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HUNGARIAN CONSTRUCTIONS FROM THE
NONASYMPTOTIC VIEWPOINT

BY J. BRETAGNOLLE AND P. MASSART
Université Paris—Sud

Let x,,..., x,, be independent random variables with uniform dlstnbutlon
over [0,1], deﬁned on a rich enough probability space Q. Denoting by IF the
empirical distribution function associated with these observations and by a,,
the empirical Brownian bridge a,(t) = Vn (Ilt',,(t) — t), Komlés, Major and
Tusnady (KMT) showed in 1975 that a Brownian bridge B® (depending on n)
may be constructed on © in such a way that the uniform deviation
lla,, — BO)),, between «, and B® is of order of log(n)/ yn in probability. In
this paper, we prove that a Poisson bridge L% may be constructed on Q (note
that this construction is not the usual one) in such a way that the uniform
deviations between any two of the three processes a,, L% and B are of order
of log(n)/Vn in probability. Moreover, we give explicit exponential bounds
for the error terms, intended for asymptotic as well as nonasymptotic use.

1. Introduction. Let x,,...,x,,... be independent. random variables with
uniform distribution over [0,1] defined on a “rich enough” probability space
(2, Z, P) in the following sense: There is a random variable, defined on @, with
umform distribution over [0, 1], which is independent of the sequence (x,); ;-

Let lF be the empirical distribution function, defined by

(t) = Z (x;<t)

J=1

for all n > 1 and ¢ in [0,1], F, = 0.
Throughout this paper, we shall consider the uniform behaviour of several
“tied down” processes, so that the following notation will be useful.

NoTATION 1. For any function f: [0,1] > R, let f° be the function ¢ —
f(t) — tf(1), defined on [0,1]. Moreover we set || f |, = sup,e o1l F(£)]-

As usual, whenever B is a Brownian motion on [0, 1], B is called a Brownian
bridge. By analogy let Vn IF° be the empirical Brownian bridge. Finally, given a
standard Poisson point process L, we set L ,(¢) = IL(nt)/ Vn for all ¢ € [0,1]. We
call L% a Poisson bndge with parameter n. As it is well known both processes
VnF? ‘and L% converge in distribution to B, in the Skorohod space D[0, 1]. As a
consequence of the following strong approximation theorem, we get that this
convergence holds with rate log(n)n~1/2, in terms of the Lévy—Prohorov dis-
tance.
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240 J. BRETAGNOLLE AND P. MASSART

THEOREM 1. For each integer n > 2, there are a standard Poisson process L
and a Brownian motion B (both depending on n), such that, whenever U €
{ VnF,, L,}, we have for all positive x,

(1.1) P(Vn||U° - BY||,, > x + 12log(n)) < 2exp(—x/6).

COMMENT. In the above theorem, if we take U = yn I]A:n, we get exactly
Theorem 3 of KMT (1975) (with explicit constants). Note in particular that with
the above construction, we have

limsup (Vn /log(n))|VnE2 - B°| <12 as.

n— o

As a byproduct of Theorem 1, we have for some Poisson process L,

(1.2) P(Vn||Vn#2 - 1], >« + 24log(n)) < 4exp(—=/12).

This is a rather surprising result. In fact, one might think that the usual Kac
construction of a Poisson bridge associated with F would be convenient to
approximate the empirical Brownian bridge as in (1.2) above. This is not true.
More precisely, we show below that the uniform deviation between the Kac
construction of a Poisson bridge and the empirical Brownian bridge is exactly of
order of n~174, in probability. Thus, (1.2) provides a new Poisson approximation
for the empirical Brownian bridge. We first recall the Kac construction.
Let p be a random variable which has the Poisson law with parameter n
[denoted from now on by #(n)] and is independent of (x;);.,. Then, we set
F,/ Vn Vn. L is well known [see, for instance, Shorack and Wellner (1986)]
to be a P01sson bndge with parameter n, which we call the Kac Poisson bridge
associated with F [note that the Kac Poisson approximation of the empirical
Brownian bridge may be successfully used to prove multidimensional analogues
of Theorem 1; see Massart (1989)].

THEOREM 2. Let L° be the Kac Poisson bridge associated with F. Then the
following quantity (i) [respectively, (ii)] is an upper (respectively, a lower)
bound for P(|VnF? — L%]|,, > xn~Y/%) for all x > 0 (respectively, for all 0 <
x < 1/9) and any integer n > 2:

(i) SeXp(_x)’
Gi) (1 — 9x)%/50.

2. Some technical lemmas.

, Exponential and maximal inequalities. Inequality (2.1) below follows from
the classical Cramér—Chernoff calculation and is essentially due to Bennett in

the binomial case.
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LEMMA 1. Let Z be a real valued random variable with Poisson or binomial
distribution and expectation m. Then, for any positive x and any sign ¢, we have
(2.1) P(e(Z — m) > x) < exp(—mh(ex/m)),
where h(t) = (1 + t)log(l +¢t) — tfort> —1 and h(t) = + o fort < —1.

The proof of Lemma 1 may be found in Shorack and Wellner (1986‘) (see
inequalities 11.1.1 and 11.9.1). Then, following James and Shorack, a maximal

inequality may be derived from Lemma 1 via a martingale argument [see
Shorack and Wellner (1986) again, inequalities 11.1.2 and 14.5.7].

LEMMA 2. Let L be a standard Poisson process and U € {ynF,,L,}. The
following inequality holds for all b €10, 1[ and any positive x:

(2.2) P(‘/E sup |U%(t)|> x) < 2exp(~nb(1 — b)h(x/(nb))).
te[o, b]

In the Brownian case, though a martingale argument could also lead to an
analogue of inequality (2.2) [see Shorack and Wellner (1986), inequality 11.2.2],
we shall use the following sharper result of independent interest which is due to
Csaki [see Csaki (1974), Theorem 2.1].

LEMMA 3. Let B be a Brownian motion. Defining @: R — [0,1] by
Q:t— / exp(—x2/2) dx
the following identity holds for all b €10,1] and any positive x:
@3) P mup 890) > x) - @ s | + enn(-22)
. sup > x) = Q| =—— exp(—2x —.
teo, o] yb(1 — b) yb(1 - b)

REMARK 1. If we take b = 1 in the above identity, we get the classical result
of Kolmogorov, P(sup,c o, ;B%() > x) = exp(—2x?).

REMARK 2. As it is well known, @(it) < (1/2)exp(—u?/2) for all positive .
Thus an immediate consequence of Lemma 3 is

x2
2.4 P( sup BO(t >x)Sex -,
24) te[O?b] ) p( 2b(1 = b))

where 0 < b < 1/2.

The original proof of Lemma 3 by Csaki being rather tortuous, we shall give a
short and direct proof of Lemma 3 in the Appendix.
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Normal approximation of the symmetric binomial distribution. Lemma 4 is
due to Tusnady and was already used by Csérgd and Révész (1981) to prove a
weakened version of KMT’s theorem. Nevertheless, no proof of this result has
been published yet as far as we know. So, since it is the key argument for getting
Theorem 1, we shall prove it in detail in the Appendix.

NoraTiOoN 2. Let F be a distribution function. For all ¢ €]0, 1],. we set
F~Y(t) = inf(x: F(x) > t}.

LEMMA 4. Let ® = 1 — Q, where Q is defined as in Lemma 3. Let Y be a
random variable with distribution function ®. Denoting by ®, the distribution
function of the binomial low %(n,1/2), we set B, = @, 1o ®(Y) — n/2. Then the
following inequalities hold:

() |B,| <1+ (Vn/2)|Y],

(i) |B, - (Vn /2)Y|< 1+ Y?/8.

3. Proof of Theorem 1.

A large deviation argument. We first note that, whatever the joint distribu-
tion of (YnF,L,,B) may be, the following large deviation inequality always
holds. -

LemMMA 5. Let L be a standard Poisson process and B be a Brownian
motion. Then, if U € {VnF,,L,), we have for all x > 2n/5,

(3.1) P(Vn||U° - B||,, > x) < 8exp(—x/6).
Proor. Remark 1 and the Dvoretzky-Kiefer—Wolfowitz (DKW) inequality

[see DKW (1956) for the original proof of this inequality and also Hu (1985) for
an evaluation of the constant] yield for all positive u,

(3.2) P(n|F2l,, > u) < 6exp(—2u2/n),
(3.3) P(Vn||BY|, > u) < 2exp(—2u®/n).

Thus, taking U = Vn Il:‘,,, (3.1) holds whenever x > n/3 [and so (3.1) is a fortiori
valid when x > 2n/5].

Now, in order to bound P(Yn||L%||,, > u), we may always assume that LY is
the Kac Poisson bridge associated with F. So let p be a random variable with
Poisson law #(n) which is independent of (x )j=1- We have for any positive p,

P(y/n|||l.(:,||oo > u) <P(p< n)II?:«AXP(Ie|||]’5,‘z’||°° > u)
. <n
+P(n<p<n+pu) max P(E|FJ, > u)
k<n+pu

+P(p—n>pu).
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Now, using the (well known?) fact that P(p < n) > 1/2, (2.1) and (3.2) yield for
any positive p,

(y/—||IL lo > ) < 3(exp(—2u2/n) + exp(—2u%/(n + pu)))

+exp(—nh(pu/n)).

Thus, using (3.3) and (3.4), we get that the following inequality holds for all
0 €]0,1[ and any positive p, whenever x > 2n/5,

P(Vn (L%, + IB°.,) > x)
< 3(exp(—46%x/(200 + 5)) + exp(—46%/5))
+exp(— (5x,/2)h(208/5)) + Zexp(—4(1 — 0)*x/5).

But we may assume that x > 6log(8), so taking § = 0.54 and p = 1.8, we easily
get that 462%x/5 — 40% /(206 + 5) > 1.5 and so

P(Yrn (IS, + IBYl,,) > x) < (3.67 + 1 + 2)exp(—x/6),
completing the proof of (3.1). O

(3.4)

As a consequence of Lemma 5 above, we get that, given a fixed integer n, it is
enough to prove inequality (1.1) for positive x such that

(3.5) 6log(2) < x < 2n/5 — 12log(n).

[In particular this means n > 164 and x + 6log(n) > 34.75.] What we have to
do now is to describe the construction of the empirical, Poisson and Brownian
processes.
. Let N and » be the integers such that » = 2N < n < 2y. Using a classical
measure theoretical argument [namely Lemma Al of Berkes and Philipp (1979)],
we know that in order to construct nllen, VnlL, and yn B on the same probability
space, it is enough to construct their respective increments X j» Y, and Z;
between time (j — 1)/» and j/v for all 1 <j < ». Next, a lemma of Skorohod
(1976) ensures that the construction of the three processes may be performed on
our rich enough initial probability space €.

So, setting A = n»~! and given a centered Gaussian random vector Z of R”
with covariance matrix AI, we have to define X and Y such that X has the
multinomial law #(n,»"%,...,» ) and Y,,..., Y, are independent with common
Poisson law 2(M).

The dyadic scheme. Throughout the proof, the intervals ]k, k'] have to be
interpreted as subsets of N. R” is given the canonical inner product (-] - ). The
functions 15, B c]0, 7] W111 be cons1dered as vectors of R’. Given I;, =
1k24, (k + 1)27], we set e; . Then, let & , =e; ., —e;,/2. Iti 1s easy
to verify that the family 93 { w 1<J <N 0 <k <2V} U {ey,} is an
orthogonal basis of R” with (¢; kle z) =2/7% and (en,olen,0) = v. Moreover we
set W = (Z|e) and W = (Z|é).
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Given any integer m, let ®,, and ® be defined as in Lemma 4 and #(m) still
denotes (abusively) the distribution function of the Poisson law with parameter
m. We finally set @,, = ®,,' > ® and next define either

(i) Uyo=nor
(ii) Uy o = P(n)" 1o ®(27"/A)/>Wy ;) and then, inductively,
) 1/2 =~
Uj—l,zk = QU,),,((2 J+2/>\) VVj,k) and Uj—1,2k+1 = Uj,k - Uj—1,2k'

It is easy to prove by induction that the random vector {U; ,: 0 < k < 2N=7y
has either the multinomial distribution .#(n,2"V*/,...,27¥*/) in case (i) or
independent components with distribution 2(n2-V*/) in case (ii), thus setting
X = (Uyp5---,Up,,-1) in case () and Y = (Ujo,---,Up,—1) in case (ii), the
constructed X and Y have the desired distributions. Note moreover that either
U = (X|e) in case (i) or U = (Y]e) in case (ii). Now, we set U = (X|€) in case (i)
or U = (Y|é) in case (ii). It remains to control the quantity

P, = P(yn|U° - BY||, > x + 12log(n)),

where U € {VnF,,L,)}.

Regularization at the scale M. Let M be the least integer such that
(3.6) p(x + 6log(n)) < A2M*1

where p = 0.29.

Next, we define, for any ¢ € [0,1], II,,(¢) to be the nearest point of ¢ on the
grid{ j2M~N: 0 <j < 2V} (in case of ambiguity, take the smallest). Writing D
for the difference between either X and Z or Y and Z according to whether case
() or (ii) is studied and setting D[m] = X7 ,D,, we get

P <P + P, + P(0°,
where

© = (U, <A1 +e)2/forall M+1<j<N,0<k<2V7}
N{U; =M1 —€)2/forall M <j < N,0 < k <2V}, with ¢=0.855,

Py = P(VR(IU° (1 = T )., + B (I = TLy)I..) > 5 + 3log(n))

and

P—2%M  max p(('p[m]-if-p[y]

me2MNN10, v]

>‘§ + 9log(n)) N @).

P, controls the small fluctuations of the processes U® and B°. P, will be small
because the construction of X, Y, Z implies (precisely because of the fundamen-
tal Lemma 4) that the error | D[ m] — m/vD[»]| behaves like a x*(n) random
variable on the event ® which avoids too large deviations of U.
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Control of P(©°). Recall that U; , = U;_; o + Uj_1 9341, 8O
- e°c U {Usia e > (1+)A2¥+2

0<k<2N-M-2

U U {Upr e < @— a2}

0<k<2N-M-1
Then, as a direct application of inequality (2.1), we get
P(0°) < 2V"M~Yexp(—A2M*2h(e)) + exp(—A2M*'A(~ £)))-

Thus, using (3.6), we have

P(6) < (—+§122—)) o5 )

Control of P,. Since U° and B® have stationary increments, we may use
Lemma 2 and Remark 2. Setting b = 2¥~N~1 < 1/2, this gives for all § €]0,1[,

P < 2N‘M+2(exp(—02(x + 6log(n))’/8nb)

(3.7)
+exp(—nb(1 — b)A((1 — 8)(x + 6log(n))/(2nb)))).

Now, because of (3.6), we have 2nb < p(x + 6log(n)). Using furthermore (3.5),
we get that b < p/5, so, taking § = 0.44, (3.7) becomes

P, < 2N M3 /n exp(—x/6).
Using (3.6) again, we finally get
55.2
P,

1< (27 6log(n)) “P7/0):

Control of P,. We fix m € N2¥ 1 ]0, »]. Let k(J) be such that m € I;
[then k(M) = m2 ™ — 1 and k(j) = [k(j — 1)/2], where [2] denotes the in-
tegral part of z]. For the sake of simplicity, any quantity of the type Z; .
which was introduced above, will be denoted by ¢; in what follows. For 1nstance
€; = &, 1(;) etc. We shall use the following orthogonal expansions on #:

(3.8) o m = Z c;é; + ezvo,

where 0 < c; <1, M <j<N.
The proof of (3.8) is easy when noting that 1y, ,,) is orthogonal to é; , when
ks k(j) and that 0 < (14 ,)|€;) < 2772 = (éjl¢; ) We have as well

(3.9) ej= 2 (—1) Do 15 4 27=Ney .

§>J



246 J. BRETAGNOLLE AND P. MASSART
So, setting A = (D|€), we get from (3.8),

> 1A,

D[m] - ?D[u] < T

Now, we set §; = V2772 /A Wj, for all M <j < N. Then, the ¢ are independent
standard normal random variables. It follows from Lemma 4(ii) that

U
But because |[V1 + 2z — 1| < |z|/(1 + /1 — |2|), the following inequality holds
on ® forall j >M+1:

U;

J

(3.10)

&l <1+¢2/8.

1,1 |U; — A2/|
2(1 +V1-¢) WA
Now, setting £y, = (Uy — n)/Vn1 ({Uy—n| <enys (3.9) and Lemma 4(i) yield

272,

N
|U;— A2/ <2 Y, 27790, + 2/"N|Uy - n|

s=j+1
N+1 )
<2+ \(1+e) Y 277%72¢,.
s=j+1
Thus,
V1+e N+1
C.<277?)¢ )| ¢+ ——M — 9Ui—8)/2¢ ,
J Ig_]l 2(1 + ‘/1:) sgal Ig_;l Igsl
but [§,] [¢,] < 1/2(4] + £7) and 523,277 = (1 + V2)(2%% — 2M*D/%), 50 set-
ting
Q+V2)1+e
21+ V1-¢)’
we have on ©
al N (1++2)
L G< ) L 2|1 - 2

+6 Z §2+ §N+1
Jj=M+1

Thus, via some easy calculations,
N
Y (stfz My Z £+ gN“
J=M+1 Jj=M+1
Now, because of (3.5) and (3.6) we have M > 1, so M > Y22 ™™, hence, using



HUNGARIAN CONSTRUCTIONS 247

(3.10), we finally get on 6,

N 1 N ]
(3.11) Y JAj<N+ (~ + 0) Y o2+ o8,
J=M+1 8 J=M+1 2 ’

In order to control the variable £2, ,, we need the following elementary lemma.

LEMMA 6. Let p be a random variable with Poisson distribution #(r) and
define £ = (p — 1)/ Vrl (<. Then E(exp(t£%)) < 1 + 2¢/(4(e) - t) for all
0 < t < Y(e), where (&) = e (1 + e V)log(l + &) — 1).

PRrROOF. As a direct application of Lemma 1, we get

E(exp(#£?)) = 1 + fomzte‘"P(lp — 7 > ru) du

<1+ 2/"2te‘"exp(—rh(‘/u/r)) du,
0
but rh(y/u/r) = uy(yu/r) and ¢ is a nonincreasing function, so
E(exp(t£?)) <1+ 2/°°texp(tu — y(e)u) du,
0

which gives Lemma 6.
We may now finish the control of P,. In fact, as it is well known, we have

(3.12) E(exp(#£2)) = (1 — 2t)"* for j < N.

But the variables ¢ are independent, so (3.11) yields via Lemma 6 and (3.12),
N

exp(g Y |Aj|)19) < eN/3(‘/(1 -2(0+1/8)/3)

J=M+1

E )M-—N

X (1 +20/(6y(c) —0)),
so, recalling that & = 0.855, we have 8 < 1.1907 and (&) > 0.3983. Thus
N

E exp(% Z IAJI)IG) < 322N-Q512M

J=M+1

Then Chernoff’s inequality yields, via (3.5) and (3.6),

P 10.68 2.512 x
<|—— -=).
2=\ x + 6log(n) exp( 6)

Now, we recall that x + 6log(n) > 34.56. Hence, collecting the above estimates,
we get (1.1). O

4. Proof of Theorem 2.

The upper bound. Inequality (i) is a direct consequence of the DKW in-
equality [see (3.2)] and of Lemma 1. In fact, the distribution of |nF? — yn LY,
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conditionally on p = k is exactly equal to the distribution of | |k — n|F{,_,|, so
the DKW inequality leads to

(41)  P(Wn#? - 01%|, > xn"4p = k) < 6exp(—2x%/n /|k — n]).
Now, an upper bound for P(|VnF? — L2, > xn~'/%) is given by

P(p—n|>2x/n)+ sup P(VnF2- LY, >xn"Yp =£),
|k—n|<2xyn

which means inequality (i) via 4.1 and Lemma 1.

The lower bound. We use the same method as Bretagnolle and Huber (1978)
to prove their Proposition 2, page 336.

Let A= nﬂen(l/2) —pﬁp(1/2) and A = |A — (n — p)/2|. We first work condi-
tionally on p. Then |A| has the binomial distribution %(|p — n|,1/2). So

(4.2) E(Rp) = p - nl/4
and from Bretagnolle and Huber [(1978), page 339], we get
(4.3) E(Alp) = ylp — n|/28.

Besides, the following elementary inequality holds for any 0 < a < b:
— 1 — 1 _
P(E > ap) > Z(E(A[p) —a- ZE(A2|p)).

So, (4.2) and (4.3) yield

P(Z>a|p)2%( p-n 1 _n|).

28 4b
Thus, taking the expectation in both sides of the above inequality, we get
_ 1 P -7 1
(4.4) P(A>a)> Z(E s T4~ EE(lp—nD).

Now, following Bretagnolle and Huber again, we note that, since a —
log(( E(X/*))*) is convex for any positive random variable X, we have

VE(X?)  JE(XY)
E(X) = E(X?)
and so, taking X = /|p — n| and setting § = /E(|p — n|) , we get
8 VE(p - n)’
E{lp — n| = 6* )

However Stirling’s formula implies

1 2n
2 _ = —_— JE—
(4.6) 02=2nP(p=n-1)> exp( 12n)v it

(4.5)
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Since furthermore E((p — n)?) = n, using (4.5) and (4.6), (4.4) becomes

P(A>a)>-1—(exp( - ) - 0—a—0—2),
(1477) 4b
so, choosing A
a =9xfexp(—1/12n)1/(147) and b= (V147 6/2(1 — 9x))exp(1/12n),
we get '

(1 - 9x)? 1 (1 - 9x)
14 6n 50

Next, (4.6) means that a > xn!/% yielding Theorem 2(ii) since of course

[k = Lo, = B/ V.

P(A>a)> exp(

APPENDIX

1. Proof of Lemma 3. We shall need the following property of the Brownian
motion [see Karlin (1971), page 284].

LEMMA Al. Let B be a standard Brownian motion. Then, for any real
number and any positive y, the following identity holds almost surely:

P( sup B(t) — at > y|lB(1))

te[0,1]
= exp(—2(y2 - (B(1) - “)y))'(n(l)sy+a) + '(n(l)>y+a)'
Now, we may pass to the proof of Lemma 3. Let A, (x) =
{sup,c o, 51B(¢) > x}. We set W(t) = b~'/?B(bt) for any positive ¢ and £ =

B(1) — B(b). Then W is standard Brownian motion and ¢ is independent of W
with normal distribution A47°(0,1 — b). So, since

P(Ay(x)lE, W(D) = P( s W(e) - (W) - VB> ok, wu))

Lemma Al yields
2

P(A(x)L, W(l))—tw>l)+exp(—3—<1 U)) .

where U = Vb /x((1 — b)W(@) — Vb ).
Now, U has the normal distribution 47(0, b(1 — b)/x?), so

P(Ay(x))=P(U=1) + exp(—2x2/b)E(I(USl}exp(2x2U/b)).
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Thus,
P(44(x)) = Q(ﬁ)
2x2 x 1 252y 222 .
+eXp(_ _5_) Janb(1 - b) f_wexp( b 2b(1-b) |

Setting v = xu/ |b(1 — b) — 2x/(1 — b)/b in the last integral, we easily get
@2.3).

2. Proof of Lemma 4. We follow the book by Csorgé and Révész [(1981),
pages 133 and 134]. It suffices to prove Lemma 4.4.1 (see page 133), which we
prefer to write from the right side. Precisely,

TusNADY’S LEMMA. Let Y be a standard normal random variable and B,, be
a binomial random variable with law %(n, ;). Then the following inequalities
hold for any integer j, with 0 < j < n:

(i) P(B, = (n+))/2} = P(ynY/2 =2 n(1 — 1 - j/n)},
(i) P(B, = (n+/)/2} < P{(VnY/2 = (j - 2)/2}.
We set
X n
b,; = P(Bn = (n +])/2) = ((n +j)/2)2_n'

In what follows, n + j is always even and 0 < j < n.
Using Stirling’s formula, we can expand p, ;,

Pn; = CS(x;,n)y2/mn exp(—nh(xj)/2 - (1/2)log(1 - xJz))
as j <n,
where j = nx;, h(x) = (1 + x)log(1 + x) + (1 — x)log(1 — x), and the correc-
tion term is defined via
CS(x,n) = (1 + B/12n)(1 + B'/[6n(1 - x)]) 7' (1 + B"/[6n(1 + x)]) "

with 1 < B8 < B” < B’ <1%=12(/(e/27) — 1) < 1.01325. (Obviously this is an
incorrect statement, since B8, 8’, 8" depend on j and n, but we use in what
follows only the inequality 1 < 8 < B8” < B8’ <1%) As CS(x, n) is monotonic
wrt B’, B”, B, we have

CS(x,n) > (1+ 1/12n){1 +1%/[3n(1 - x2)]

+(1+)2/[36n2(1 _ x2)2]}

"

(A1)

(A.2.2)

-1

Moreover, CS(x, n) is monotonic wrt x> when B’ = B”, monotonic wrt 8

when B = B’ = B” and x = 0 and finally, as
log[(l +y)(1+ 2y)_2] < -3y +17y%/2 fory=0,
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setting 12ny = 1, we get
(A.2.b) logCS(x,n) < —1/4n + 7/288n® as0 <x < 1.

(A.3) ProOF OF (i) WHEN jZ> 2n (OR x; > y2/n). Using the classical
bound P{Y > t} < (V27 t) 'exp(— t2/2), we prove easily (i) when j=n or
J=n—2and n > 5. Usual tables give the result when j=nor j=n — 2 and
n < 5. As, for n <7, (n — 4) < 2n, we may assume now 2n < jZ < (n — 4) and
n > 8. Let f(x) be yn/27(1 — x) exp(—2n(1 — V1 — x)?). It suffices to prove
that

pojz [ hx) ds.

Xy

Between x, (n even) or x5 (n odd) and x,_,, f, is monotonic as n > 5, and it
remains to prove that when y/2/n <x <1+ 4/n and n > 8,

CS(x,n)(1 + x)—l/zexp[n(zl(l —-V1- x)2 - h(x))/2] > 1.

Let J(x) be defined as J(x) = 41 — V1 — x)? — h(x). Using bounds (A.1) and
(A.2.a) it turns to prove that

(1+ 1/12n)exp(nd(x)/2) = V1 + x (1+1%/3n(1 - x2) + 1*2/36n%(1 — 2°)’).

The two sides are increasing wrt x.

When x < 1 — 4/n, n > 8, the right-hand side is less than 1.48. For x > 0.55
and n > 8, the left-hand side is greater than 1.57, the result is thus proved when
0.55 < x.

We expand J and get J(x) > x3/2 + 7x*/48. Thus, as nx2 > 2 and n > 8,
nd(x)/2 > x/2 + 7/24n. Let K(x)be exp(x/2)/V1 + x.x — x % K(x) — 1)is
decreasing wrt x in [0,1] and thus K(x) > 1 + 0.3799/n when y/2/n < x < 0.55.
It remains to prove that when x < 0.55,

(1+1/12n)(1 + 0.3799/n)exp(7,/24n)
> (1+1%/3n(1 — x2) + (17)*/36n%(1 — x2)°).

At x = 0.55, the right-hand side is less than 1 + 0.543 /n, thus the result is also
proved for /2/n < x < 0.55 as 0.543 < 1/12 + 0.3799 + 7/24.0

(A.4) PROOF OF (i) WHEN j < y2n — 2. Using the fact that when j = 0 the
two sides of (i) are equal if we subtract p,,/2 to the left-hand side when n is
even, we just have to prove the following “reversed form” in which p,,/2 is 0
when 7 is odd. For n > 1and 0 <j < V2n — 2,

(AB5) DLo/2+ OZI‘, pu<PnY/2e [0,n(1 - T =(G+2)/n)|}.

We construct a family of intervals I,, L,..., I, such that, when j < V2n — 2,

(@) p,; < P{\/_Y/2EIk}w1thj—2k+1andJ>1 n odd,
(b) p,; < P{YnY/2 € I,} with j =2k and j > 2, n even,
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(©) Pno/2 < p{VnY/2 € I} for j =0, n even,
(d) the intervals are adjacent,and I, U I, U --- UL, C [0, n(1 — \/__;; )]
We set
8ps1=(k+1)/n+k(k+1/2)(k+1)/n%? k=0,
Dy =841 +k+1/2=8,,,+(j+1)/2, k>0, neven,
A1 =08, +k+1=8,,,+(j+1)/2, £>0,nodd,
I, =[A,,A,,,] withA,=0.

We notice that the assumption 0 <j < y¥2n — 2 implies n > 4 (if even) and
n > 5 (if odd).

(A.6)

PrOOF OF (d). We just have to prove that A,,; <n(l — /1 —x;,,).

As j+2<V2n, 6,,, <(k+ 1)/n+ k(k+ 1/2)/n/2 < nx?/4/2 +
a- 1//_)/n with x = (j+2)/n. As Ay, =nx/2-1/2+ 8., and as
1-+V1-x)=>x/2+ x2/8, it remains to prove that

1/2 + nx®(1/8 — 1/4/2) — (1 - 1/¥2)/n > 0.
This is true when nx? < 2, and (d) is proved. O

PrOOF OF (a)-(c). First we prove that
Duj < \2/7n0 exp| —1/4n + 7/288n* — (n — 1)j°/2n
+(i/n)"/2n(1 - j2/n%)],
Pnj < Y2/ exp|—0.249/n + 7/288n% — (n — 1) j%/2n?]
when j < y/2n — 2.
In view of (A.1) and (A.2), it suffices to prove, with x = j/n, that
—[nh(x) + log(1 — x2) —(n — 1)x?)] /2 < x*"/4n(1 — x?).

The left-hand side is expanded as Elz2x2’(1 - n/@l - 1))/21 = A + B, where
A= z:2slsn landB El>n

d’A /dx? = Y  (2l-n-1)(x¥"2-x"2), negativeas0<x < 1.
2<l<(n+1)/2

AsdA/dx =0 for x = 0, A is negative; finally, 2nB is bounded by x**/(1 — x ),
less than 4 X 10~ 1fn>4andx<[¢2_5—2]/n O

(A7)

. Second, it is an easy exerciseto show that
(A8) P{Ye[a,bl} = {1/27(b— a)exp[—a’/4 — b2/4]p(a, b),
where @(a, b) = sinh[(b% — a?)/4]/[(b* — a?)/4], always greater than 1 (this
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property will often be used in what follows to “neglect” ¢). For the intervals I,
we get

(A9) P(VnY/2 € I}

> V2/mnoexp[— (8%, + A%)/n + log(Ay,, — AL)],
or = 9(28,,./Vn,28,/Vn).

We have to prove that the ratio between bounds (A.9) and (A.7) is greater than 1
" [or greater than 1/2 in case (c)].

We first study the case where k = 0. If n is even, (c) is equivalent (neglect-
ing @) to the positivity of 0.249/n — 7,/288n2 — 1/4n — 1/n? — 1/n® +
log(1 + 2/n). As log(1 + u) > u — u?/2, it suffices to prove that

(E),=1.999/n - 3/n” - 7/288n* — 1/n° > 0.

As n >4, n(E), > 1.18.
If n is odd, using the same arguments, we have to prove that

(E), = 0.749/n — 3/n> — 7/288n — 1/n® > 0.

This time, as n > 5, n(E), > 0.104.

Second, we study the case where k > 1. We observe that j < y2n — 2 implies
n > 10 (if even) or n > 13 (if odd). As 2> 1, A, and A, , follow the regular
form (A.6). Thus, if we set s =4, + 8, d = 8,,, — 0, we get

(A.].O) Ak+l+Ak=j+s’ Ak+1_Ak=1+d’
(A11) s=2k+1)/n+ 2R3+ k)/n%*%,  d=1/n+ 3k%/n%?,
(A.12) log ¢, > log(1 + j2/6n?)

(sinh(u)/u = 1 + u?/6, @, = sinh(u)/u

with u = (&, — 8%)/n > j/n).
First we observe that
(A13) d<3/2/n, logg,>098%/6n?, log(A,,, —A,) =Ad,
where A = 0.9 when n is even and n > 20, A = 0.93 when 7 is odd and n > 25,
A = 0.913 when %k = 1 and 7 > 10. For the first inequality, we use 2k < y2n — 2,
n > 10; for the third one, in the general case, 2% is less than k&, = Ven — 2 (n
even) or V2n — 3 (n odd), and d, defined as n — 1/n + 3k2/n/? is decreasing
in both cases. Next, we compute the infimum of log(1 + d,)/d,, in both cases.

We check the particular case when & = 1, n > 10 exactly as above. The proof of
the second one is similar. O .

Second, we prove that ]
(A.14) s<l/n+k//n.

Obvious for n > 14, using the bound 2k < V2n — 2. If10 <n <14,k =1anda
direct computation proves the general result. O
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After some computation, provmg that the ratio between bounds (A.9) and
(A.7) is greater than 1 turns to proving that
— [js/n +d/n+s2/2n + d?>/2n + 1/2n + 7/288n — j2/2n?]

(A.15)
+[0.249/n + log(1 + d) + log ¢, ] > 0.

PROOF OF (A.15). (a) We assume first that n > 20, if even, or n > 25, if odd.
Using bound (A.13) for d?/2n and log(l + d) + log ¢, and bound (A.14) for
Jjs/n we get the following lower bound, denoted by A, for the left-hand side of
(A.15):

(A.16) A = a[k2/n3%] — 28[k/n%*] + y[1/n].
When n is even, j = 2k (recall that A = 0.9) and
a=07— {25 — 4(0.98)/6} /n'/*> — 3/n,
B=n"¥%+n"542,
y =0.649 — {17/8 + 7/288} /n — 1/2n>.

It remains to prove that ay — 82 > 0 for n > 20, the infimum is achieved at
n = 20, where its value is greater than 0.06.
When 7 is odd, j = 2k + 1 (recall that A = 0.93). We get

a =079 — {25 — 4(0.98)/6} /n'/2 — 3/n,
B =1/2n"* + 2(1 — 0.98/6) /n*/* + 1/2n%*,
y = 0.679 — (3.625 + 7,288 — 0.98/6) /n — 1/2n>.

The infimum of ay — B?% is achieved at n = 25, where its value is greater than
0.01.

(b) When & = 1, we use exact values for s and d given in (A.11) and the
second and third inequalities of (A.13) reducing all powers of n greater than 3,/2
to the power 3/2, using n > 10 if even or n > 13 if odd, and A = 0.913. We get
that (A.15) is implied by

0.662/n — 0.29/n*?% > 0, n even,
or '
0.662/n — 1.72/n*% > 0, n odd,

obviously fulfilled.
(c) The proof of (A.15) is finished when noting that n less than 20 and even,
or less than 25 and odd imply that 2 < 1. O

The proof (A.4) is now finished. O

END OF THE PROOF OF (i). Let j~ be the greatest integer such that n +j is
even, j-< V2n — 2, j* the least integer such that n +j is even, j +*> 2n,
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Jo = (J™+Jj")/2. We have already proved (i) when j > j, and j < j,. Now, if
X, +2
pnjo 2 f fn(x) dx

%jo
[see the proof of (A.3) above], we can apply the scheme (A.3) up to j,. If not, as
Lvhu--Ul,_,<[0,nl-1-x;)], then UL U--- urI, _, v

[r(1 - ‘/1 —x;), n(1 - ‘/1 - %;,2)]1C[0,n1 - /1 —x;,,)] and we can use

the “reversed form” (A.4) up to j,. O

ProoF oF (ii). For n odd, (ii) is obvious when j = 1. Thus we may assume
J = 8. For n even, (ii) is obvious when j = 2. See below the case when j =0, n
even. In what follows, we may assume j > 3. .

For j = n, the left-hand side’s value is 27", and the result is proved when
n < 4, using tables. For j = n and n > 4 we use the classical bound

P(Y> ¢t} > (V2m) (2 - 1)/¢%)exp(—£/2)

and the result is easily proved. We set as usual x = j/n. Then, it suffices to
prove that p,; < PnY/2 €[(j-2)/2 J/2]}. Using (A.7) and (A.8), where
we neglect g, it turns to prove

1 N 7 (n—1)x? x? n[(x -2/n) + x2]
—_— — f— < —
4n  288n? 2 2n(1 — x?) ~ 4 ’
3 2
with — <x<1- —.
n n

We remark that 2n(1 — x2?) > 4. Thus we have to prove that
x —x%/2 — x?"/4 > 3/4n + 7/288n?

when x > 3/n and n > 4, and that is easy to check (the left-hand side being
concave, we have to test the inequality at the two extremities).

Last, we have to prove the result when n is even and j = 2. Using the
symmetry of laws, we have to prove that p,, < P{|Vn Y/2| < 1}, obvious when
n=2.If n>4, we bound p,, by /2/7n, the right-hand term being greater
than 2 \/2/7n exp(—2/n) by (A.8). Finally, exp(—2/n) > 1/2 when n > 4.0
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