ABSENCE OF A STATIONARY DISTRIBUTION FOR THE EDGE PROCESS OF SUBCRITICAL ORIENTED PERCOLATION IN TWO DIMENSIONS

By Roberto Henrique Schonmann

Universidade de São Paulo

We prove that the edge process of oriented percolation in two dimensions does not have a stationary distribution in the subcritical case.

In this note we answer a question raised by Durrett (1984). We prove that the edge process of oriented percolation in two dimensions does not have a stationary distribution in the subcritical case. We suppose that the reader is familiar with at least Sections 2, 3, 4, 7, and 8 of Durrett (1984) and also adopt the notation used there.

First we recall briefly the definition of the model and the basic terminology. Let

$$\mathcal{L} = \{(m, n) \in \mathbb{Z}^2 : m + n \text{ is even, } n \geq 0\}$$

and draw an oriented arc from each $(m,n)\in\mathcal{L}$ to (m+1,n+1) and to (m-1,n+1). Each arc is independently open with probability p and closed with probability (1-p). Write $x\to y$ if there is a sequence $x_0=x,x_1,\ldots,x_m=y$ of points in $\mathcal L$ such that for each $k\le m$, the arc from x_{k-1} to x_k is open. Now for $\eta\subset 2\mathbb Z$ define the random configuration

$$\xi_n^{\eta} = \{m: (m, n) \in \mathscr{L} \text{ and there is } k \in \eta \text{ s.t. } (k, 0) \to (m, n)\}.$$

If μ is a probability distribution on the subsets of $2\mathbb{Z}$, write ξ_n^{μ} for ξ_n^{η} if η is chosen at random according to the distribution μ independently of the percolation structure. Let

$$r_n^{\mu} = \sup \xi_n^{\mu}, \quad \sup \varnothing = -\infty.$$

If $\eta \subset \mathbb{Z}$ and $x \in \mathbb{Z}$ we use the notation $\eta - x = \{z \in \mathbb{Z}: z + x \in \eta\}$. Now on the event $\{|r_n^{\mu}| < \infty\}$ define

$$\tilde{\xi}_n^{\mu} = \xi_n^{\mu} - r_n^{\mu}.$$

If μ has support on $\tilde{E} = \{ \eta \subset 2\mathbb{Z} : |\eta| = \infty, \sup \eta = 0 \}$, where $|\eta|$ is the cardinality of η , then $|r_n^{\mu}|$ is almost surely finite for all n and $(\tilde{\xi}_n^{\mu}, n = 0, 1, ...)$ is the process $(\xi_n^{\mu}, n = 0, 1, ...)$ as viewed from the right edge.

Finally remember that the critical value

$$p_c = \inf \left\{ p \in \left[0,1\right] \colon P\left(\xi_n^0 \neq \varnothing \ \forall \ n \geq 0\right) > 0 \right\}$$

belongs to (0,1).

Durrett (1984) proved that if $p \ge p_c$, there is a distribution μ concentrated on \tilde{E} such that $(\tilde{\xi}_n^{\mu}, n = 0, 1, \ldots)$ is a stationary process. The uniqueness of such a distribution was proven by Galves and Presutti (1987) for $p > p_c$. Here we prove

Received September 1985; revised January 1986.

AMS 1980 subject classification. Primary 60K35.

Key words and phrases. Oriented percolation, edge process, subcritical case.

THEOREM 1. If $p < p_c$, there is no distribution μ concentrated on the subsets of $\{\ldots, -4, -2, 0\}$ such that $(\tilde{\xi}_n^{\mu}, n = 0, 1, 2, \ldots)$ is a stationary process.

PROOF. We will suppose that such a distribution exists and show that this gives rise to a contradiction. μ has to be concentrated on the infinite subsets of $\{\ldots, -4, -2, 0\}$ for $(\tilde{\xi}_n^{\mu})$ to be well defined, but we will prove below that for any positive even integer d, $\mu(\eta: -d \in \eta) \leq Ce^{-\gamma d}$, where C and γ are positive constants. Then, by a Borel-Cantelli argument, μ is concentrated on finite configurations, which is absurd. Warning: We adopt the convention that C and γ are positive numbers but may change from equality to equality.

Given $d \in 2\mathbb{Z} \cap [0, \infty)$, take $n = \sup\{z \in 2\mathbb{Z}: z \leq d/3\}$. If $(\tilde{\xi}_n^{\mu})$ were stationary, then

$$\mu(\eta: -d \in \eta) = P(-d \in \tilde{\xi}_n^{\mu}) = \sum_{r=-\infty}^{+\infty} P(\sup \xi_n^{\mu} = r, r-d \in \xi_n^{\mu})$$

$$\leq \sum_{r=-\infty}^{+\infty} P(\sup \xi_n^{\mu} = r, r-d \in \xi_n^{2\mathbb{Z}}).$$

But the events $[r-d \in \xi_n^{2\mathbf{Z}}]$ and $[\sup \xi_n^{\mu} = r]$ are independent, since the former depends only on the percolation structure in the region $[r-d-n, r-d+n] \times [0, n]$ and the latter depends on the percolation structure in $[r-n, r+n] \times [0, n]$ and on the initial distribution μ . Therefore, by translation invariance,

$$\mu(\eta: -d \in \eta) \le \sum_{r=-\infty}^{+\infty} P(\sup \xi_n^{\mu} = r) P(r - d \in \xi_n^{2\mathbb{Z}})$$

$$= P(0 \in \xi_n^{2\mathbb{Z}}) \sum_{r=-\infty}^{+\infty} P(\sup \xi_n^{\mu} = r)$$

$$= P(0 \in \xi_n^{2\mathbb{Z}}).$$

Finally by self-duality [(2) in Section 8 of Durrett (1984)] and the exponential estimate (1) in Section 7 of the same article,

$$P(0 \in \xi_n^{2\mathbb{Z}}) = P(\xi_n^0 \neq \varnothing) \le C\varepsilon^{-\gamma n} \le Ce^{-\gamma d} \qquad \Box$$

Acknowledgments. This note originated from illuminating discussions with Antonio Galves. I thank also a referee and the Editor, T. M. Liggett, for their observations and suggestions.

REFERENCES

DURRETT, R. (1984). Oriented percolation in two dimensions. Ann. Probab. 12 999-1040.
 GALVES, A. and PRESUTTI, E. (1987). Edge fluctuations for the one dimensional supercritical contact process. Ann. Probab. 15 1131-1145.

DEPARTMENT OF MATHEMATICS CORNELL UNIVERSITY ITHACA, NEW YORK 14853