10]; also [14]) that if @ is any
finite measure on a finite interval A, then the L,(Q) covering number of BL,(A)
satisfies

3) N(e, BLy(A), I ll@)) < N(e/Q*(4), BLy(A), |- ..)

< exp{clAIQ'2(4) )

for all € > 0, and for some constant ¢ independent of A, @, and &. Using this
estimate in the Strassen—Dudley central limit theorem or in Theorem 5.4 of [8],
one immediately obtains

LEMMA 1 (Strassen and Dudley). Let A be a finite interval. Then the class of
functions F = {fl1,: f € BL,(R)} is a functional P-Donsker class for any prob-
ability measure P on R.

PROOF OF THE SUFFICIENCY PART OF THEOREM 1, USING METHODS FROM [8].
Since BL,(R) is separable for the usual metric of uniform convergence on
compact sets, it is /,-deviation measurable for any P (in the notation of [8],
Definition 2.2). Next we prove that if (1) holds, then BL,(R) is P-pregaussian.
Define for j € Z processes G f € BL,(R) —» centered normal variables with
covariances EG (f)G (&) = Ef(X)g(X)I(J — 1< X <J). Then

EIG(f) - Gg)*<|If - &llopr(j — 1< X <)

and therefore, by [8], Theorem 2.15, and by (3), it follows that G ; has a version G,
with bounded uniformly continuous paths on (BL(R), || ||, p)) and moreover,

(4) E sup |G(f)l<K[pr(j-1<X<j)]"
feBL,(R)

for some fixed constant K. Then if

o0

(5) G(f)= X G(f),

J=—o0

where G; are independent and have bounded uniformly continuous paths, so does

G by (1) and (4) [(1) and (4) imply that (5) converges uniformly a.s. by

It6—Nisio’s theorem]. Since the covariance of G(f) is that of f(X) [which

dominates that of f(X) — Ef(X)] it follows that BL (R) is P-pregaussian.
Hence, by Theorem 3.2 in [8], the result will follow if we prove that

© ﬁmsuppr{ Tre( £(X) - 8(X)) | }=0

n

sup 1 73
f,g€BL\(R),
E(f(X)-g(X)?<e/n'/?

for some 7>0 and all ¢ >0 (where {¢}, is a Rademacher sequence
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independent of {X;}). By Lemma 1, for all 0 < r < oo we have

Lrae(f(X) - g(Xi))I[_,, n(X:) > TS}

lim sup pr{ sup Y

n f,g€BL(R),
E(f(X)-g(X)?<e/n'/?

= 0.

On the other hand, by the proof of Theorem 5.1 of [8] [more concretely, by (5.13)

there], .

Z§L=1~°'i( f(X;) - g(Xi))I[—r, r]‘(Xi)
pr sup
(8) f,8< BL\(R),
< 5pr{ln N, ,(e/n2, BL\([-r,7]°)) > oen'/?} + o(1),

ni/2

E(f(X)-g(X)?<e/n'/?

where o(1) tends to zero as n — oo independently of r, and o is related to = > 1,
but is independent of n and r. Here N, ,(¢/n'/?, BL\([—r, r]°)) denotes the
¢/n'/?-covering number with respect to the distance d,, ,(f, g) = L1.| f(X;) —
&(X;)l/n of the set {fI_,, f € BL,(R)}, which we identify with
BLI([_r’ r]c)_

To compute the random entropy In N, ,, set

©
C..= X PJj-1<|X|<))
J=r+1

and I; = {x: j— 1 <|x| <j}. Then

doih8)= T TI(X) - g(XOI(X,)/n

Jj=r+1 k=1

o0

X r - &)1l P 1)
00 1/2( 7.
> (- g)15||wc,,nP;/2(b))f%ﬂ'

Jj=r+1 r,n

IA

Therefore, by (3), for all € > 0

=]

N, (e, BL([-7,7])) < TI lN(s, BL,(L), || 1, PY*(L)C,, )

Jj=r+

Sexp(cs—l( f P,}/?(Ij))2

Jj=r+1
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and
pr{in N, 7. BL([-r, 719 > oen*”)

o 062 \1/2
spr{ > PJ/Z(IJ-)>(—) }
Jj=r+1 4

c \/2 x
<(5z) T ER()

oe Jj=r+1

c 1/2 oo

= (_2) Y pr'Aj-1<|X|<j},
o¢ j=r+1

which can be made arbitrarily small by choosing r sufficiently large. Plug this

into (8) and obtain limsup,limsup,((7) + (8)) = 0, thus proving (6). This gives

the sufficiency part of the theorem. O

DIRECT PROOF OF THEOREM 1. Although randomization is not essential, it
does shorten some expressions, so we will use. Theorem 2.14 (a) < (b) from [8].
By (3), BL,(R) is totally bounded in L,(P) for any P. So, for the sufficiency part
it suffices to prove

nl/2

9) lim limsup pr{ sup Xh_rex( F(X3) &(Xy)) ’> s} —0
80 /,8€ BL(R),

E(f-g)*(X) =<8
for all 0 < r < c0. The corresponding limit for fI;_, ,; instead of f and gI,_,
instead of g is zero by Lemma 1, for all 0 < r < oo. Therefore, by the triangle
inequality, it will be enough, for (9) to hold, that

Lhoix f(X)I(1 X, > 1)

10 li E =
(10) r-'nolo Slylzp fezlg:(n) n'/?
Note that
Y e f(X)I(1X,] > r)/n'/?
E=1
=Y Y a&f(X) - f(G-1))I(j-1<X,<j)/n/?
k=1 j=r+1
+ 2 X f(J-Vegl(j-1<X,<j)/n?
(11) k=1 j=r+1
+ kZ Y el /(X)) = f(7— DI - 1< X, <j)/n'/?
=1j=—-r
+ X X f(J-1ed(j-1<X,<j)/n/?
k=1 j=-r

= (I) + (II) + (III) + (IV).
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We now handle the sums (I) and (II) ((IIT) and (IV) being obviously analogous).
Here is (II):
s Yiogdl(j— 1< X, <j)

E suwp ()< Y E 1/2
feBL,(R) j=r+l n

(12) -
< X [r(j-1<Xx <))

Jj=r+1

which by (1) tends to zero as r — oo uniformly in n. For (I) we will use
integration by parts and the fact that if f € BL,(R) then || f||, < 1and || f',, <
1, where f’ is the derivative of f (f is an absolutely continuous function) and
[l f'llo denotes the esssup of |f’|. We have, for f € BL,(R),

S % e f(X) - (- D)~ 1< X, <j)/n"?

k=1 j=r+1
) n X, ., . . 172"
= X Y||[Mr@d)edi-1<X,<))|/n
j=r+1k=1 J—1
-z /[ (ZekI(t<Xksj))f'(t)dt/nlﬂ.
J=r+1°J-1\ =1
Therefore,
E sup (D)< Y fj sup E|Y eI(t<X,<j)|dt/n'/?
feBL,(R) j=r+1%J-1lj-1<t<j |k=1
(13) -
< ¥ [pr{j-1<Xx<j}]""
j=r+1

which tends to zero as r = oo independently of n. (12) and (13), together with
their analogues for (III) and (IV), give (10) and therefore the direct part of the
theorem.

For the necessity part, consider the functions

0 forx<3j—-1,

1 forx = 3j,

faj(x) = 1 forx=37+1,
0 ferx>3j+2,

and linear in between.

For the class {7 _ A f;i A; = £1} to be P-pregaussian it is necessary that the
series X% _ «l|81,,| converge, where gy, are independent centered normal random
variables with variance equal to the variance of f;i(X;). But Varf3(X) >
[1-PBj-1<x<3j+2}]°P3j <x<3j+1}. So, if T2 _|g,, | converges
as. then T2 _ (P(3j < x < 3j + 1})/2 < co. Convergence of the other thirds of
the series (1) follows in the same manner if one chooses the analogous classes of
functions. (A similar argument can also be found in [14].) O
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REMARK 1. Method 1 and Proposition 5.1 of [13] show that BL,(R) is a
functional P-Donsker class if and only if

(14) { s (B - P
feBL,(R) n=1

is stochastically bounded (as, e.g., in the comment at the end of the proof of
Theorem 2 below). In particular this, with Theorem 1, settles a question from
[15]: if dP(x) = cdx/x* for x > a and for some ¢, a, and a > 0, then (14) is
stochastically bounded if and only if @ > 2. One can also prove directly that if (1)
fails then (14) is not stochastically bounded (in a similar way as it has been
proved above that BL(R) is not P-pregaussian). By uniform integrability (see,
e.g., [12], Prop. and Remarque 2.1) (14) is stochastically bounded if and only if

sup E sup |n'/*(P,— P)({)| < oo,
n feBL,(R)

or equivalently (see, e.g., [8], Lemma 2.7),

n

Y & f(X,)/n? < o0

k=1

(15) sup E  sup
n  feBL(R)

For concreteness, suppose Y3,[P(3j <x <3j+ 1)]"?= o0, and let Py =
P{3j < x < 3j + 1}. Using Corollary 3.4 from [7], we have

/n1/2
/n1/2

n

Z e, f(Xy)

k=1

sup E  sup
n feBL(R)

n

Z ‘fkf(Xk)

k=1

/n1/2

> C12sup Yy Pi? = oo,
n (j: Py=1/72n)

showing that (15) does not hold.

>sup E sup
n f=ZAf3;, Aj=+1

n

Z L33 f3j( Xk)

k=1

=sup ) E

n j=1

REMARK 2. Theorems 1 and 2 hold in more generality, e.g., for i.i.d. random
measures »; instead of just i.i.d. point masses 8y . Let us describe the analogue of
Theorem 1. We let S = M(R) be the set of measures of finite total variation on R,
with a o-algebra S for which the total variation norm ||»|| and the maps
v = [fdv, f € BL,(R) are all measurable. Then BL,(R) can be thought of as a
family of functions on S: f(v) = [fdv. Let P be a probability measure on M(R)
and let » be a random measure with L(r) = P. We then have: If

ad 1/2
)Y (Bl l?) " < oo

J=1
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then BL,(R) is a functional P-Donsker class, and if » is positive this condition is
also necessary for BL,(R) to be a functional P-Donsker class. The proof of this
result differs from the direct proof of Theorem 1 only in formal details.

Before proving Theorem 2 we formalize the relationship between the central
limit theorem (CLT) for a B-valued random variable Y with law @ (B a Banach
space) and the P-Donsker property for the unit ball B; of the dual B’ of B (and,
for completeness, even in the nonseparable case). We use the notation Y €
CLT(B) to mean that if Y, with L(Y;) = L(Y), are the coordinate functions on
an infinite product probability space, there exists a Radon centered gaussian
measure y such that for every H: B — R bounded and continuous,

*

/ H( é Y,./nl/z) dor > [H(x) dv(x).

(see, e.g., Andersen [1], Definition 6.1; see [1] or [6] for the definition of [*; if B is
separable this reduces to the usual definition of the CLT for Y). The following
proposition, in this generality, is an immediate consequence of the main result in
Andersen and Dobrié¢ [21].

ProPOSITION 1. Let B be a Banach space and let Y be a weakly centered
Baire random variable on B with law Q. Then Y € CLT(B) if and only if B is a
functional Q-Donsker class.

Proor. If B is separable, this follows directly from Theorem 1 in Philipp
[11] and Theorem 0.3 (a < b) in Dudley [4] (a proof of a = b in this theorem
has been kindly supplied to us by Dudley; see also [2], Theorem 3.2). In the
general case we have, for Y and @ as in the statement of the proposition:

Y € CLT(B) = Y € CLT(*(B}))
B is @-pregaussian and { Y f(Y)/n'V% fe B{}

is eventually uniformly equicontinuous for the
L,(Q) distance in Bj.

(=4

«< Bj is a functional @-Donsker class.

The first implication follows by Tietze’s extension theorem and the third is just
Theorem 4.1.1 in [5]. The crucial second implication follows from Theorem 5.5
and 4.1 in [2] (see also their example 5.7). O

Proor or THEOREM 2. We must show that condition (2) is equivalent to
Lip)(R) = { f € Lip,(R), f(0) = 0} being a functional P-Donsker class. Since by,
e.g., 2.12 and 2.13 in [8], the condition

npr{ sup | f(X)|> nl/z} = npr{|X| > n'/?} >0
feLip}(R)
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is necessary for Lipd(R) to be P-Donsker, we may assume in particular that
[® . |x| dP(x) < oo. Note that for f € Lip(R),

[ 1a(p-P) = [* (B,-P){x s t}f (1) at
(16) o s
+f0 (P, — P){x > t}f'(¢) dt.

Define
¥() = (6x—P){x <t} for ¢t < 0,
|\ (8x—P){x=t} fort>0,

and Y,(t) as Y(¢) with X, replacing X. Then Y, Y; € L,(R) a.s. since [®_|x| dP(x)
< 00. Denote

(Y, g) = f:oy(t)g(t) dt, geL,(R).

Then (16) can be rewritten as

I (U PR ZTA R L)

Since the correspondence f <> f’ is one-to-one (and isometric) between Lip)(R)
and the unit ball of L_(R), which we will denote by Bj, (16’) and the
Dudley-Philipp L,(P)-equicontinuity criterion for Donsker classes ([5], Theorem
4.1.1) imply that

an Lip)(R) is a functional P-Donsker class if and only if the unit ball of
L _(R), By, is a functional @-Donsker class, where @ = L(Y).

Hence, by Proposition 1, Lip}(R) is a functional P-Donsker class if and only if
Y € CLT(L,(R)).
Now, since L,(R) is of cotype 2,

(18) Y e CLT(L,(R)) = Y is pregaussian « foo (EYz(t))l/2 dt < 0.

(See, e.g., exercises 3.8.13 and 3.8.14 in [3].) But this last integral condition is
precisely (2) (more exactly, the equivalent one [° (pr{X <i?} — pr¥X <
E)/2dt + 2(Er(X = £) — pri{X = £)}/2dt < oo). O

It is worthwhile to note that since L,(R) is of cotype 2, the random vector Y in
the above proof satisfies the CLT if and only if the sequence
{IX7-,Y,/n?|| L m) )=, is stochastically bounded (Proposition 5.1 in [13]). This
shows by (16") that condition (2) is also necessary for the sequence

sup |n/%(B, = P)(f )},
feLip(R)

to be stochastically bounded.
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