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THE CONTACT PROCESS ON A FINITE SET

BY RicHARD DURRETT! AND X1U-FANG Liu?

Cornell University and Beijing Normal University

In this paper we show that the phase transition in the contact process
manifests itself in the behavior of large finite systems. To be precise, if we let
oy denote the time the process on {1,..., N} first hits @ starting from all
sites occupied, then there is a critical value A, so that (i) for A < A thereis a
constant y(A) € (0, o0) so that as N — oo, 0,/log N — 1/y()) in probability
and (ii) for A > A there are constants a(A), B(A) € (0, ) so that as N — oo,

P(a(M)/2 —e< (logoy)/N<B(A) +¢) > 1,

for all ¢ > 0. Our results improve upon an earlier work of Griffeath but as the
reader can see the second one still needs improvement. To help decide what
should be true for the contact process we also consider the analogous problem
for the biased voter model. For this process we can show (log oy)/N —
a(A) = B(A) in probability, and it seems likely that the same result is true for
the contact process.

1. Introduction. Let {¥ denote the basic contact process on {1,2,..., N}
starting from all sites occupied. That is, { is the Markov chain with state
space = the set of all subsets of {1,..., N} and transition rates (or g-matrix)
given by

q(A, A - {x}) =1, ifxeA,
g(A, AU {x})=NAN{x—-1,x+1}|, ifxeA,

where |S| denotes the cardinality of S. {V is a Markov chain with a finite state
space and an absorbing state (the empty set) so at first glance it may seem there
is nothing interesting to say about its limiting behavior: If oy = inf(#: {N = o},
then P(o, < o0) = 1 for all A.

More interesting behavior, i.e., a “phase transition,” appears if we consider
what happens when N — oo. To state our results we have to introduce §,, the
contact process on Z. It is the Markov process with transition probabilities
which as ¢ — 0 satisfy

P(x & ¢,)¢,) ~ ¢, ifx €¢§,
P(x € &)&) ~Mégn {x — 1, x+ 1}, ifx & ¢,

where f(t) ~ g(t) means f(t)/g(t) = 1 as t > 0. It is by now well known that
there is a unique Markov process with the properties given above and there are
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THE CONTACT PROCESS ON A FINITE SET 1159

several ways to construct it. See Liggett (1985), Chapter 6 [or Griffeath (1981)],
for information on how to construct the process and the basic properties we use
below if no reference is given.

Let ¢ denote the contact process on Z starting from £ = {0} and A, be its
critical value,

A, =inf{\: P(¢) # @ forall t) > 0}.
With this notation introduced we can state our first result.

THEOREM 1. Let A <A, and
1
v,(A) = — lim ;logP(&ﬁ# z).
n-— oo

As N - oo,
oy 1
-
log N v,())

in probability.
The results of Griffeath (1981) show

lim sup L log P(¢%+ @) <0,
n— oo n
80 ¥,(A) > 0. [y,(A) is finite since it is < y,(0) = 1.] The existence of the limit
above was first observed in Durrett (1984). For completeness we give the simple
proof of the existence of the limit in Section 2. As the reader can see from the
proofs given there, the only hard part is guessing the constant to which
oy/(log N) should converge (and proving it is > 0). Failure to find the right
definition for A > A, probably explains the incompleteness of the next result.

THEOREM 2. Let A > A, and let —ay(A) and — By(A) denote the limsup
and liminf of

where 74 = inf{t: £4 = @) and €2 is the contact process on the half line
(1,2,...} starting from £4 = A. If ¢ > 0, then as N - co,

P( log oy > B(A) + e) S0,

N
1 A
pllofex =)

N o~ e) - 0.

In words our results say o, grows like Clog N for A < A_ and exp(CN) for
A > A, [In Section 3 we will show 0 < ay(A) < By(A) < 0.] Our theorems
sharpen a previous result of Griffeath [(1981), see Theorem 13, page 177 and the
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remark on page 183 for the extension to all A > A_] and an earlier work of
Stavskaya and Piatetski-Shapiro (1968) and Toom (1968). They did not prove
the existence of the limit in Theorem 1 and had worse upper and lower bounds in
Theorem 2. Our second result can also be improved. The first and most obvious
problem is to prove that ay,(A) = By(A), i.e., the limit exists. After that there is
the annoying fact that the upper and lower bounds differ by a factor of 2.

Strong evidence for the existence of a limit for log(o,)/N can be found in
Schonmann (1985). He proved, after preliminary results of Cassandro, Galves,
Oliveri and Vares (1984), that as N — o, 6,,/Eq, converges in distribution to a
mean one exponential. If we let ¢y = (1/N)log Eoj, this implies

(—11\7 log EN) — ¢y — 0, in probability,
so as N — oo, the distribution of (log a)/N becomes concentrated at the point
which, of course, may be wandering around in [ay(A)/2, By(N)].

As the reader can guess from our notation we believe that the upper bound in
Theorem 2 is correct. (This turns out to be true. See the Epilogue at the end of
the paper.) To obtain some insight into this question we investigated the
analogous problems for the biased voter model on {1,..., N}. Using ¢{ N again to
denote this process it may be described precisely as the Markov chain with state
space = the set of all subsets of {1,..., N} and transition rates (or g-matrix)
given by

g(A,A - {x})=|A°N{x—-1,x+1}|, ifxe€A,
(A, AU {x})=ANAN{x—-1,x+ 1}, ifxe&A.

While the formulas for the transition rates of this process are a little more
complicated than those for the contact process, the biased voter model is much
simpler. An occupied site with two occupied neighbors cannot die and it is easy
to check that if we let L, be a continuous time random walk on {1,2,...} which
starts at 1 and makes transition x > x + 1 at rate 1 and x > x — 1 at rate A
(when x > 1) and let RY be an independent process on {N, N — 1,... }, which
has the same distribution as (N + 1) — L,, then a realization of {¥ can be
constructed by setting

¢N = {Lt,...,RQ’}, for ¢t < oy,
=g, for t = o,

where oy = inf{t: RY < L,}.
With the last construction in hand it is easy to prove

THEOREM 3. If A <1, then as N - o0,

1 1
YV—EN - 5(1 —)), inprobability.

So we leave this as an exercise for the reader and turn our attention to the
behavior for A > 1. If we let /, be a continuous time random walk on Z which
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starts at 1 and makes transitions x —» x + 1 at rate 1, x - x — 1 at rate A, and
let Y be an independent process which has the same distribution as (N + 1) — [,

then we can construct the biased voter model on Z starting from {1,..., N} by
setting
g M = {1,,..., 1N}, fort <y,
=g, for ¢t > 7y,

where 7y = inf{t: rt < l,}
Since S(¢) = r,N — [, is a continuous time random walk it follows from the
gambler’s ruin formula (or the observation that AS(® is a martingale) that

P(ry < 0)=A"N,

for A >1 so A, = 1. From the last result it is immediate that if we let
= inf(t: ¢ + @}, then

1
lim — log P(r{t~™ < o0) = —logA.

n—oo N
The results in the last paragraph fix (for the biased voter model) one of the
problems we had for the contact process. In Section 5 we show how to fix the
other one and prove

THEOREM 4. If A > 1, thenas N — oo,

% log oy — log A, in probability.

Ironically, we have to work harder here to estimate P(L, > 6N) than we do
for the contact process, but once we have the desired estimate the fact that L,
and RY are independent allows us to multiply our estimates and avoid the factor
of 2 in Theorem 2.

The rest of the paper is devoted to the proofs of the results given above. To
prepare the reader for this we need to explain the method behind our notation:
¢ denotes the contact process (or biased voter model) on Z. When a  is put on
top we are considering the process restricted to {1,2,...} and when a is put
there (see the end of Section 3) the process ison {N, N — 1,...}. Similar labeling
conventions apply to the extinction times 7 and the left and right edge processes
1, and rN, with the exception that i in the d1scuss10n of the biased voter model the
processes which should be called /, and 7N are called L, and RY.

2. Proof of the results for A < \,. We begin with the upper bound on oy,
Let ¢2 be the contact process on Z starting from ¢J = {(0}. When £) + @,
|€9] = 1, and starting with more particles increases the survival probability of the
contact process, so we have

P(g,, * 21§ # @) = P(£) + 2),
or rearranging terms,

P(£,,+ @)= P(£+ 2)P(£ + 2).
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Taking logs and letting a, = log P(£ # @), the last equation becomes
Qs 2 A+ A,

i.e., t - a, is superadditive. It is well known and easy to prove that this implies
1 a,
;a P ili% 7 ’

so if we let

1 0
v.(A) = —sup — log P(£) + ),

t>0 t
it follows that
1
o) Slog P(§2 # 2) > —%(A)
and
@) P(£0# @) < e,

The reader should note that up to this point everything is valid for any A. The
fact that y,(A) > 0 when A < A_ is due to Griffeath (1981), Section 5. A proof
can also be found in Durrett (1984).

The proof of the upper bound is an immediate consequence of (2).

PN+ o) < NP(£ + @) < Ne n®™,
so if we let ¢ = log N/1(A) + Ky, then
P({N+ @) < e mMEN 5 0,

whenever K — oo.
The proof of the lower bound only requires a little more work. (1) implies that
if ¢ is large

P(£2# @) > emromO,

If we let ¢ = (1 —¢)log N/v,(A), then the probability of survival for each
particle is > N~1~¢), 5o to guarantee that at least one survives we need to give
ourselves enough independent changes. To do this we consider the contact
process on {1,..., N} with a particle starting at each point of the form
(2k — 1)Clog N for 1 < k <[N/(2C log N)] and modified so that the points
2kC log N are never allowed to become occupied. (Here C is a constant which
depends upon A and N and will be chosen later to-be large enough and so that
C log N is an integer.)

The last rule makes the behavior of the process in the intervals
(2kC log N, (2k + 2)C log N) independent. The next computation shows that if
C is large the restriction does not effect the growth of the individual processes
very much. Let r? = sup ¢). If we consider the contact process with no deaths,
then the position of the right edge r,> has a Poisson distribution with mean A¢ so
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if we let S(At) be a random variable with that distribution

P(suprs0 > m) < P(S(At) = m).

s<t

Now
E(exp(8S(At))) = exp(At(e® — 1))
and Chebyshev’s inequality implies

P(S(At) > KAt) < exp(At(e? — 1 - 6K)).

So if we let 6 =1 and observe e —1 <2 the right-hand side becomes
exp(At(2 — K)). As we mentioned above we are interested in what happens when
t = (1 — ¢)log N/v,(A) and we can assume without loss of generality that ¢ <
so if we let K = 2 + (4v,(A)/A) and work back through the computations above
we see that for this choice of K and ¢,

P( supr® > K(1 — ¢)A log N/yl(}\)) <N
s<t

Now if the process starting at (2k — 1)Clog N does not escape from
(2% — 2)C log N, 2kC log N) by time ¢, then it evolves just like £20 < s < ¢ so
letting C = KA/v,(A) (and enlarging C slightly to make C log N an integer) we
see that if £ = (1 — ¢)log N/y,(A) and N is large

P(g‘tN = Q) < (1 - N_(I‘EZ) _ 2N—2)[N/2ClogN],

which — 0 as N — oo because of the simply proven fact that if ¢, —» 0 and
N, —» oo in such a way that N,e, = oo, then
(1-¢,)" = 0.

REMARK. The reader should take a moment to observe that the arguments
above are very general. The existence of

1
"lim —logP(gt # @)= —y(7)

t— o0

and the bound
P(§)+ @) < e Mt

follows form monotonicity and the Markov property, and the construction in the
last part of the proof is valid for any interaction with finite range.

3. Proof of the results for )\ > \,. We begin by recalling some facts about
the contact process.

(1) As n — oo,

1
—log P(r") < ) = ~yy(p).
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PrRoOF. r{b-nm < o0 is a decreasing event (fewer births in the graphical
representation makes it more likely) so Harris’ (1960) inequality implies

P(’T(l ..... m} 0, ,’.(m+1,...,m+n) < OO)
(*) > P('r{l ..... m} < OO)P(T("HI""’"H'") < OO)
_ P(,’.{l,...,m) < OO)P(T{I,...,n} < 00)‘

[Sticklers for details should notice that although Harris’ theorem cannot be
applied directly to the graphical representation, it can, however, be applied to
the oriented percolation process which has connections from (x, ne) to (x(n + 1)¢)
with probability 1 — & and from (x, ne) to (x + 1,(n + 1)¢) and from (x, ne) to
(x — 1,(n + 1)e) with probability Ae. Applying Harris’ theorem to the oriented
percolation process and letting ¢ — 0 shows that for any T < oo,

P(T(l ..... m} < T, T{m+1,...,m+n) < T)
> P(,T(l,...,m) < T)P(T{m+l,...,m+n) < T)

and letting T' — oo proves the desired result.] O

With (*) established the rest of the proof is like the proof of (1) in Section 2.
If we let a, = log P(r{"~" < c0), then (*) becomes a,,,, > a,, + a, so (1)
holds with

1
—Y9(A) = sup — log P(7{-- ™ < o).
n n

It is unfortunate for us that the argument above does not work when 7 is
replaced by 7, the extinction time of the process in the half-space, because then
the last = becomes < . Some information about 7 can, of course, be obtained
form the last argument: If

1
—Bo(A) = liminf — log P(7{1 ™ < o0),
n

n— oo

then By(A) < y5(A) and it follows from the formula for y,(A) that By(A) < oo.
Fortunately for us, some things generalize in a straightforward way from the
line to the half-space.

(2) If A > A, then

1
—a,(N) = limsup;l- log P(7 ) < 0) < 0.

n—oo

(3) If A > A, then there are constants C, § € (0, o) (independent of A) so that
P(t <74 < ) < Ce™?,

The proofs given in Durrett (1984) on pages 1028-1029 and 1031-1032 for
oriented percolation generalize easily to the present situation: All that is needed
is that in oriented percolation there is percolation in a half-space when p is close
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to 1 and that this can be proved by the contour method in Section 10 of the
paper cited.

At this point we have assembled all the ingredients and we can begin the
proof of Theorem 2. We begin by observing that

P(,‘c(l ..... n} < na) + P(no < ,":(1 ..... n) < 00) — P(,‘:(l,‘...,n) < 00)

and P(nf < #b-" < o0) < Ce %" where C, § € (0, o0) are independent of n,
so if 6 is large

1
—By(A) = liminf — log P(#(*" < nf)
n—oo n
[recall B,(A) is defined by setting 6 = oo in the right-hand side].
Comparing o, with a process which is reset to {1,..., N} at times N6,2 NG, ...
gives
[t/N6)

b

P(oy > t) < P(7(1-N) > N@)
where [x] = the greatest integer < x. If ¢ > 0 and N is large
P(#-5N) < NO) > exp(— (1 + €)By(A)N)

and hence

P(oy > t) < (1 - exp(— (1 + e)B,(A)N )™

If we let ¢ = exp((1 + 2&)B,(A)N) and use the observation at the end of Section
2 we see that P(ay > exp((1 + 2¢)By(A)N)) — 0, which proves the first half of
Theorem 2. To prepare for a remark in Section 5 the reader should observe that
the only property of the contact process used above is that it is a monotone or
“attractive” process.

To prove the second half of Theorem 2 we let [, = inf £{>**) and observe
that the duality equation implies

P(l,>n) =P(#0m < 1),

We want to estimate the probability that fs exceeds N/2 at-some time <
exp((1 — 2¢e)ay(A)N/2). To do this we observe that

E|{s < t: [,> N/2}| < tP(#!" N2 < oo},

where |{---}| denotes the Lebesgue measure of the indicated set. Setting
t = exp((1 — 2e)ay(A)N/2) we have for N sufficiently large

E|{s < exp((1 — 2e)ay(A)N/2): [, > N/2}| < exp(—eay(A)N/2).

To convert this into the bound we want, we consider the first time [,> N/2and
observe that with probability > e, [, will remain > N/2 for at least 1 unit of
time so ;

P(l, > N /2 for some ¢ < e~ 200MON/2 1) < = exMIN/2 /g2,

A similar argument_shows that if we consider the contact process on
(N,N-1,...},callit £, and let 7" = sup £&{™ V=), then

P(#N < N /2 for some t < e17200(MN/2 _ 1) < g=eaxMN/2 /o=A,
t
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To combine this with the last inequality to give the desired lower bound on the

exit time we let {" be the contact process on {1,..., N}, let I} = inf ¢ tN, let
rN = sup ¢N, and observe that on {f, < 7N for all s <t} we have I[N =1,

rtN = 7N and

(4) gN_[t7rt]n£t_[lt’ N]ng\l’

[To prove this we check that while {N # @ every transition preserves the last
two equalities (see Durrett (1984), Section 3, for a detailed proof of a similar
result).] Combining the last observation with the inequalities above shows

P(oy < exp((1 — 2¢)Nay(A)/2) —1) - 0

and proves the second half of Theorem 2.

4. Equality of constants for the biased voter model. In this section we
will show that if £{»~™ is the biased voter model in {1,2,...}, then

(1) lim — log P(71m < o0) = —logA.
n—oco N
The first step in doing this is to observe that if L, and r,V are the processes
defined in the introduction (observe that one is capital and the other lowercase),
then a realization of the process on the half-line can be constructed as follows:
{ (L, N},  t<iy,
= Q N t > ’?N’

o
z
I

where 7, = inf{¢: N < L} = #(L- M),
As we observed in the Introduction

@) Pt <) = (1),

and it is clear that
P(#1 VY < o) > P(rllo N < o),
so it suffices to show
lim sup iP('f“"”’N) < ) < —logA;
Now N
L.e., we need upper bounds on the quantity in question.

Our first step is to prove:

(3) There is a constant C such that
P(maxL, > k) < CEA ™%,

s<t

forall t>1and %2 > 1.
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PrRoOF. Let S,,S,,... be the times at which L, returns to 1, ie., we let
S,=0and fori>1,

U~=inf{t>S,_;: L,=2}, S =inf{t>U:L,=1},

IA

P(mast_>_k) iP( max L,>k,S <t

s<t i=0 SiSuSSi+1 )

= Y P max L,>kS< t)P(S, < t)
i=0

S,'SUSSH.l
XA ®
< CA*ET(¢),

where T(t) = 1 + sup{i: S; < t}.

To estimate ET(t) we observe that P(U, > 1) = e 'so P(S;,, — §;> 1) > e!
and a simple argument [see, e.g., Chung (1974), page 136] shows ET(¢) < o for
all ¢. Considering the time of the first return after s and observing that T(¢)
counts the return at time 0, shows that ET(¢) > E(T(s + t) — T(s)) holds for
all s > 0. Iterating the last relation with ¢ = 1 gives

ET(t) < ([t] + 1)ET(1) < 2tET(1)
for t > 1 and we have proved (3). O

(4) Let r,= rN — N. Then for all a > 0 there is an &(a) > 0 such that
P(r,— (A - 1)t< —at) < e =",
ProoF. This type of large deviation estimate is old [see Feller (1971)] and

should be well known but for completeness we sketch the very easy proof. Let
s,=r,— (A= 1t. If § <0, then

e ¥P(s, < —at) < Ee’ = exp((0)t),
where ¢(0) is a function with ¢'(0) = Es, = 0. The last inequality implies
P(s, < —at) < exp((p(8) + af)t)
and [since ¢’(0) = 0, a > 0] if we pick 8 < 0 small ¢(#) + af < 0. O

Having assembled the necessary ingredients we are ready to do the

PROOF OF (1). As we remarked earlier it suffices to show

N-> oo
For this purpose let py = inf{# |E1- M| = 1), observe py < #(b- M), and
recall how we constructed £{"-~N) from two independent processes L, and 7,".
To estimate P(py < o) we will decompose the event according to the value of
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/— oo
TTT
1y
NZ
T 1T
0
0 N

Fic. 1.

oy=1¢ £L-o NY(pn) = {k}, and divide {(k,¢): k€ Z*, 0 <t < o) into the
four parts pictured in Figure 1. To simplify the notation we will let {ky} =
£0-2N)(py).
N
P(py <) = Y P(ky="k, py < N?) + P(ky> N, py < N?)
k=1
+P(ky — N < (py— N2)(A = 1)/2, py > N?)
+P(ky — N> (py — N2)(A = 1)/2, py > N?)
N
= ( E L,
k=1

The four terms above will be estimated in correspondingly numbered parts of the
proof. ’

+ II + III + IV.

PArRT I. The gambler’s ruin formula implies
1 N-k
. N I
(5) P(Ointl<noort sk) ()\) .
Since L, and r;" are independent processes
I,=P(L,=k, rN = k for some ¢t < N?)

< P( max L,>k, min rN < k)
0<t<N? 0<t<oo

= P(OEgQLt > k)P(Ogglw N < k)
< CNZ2A~FA-V-h) = CN2A~W,
by (3) and (5).
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Part II. Using (3) again gives
I1 = P(ky > N, py < N?) < P max L,> N) < CN2A-N.

0<t<N?

PART III. Let T = inf{t > N% r,N — N < (¢ — N2)}(A — 1)/2}. Then III <
P(T < ). To estimate the last probability we begin as in Section 3 by estimat-
ing (here | | denotes Lebesgue measure)

E|{t: t= N% rN = N < (¢t - N*)(\ - 1)/2}]
- pr(rtN ~ N<(¢- N?)(A—-1)/2)dt
NZ

< fwP(rtN —N-(A-1t< —(A—1)t/2)dt,
N2

which by (4) is [here 8 = (A — 1/2)]
< [Te¥dt =8t
N2
To convert this into an estimate on P(T < oo) we observe that with probability
e~ D we have rN=rPF forall t € [T, T + 1] so

P(T < c0)e ™ < E|{t: t= N2, rN —= N < (¢t - N?)(A — 1) /2}|.
ParTIV. Breaking things up according to the interval [N2 + k — 1, N + k]

in which py is, we get
A-1

IVSP( max L82N+(pN—N2) ,pN>N2)

0<s=<py

IA

i P( max L,>N+ (k—1)(A - 1)/2)

k=1 ‘0<s<NZ+k

i C(N2 + k)A_(N-F(k—l)(}\_]_)/z),
k=1

IA

by (3) and the observation that if L, > x, then L, > [x] + 1. Summing the
series gives

IV> (CN%2+ C)A™N
(here and in what follows C is a constant whose value is unimportant and which
will change from line to line).

PaRT V. Having estimated the four terms all that remains is to add up the
estimates to conclude

N
Plpy< o)< Y I, +I1+1II+1IV
k=1

< CN3A=N 4 CN2A™N 4 e~ A+Dg=1e=3N* 4 (CN2 + C)A 7N,



1170 R. DURRETT AND X.-F. LIU
SO

1
lim sup Nlog P(py < ®) < —logA,

N - o0

and the proof of (1) is complete. O
5. Proof of Theorem 4. In this section we will prove
THEOREM 4. If A\ > 1, thenas N — oo,
1

Nlog oy — log A, in probability.

In the last section we showed
or in the notation of Theorem 2, B,(A) = —log A, so repeating the proof of the

first half of that result (which as we remarked in Section 3 is very general) shows
that for all £ > 0,

log o
P(—fv—"’ > By(A) + e) -0
and all we have to show is
lo
(*) P( goN<—(1—s)log}\)—>O.

In the last section we showed [here the formula number indicates the result
below was formula (3) in Section 4]:
(4.3) There is a constant C such that

P(maxL, > k) < CA™%,

s<t
forall t>1and &> 1.
The key to the proof of Theorem 4 is to improve the last result to:

(1) If K < oo there are constants C, § € (0, c0) (which will depend upon K) so
that if ¢ < exp(KN), then

P( max L, >k)<CN?A™*+ Ce®N",

t—1<s<t

ProorF oF (1). Using the notation of Section 4, let S|, S,, ... be the times at
which L, returns to 1, i.e.,, we let S, = 0 and for i > 1,

U =inf{t>8,_;: L,=2}, S;=inf{¢t> U;: L,=1}.
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The first step in our proof is to prove:

(2) There are constants C, § € (0, o) so that
P(S, > t) < Ce™ %,

Proor. LetV, =S8, - U,
P(S, > t) < P(U, > t/2) + P(V, > t/2).
Since U, is a mean-one exponential
P(U, > t/2) = e /2,
To estimate V| observe that L, = 2 for ¢t = U, and for U, < t < S,, L, behaves
like the unrestricted random walk /, so

P(V, > t/2) = P(l, > 2fors < t/2|l, = 2)
<P(l,,,—1,20)
< Ce~tA-Dt/2
by a trivial generalization of (4.4). Adding this to the first estimate proves (2).

We call the time intervals [S;, S;,,], { > 0, excursion intervals and following
the notation in the last section let 7(¢) = the number of excursions which start
in [0, t]. The last result says there are not too many long intervals, the next says
there are not too many short ones.

(3) There are constants C, § € (0, o) so that for ¢t > 1,
P(T(t) > 3t) < Ce™®,
Proor. Let X; =S, — S;_,. The X areiid. with P(X;> 1) > P(U, > 1) =
e !and e < 3so
P(S,<3ik) < P(|{i <k: X;>1}| < 1k) < Ce™*,

by the large deviations estimate used to prove (4.4). From the last inequality it
follows that if ¢ is an integer

P(T(t) > 3t) = P(S,, < t) < Ce 3,

and then the result given above follows easily from this.

With our preliminary results on excursion intervals established we are ready
to begin the proof of (1). The second term on the right-hand side comes from:
(4) The probability that some excursion starting in [0, eXV] has length > N2 is

< P(T(eXN) > 3eXN) + 3¢XNP(S, > N?)
< Ce—saexp(K)V) + 3eKNCe—8N?
< Ce N

(here as before and in what follows, C and & are positive finite constants whose
values change from line to line).
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The first term on the right-hand side of (1) (and another piece the same size as
the second term) comes from:

(5) The probability some excursion starting in [t — N2, ¢] has

max L >k

§,<s<8,,,
is
< P(T(t) — T(t — N?) > 3N?) + 3N2P(maxL2 > k)
s<s;
< Ce N 4+ 3N2(1/A)*2
[see the proof of (4.3) to bound the second term]. Adding (4) and (5) gives (1). O

With (1) established it is easy to prove Theorem 4. Pick K > log A and apply
(1) to conclude that for ¢ < AV,

P( max L,>k)<CN2\~*+ Ce™®N'

t—1<s<t

and

P( min RV < j) < CN2A~(N=D) 4 Ce=8M,
t-1<s<t
Let M =[2/¢] + 1and for0 <i < M let n; = iN/M. The n, have n, — n, , <
eN /2 so recalling that in the Introduction we constructed the biased voter model
on {1,..., N} from independent companies of L, and RY gives

[X-aNT+1 pm
Ploy <Xi-9N) % ¥ P( max L, > ni_l)P( max RY < ni)
o S Ve-issse t-1<s<t

< ([}\(l—e)N] + I)M(C2N4>\—N(1—e/2) + 3Ce_8N2),

where in the last line we have used the fact if CN2A~* or Ce ®*N" > 1 we can
always estimate the probability by 1. As N — oo the right-hand side — 0 so we
have proved (*) and hence Theorem 4.

Epilogue. Since the completion of this paper the first author and Roberto
Schonmann have been able to show that a,(A) = By(A) and the factor of 2 in the
upper bound in Theorem 2 can be removed. The keys to doing this are (i) finding
the right definition of the constant which appears in the limit theorem:

where eq is short for the nontrivial equilibrium state for the contact process, and
(ii) the use of a new “planar graph” duality [inspired by a similar idea of Dhar,
Barma and Phani (1981) for oriented percolation] in which connections in the
contact process graphical representation are dual to the contours of Griffeath
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(1981), page 160. If we let
1
—v(A) = lim-’;log P(rtm) < o0),

then the duality mentioned above can be used to show that
ay(N) = By(N) = 8,(N) = v,(A)

and once this is done it is easy to prove the upper bound in Theorem 2 without
the fact of 2. Details will appear in a future issue of The Annals of Probability.
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