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ON BROWNIAN PATHS CONNECTING BOUNDARY POINTS

By KrzyszTror BurDzY
Polish Academy of Sciences

There exists a Greenian domain D c R? such that for every set U of
attainable minimal Martin boundary points which has null harmonic mea-
sure, there exist attainable minimal Martin boundary points u, v ¢ U which
cannot be connected by an A-process in D starting from u and converging
to v.

1. Introduction. Let D c R™, n > 2, be a Greenian domain, let d¥D de-
note the set of all attainable minimal Martin boundary points in D, let p denote
the harmonic measure on the Martin boundary of D and let Z be the set of all
pairs (u, v) such that u, v € 3D, u + v, and there is no h-process in D starting
from u and converging to v. Salisbury (1986) has proved that Z is nonempty in
some domains [see Burdzy (1985) for a different proof of this theorem] and that
(r X p)(Z) = 0 in every domain. It will be shown that there exists a domain
D c R? with the property that for every set U ¢ 3D which has null harmonic
measure, there exist points u, v € d¥D\ U such that (u, v) € Z. This implies
that Z is not a subset of any set of the form U X U, where U c ™D, w(U) = 0.

The construction of the nonempty set Z given below is simpler than the ones
mentioned above, although its main idea is not unrelated to that of Salisbury
(1986).

Here is the main idea of the example.

Let D = R2\ W, where

(i) W is a closed subset of a straight line M,

(ii) W is nowhere dense in M,

(iii) W has a strictly positive (1-dimensional) Lebesgue measure,

(iv) W is large enough so that its “typical” point z' corresponds to two
minimal Martin boundary points ©z and v* on two sides of M [(iii) = (iv)], and

(v) M\ W is relatively equidistributed in M so that P? does not exist
[(v) = (D]

Another (unpublished yet) example due to Salisbury should be mentioned
here. There exist a domain D C R? and a point u € d¥D such that (u,v) € Z
for all v € AMD, v + u.

2. Statement of the result. A short review of some fundamental concepts
will be offered first. The monograph of Doob (1984) is the main source of the
notation and results presented below. See also Salisbury (1986).

For each Greenian domain D C R2, fix a reference point 2° € D and denote
its Green function by Gp. Let

K3(x, y) = Gp(x, y)/Gp(x, 2°),
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for x, y € D, x #+ z°. There exists a unique up to a homeomorphism compactifi-
cation D™ of D such that K2 may be extended continuously to (DM \ {2°}) x D
and K3(u, ) = K2(v,) only if u = 0. The set 3D d=fDM\D will be called
the Martin boundary of D and the topology of DM will be called the Martin
topology. A point u € ™D will be called minimal if every positive harmonic
function in D majorized by K 2(u,- ) is a constant multiple of K2(u,- ). The set
of all minimal Martin boundary points will be denoted d¥D. A set A ¢ D will
be called minimal thin in D at u € 3¥D if u is an isolated point in the subset
{u} U A of DM or there exists a measure » such that

[ ER(u, y)v(dy) < liminf [ K3(z, y)v(dy).
b gze P
z€A
This definition of minimal thinness is taken from Naim (1957); see Doob (1984),
1.XII.11, for an alternative definition. The minimal fine topology is defined by
declaring that z € 3D is a minimal fine limit point of A if A is not minimal
thin in D at u.

Let Q be the space of paths w: (0,00) = R? U {8}, continuous on (0, R) and
equal to § at their lifetime R and afterwards. Let X be the canonical process,
ie, X,(w)=w(t), and let F = o{X,, s> 0}. Let PP(x, dy) denote the transi-
tion probabilities of Brownian motion killed at the hitting time of R2\ D. For
each x € D and positive harmonic function 4 in D, there exists a measure P} on
(Q, F) such that the process X starts from x and is strong Markov with the
transition probabilities P2(x, dy)h(y)/h(x). If h(-) = KR(u,- ) for some u €
dMD, then the symbol P* wil be used instead of Pf. P% = Py, ie., P§ will
denote the distribution of Brownian motion in D.

The process with a distribution P; will be called an A-process. For u € d¥D,
P} will denote the distribution of the }z-pmcess (if it exists) starting from u, i.e.,
lim,_, o X, = u, Pj~as. in the Martin topology. A point u € 9D will be called
attainable if P’(R < o0) = 1 for some (and therefore for all) x € D. The set of
all attainable points will be denoted dXD. The harmonic measure on 9¥D
relative to x € D will be denoted p,.

THEOREM. There exists an open, connected and Greenian set D C R? such
that for each set U ¢ 3¥D with p(U) = 0, there exist points u,v € d¥D\ U,
u # v, for which P! does not exist.

3. Proof. The coordinates of a point x € R? will be denoted x, and x,. Let
D, = {xeR*x,>0}, D,={xeR*x,<0},
M={xeR*x,=0}, I={xeM:0<x <1},

and )
' T, = inf{t > 0: lim X, exists and € A}.

s>t
dA and A°¢ will denote the Euclidgan boundary and the complement of a set
A c R2 Consider annylae ‘

A} = {x e R g, < |r - (Jay(2 + 27%),0) < a,(1+274)}
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and circles
Bl = {x € R%: |x — (ja,(2 + 27%),0)| = a,(1 + 2-k-1)1

J

for integers k£ and j and reals a, > 0 which will be chosen below. The Harnack
principle implies that there exist constants b, > 0 such that

(3.1) h(x)/h(y) = by,

for all x, y € Bf and all positive harmonic functions 4 in Ak, The constants b,
do not depend on j or a,, by the translation and scaling invariance of harmonic

functions. Choose a,’s so small that
(3.2) by/[ay(1 + 275 )] > k.

Denote D = D, U D, UUZ_,UZ_(A¥N1T) and J = 4D N I. It is easy to see
that D is open, connected and Greenian. The measure of U%_ Af N I) is less or
equal to 2% so the measure of UP_ O(Ak N I) does not exceed 271, It
follows that the measure of «/ is at least 2

Observe that

(3.3) PiR=Tyy=Ty=T,< x)>0,

for x € D, since the Brownian hitting distribution of a straight line is mutually
absolutely continuous with the Lebesgue measure on this line and J has a
positive measure. The distribution Pj is a mixture of the measures P* for
- u € 3MD and the mixing measure is px [see Doob (1984), 2.X.8]. This and 3.3)
imply that there exists a set W, € d¥D such that p (W) > 0 and

P(R=Ty;D=Ty,=T,< ) >0,
for all u € W, x € D,. It follows that
P,j‘(R < o0, lir}rzl X, exists and € J, sup{t > 0: X, € Df} < R} >0,
t—>R-

for u€ W,, x € D,. The last event belongs to the tail o-field, so it has
probability 1 [see Doob (1984), 2.X.11(cl)] and, for a similar reason,
lim,_, p-X, = 2!, PF-as. for some point 2! = z'(x) € J. Thus

(34) PR <o, lim X, = 2'() € J,sup(t > 0: X, € D} < R} -1,

for u € W, x € D,. This means, in particular, that W, c d¥D. By symmetry
with respect to M, for each u € W, there exists o' = v'(u) € dMD such that

P,ff(R < oo, lil'}I?l X,=2z(u) € J,sup{t > 0: X, € Dj} < R} =1,
t—-R™

for x € D,.

"Fix a pomt u € W, and assume without loss of generality that the reference
point 2° is the same for D and D,. The last exit time from Df is Pr-a.s. strictly
less than the lifetime R, by (3.4). Theorem 3.II1.3 of Doob (1984) implies that
D\ D, is minimal thin in D at u. It follows from Theorem 11 of Naim (1957)
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that
liminf Gp(x, 2°)/Gp (%, 2°) < o0,

x—-u
x €D,

where x — u in the Martin topology.
Theorems 1.XI1.14 and 1.X11.21 of Doob (1984) imply that

lim GD(x, zo)/GDl(x, 20) =q=q(u) < w,
xeD,

where x converges in the minimal fine topology and
(3.5) im Gp(x, 2°)/Gp(x,2°) = q,

x—2zi(u)
x =2{(u)
x €D,
where x converges in the Euclidean topology. The Green function is a monotone

function of the set so Gy(x, ¥)/Gp(x, y) = 1. This and (3.5) yield
liminf K3(x, y)/K2(x, y)

x— 2zl (u)
X =21(u)
xeD,

3.6
(3 s limint 2202 Go(0.2%)
B x—2(u) Gp(x, 2°) Gnl(x, y) =4 ’

=1
x=2(u)
xeD,

for y € D,. The Martin boundary of D, may be identified with the Euclidean
boundary of D, near z' [Doob (1984), 1.XII1.4]. The continuity of K2 and K2
in DM and DM combined with (3.6) gives KX(u, y)/KR\(z%(u), y) > ¢! for
y€D,.

Choose k, = ky(u) so large that for each k > k,, z'(u) is inside the inner
circle of an annulus A% such that A* N M = A* N I. Easy geometry shows that
for k > k, there ex1sts a point y = yl(u) € B” N D, such that y1 = z}(u) and
s < a1l + 27k-1, One has K22}, y) = c/y2 for some ¢ = ¢(2% 2') > 0 and
all y such that y, = z] [see Doob (1984), 1.VIIL.9]. Thus, by (3.2),

K3(u, ') 2 g KR (2 (u), ¥') =97 'e/%
2 ¢ 'e/[a, (1 +27*7Y)] 2 g7 ck/by.
The function K23(u, ) is harmonic in A” so (3.1) implies that KX3(u, y) >
b,q 'ck/b, = q 'ck for all y e Bk The functlon Gp(2°-) is bounded in a
neighborhood N of zl(u) by a constant d=d(2%2") < o, s0
f(3) S KB(u, 9)/Gp(2 ) = g 'ek/d,

for all large £k and y € B" A N. It follows that limsup,, _, ;1) yer f(¥) = oo for
every continuous path P c D with endpoint 2!. Thus

P;f(limsupf(x,) - oo) -1,

t->R™
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for x € D,. A theorem of Walsh, quoted by Salisbury (1986) as Theorem 2.3(c),
implies that P does not exist.

Let W, be the collection of all points v' = v'(u) for fu € W,. Take any set
U c 3MD with p(U) = 0. The symmetry implies that V = {u € W;: v'(v) € U}
has null harmonic measure, since p (W, N U) = 0. Thus p (W, \ (VU U)) > 0.
If ue W,\ (VU U),then u,v' € d¥D\ U and P does not exist. O
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