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STOCHASTIC DIFFERENCE EQUATIONS AND GENERALIZED
GAMMA DISTRIBUTIONS.

By FimaA C. KLEBANER
Monash University

We study the asymptotic growth rates of discrete-time stochastic processes
(X,,), where the first two conditional moments of the process depend only on
the present state. Such processes satisfy a stochastic difference equation
X,.1=X, +8(X,) + R,.,, where g is a positive function and (R,) is a
martingale difference sequence. It is known that a large class of such processes
diverges with positive probability, and when properly normalized converges
almost surely or converges in distribution to a normal or a lognormal
distribution. Here we find a class of processes that when properly normalized
converges in distribution to a generalized gamma distribution. Applications of
this result to state dependent random walks and population size-dependent
branching processes yield new results and reprove some of the known results.

Introduction. This paper is concerned with the asymptotic behavior of
discrete-time stochastic processes that satisfy stochastic difference equations of
the form

(1) Xn+1 = Xn + g(Xn) + Rn+1y

where g(x) is a positive function and (R,) is a square-integrable martingale
difference sequence, the second conditional moments of which depend only on
the present state of the process (X,,):

E(R,.X,, X,.--,X,) =0,
E(Ri+1lX0! Xl,’“, Xn) = D(Xn)’

for some positive function v(x).

It is possible to describe the asymptotic behavior of a large class of stochastic
processes (X,,) that satisfy some weak Markov property in terms of the condi-
tional expectation E(X,,,|X, = x) and the conditional second moment
E(X?2,,|X, = x) functions; see, for example, Keller, Kersting and Rosler (1987),
Kuster (1985), Klebaner (1986) and Cohn and Klebaner (1986).

Stochastic difference equations of the form (1) arise in various stochastic
models. Any discrete time Markov chain can be written in the form (1) by letting
g(x) and (R,) be defined by relations

(2) E(Xn+1|Xn = x) =x+ g(x)’ Rn+1 = Xn+l - E(Xn+1|Xn)’

State dependent random walks, population size dependent branching processes
and branching processes with dependent offspring provide some of the examples.

In this paper we are interested in the asymptotic growth rates of the process
on the set where the process diverges to infinity. This problem was recently
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studied by Keller, Kersting and Rosler (1987) and by Kuster (1985). We will not
consider the problem of recurrence or transience of (X,). This problem has
received attention in many papers. To quote a few: Zubkov (1974), Levy (1979),
Klebaner (1984) and Hopfner (1985) for branching processes; Keller, Kersting
and Rosler (1987) and Kersting (1986) for stochastic difference equations.
Kersting (1986) generalized results of Lamperti (1960) and obtained most general
and nearly necessary and sufficient conditions for the process (X,) to diverge
with positive probability. It is known from the results of Lamperti (1960), Keller,
Kersting and Rosler (1987) and Kersting (1986) that if the 2+ 8 (8 > 0)
conditional moment of the increments of the process satisfies a certain growth
condition, which will be given later, then in order for the process (X,) to be
transient g(x)/v(x) is not allowed to tend to O too fast. The boundary case is
g(x)/v(x) ~ Cx~1, x > oo, where both types of behavior (transient or recur-
rent) are possible. The processes we consider here are the divergent processes
that live on this boundary.

To study asymptotic growth rates on the set of divergence, Keller, Kersting

and Rosler (1987) and Kuster (1985) compared the growth in the stochastic
equation to the growth of the unperturbed deterministic equation
(3) - xn+1 = xn + g(xn)
Kuster (1985) found that if g(x) satisfies certain growth restrictions and some
regularity properties and o(x), g(x) satisfy a rather involved joint growth
condition that comes close to v(x) = O(g(x)x'~%) as x - + oo for some § > 0,
then X, /x, converges almost surely (a.s.) on the set X, - + oo to a positive
random variable. Moreover if some additional assumptions hold, then this
random variable is a.s. 1. See Kuster (1985) for details. A comprehensive study of
stochastic difference equations with g(x) and (R,) satisfying a set of assump-
tions was done by Keller, Kersting and Rosler (1987). They assumed g(x) = o(x)
as x = oo and a joint growth condition on g(x), v(x) similar to but somewhat
weaker than Kuster’s. They gave necessary and sufficient conditions for the
convergence of X,/x, to the log normal distribution, for the convergence in
probability and a.s. of X, /x, to 1 and for the convergence to the standard
normal distribution of a suitably normalized process (X, — x,,).

Here we study a class of processes X, that satisfy (1) with g(x) = cx* + o(x*),
a<1, v(x)~ovx!*® as x > +oo. In this case for a given g the variance
function v(x) grows too fast, so that Kuster’s and Keller, Kersting and Rosler’s
joint growth conditions placed on the functions g and v mentioned previously
are not fulfilled and their results do not apply. We shall see that if some
additional assumptions on (R,) hold then such processes when properly normal-
ized converge in distribution to a generalized gamma distribution.

In what follows C will denote an unspecified positive constant. All the
asymptotic relations are given at + co unless stated otherwise.

Assumptions and results. Let a stochastic process (X,,) satisfy relation (1).
We shall assume that:
(A1) X,>0 forall n.

(A2a) X, > o0 as.
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Or 0 is the only absorbing state and

(A2b) I(X,>0) > I(X, > ) as.
&(x) is a positive function defined on (0, + o) that satisfies
(A3) g(x) = ex® + o(x*),

withe>0,a < 1.
Let the o-fields F, form a filtration to which (X,,) is adapted. Let (R,) be a
martingale difference sequence with

E(R,,|F,) =0 as.
and

E(R},,IF,) = v(X,) as.
v(x) is a positive function defined on (0, + c0) that satisfies
(A4) o(x) = vx!'** + o(x'*%), 0©0>0.

Suppose further that (R,) possess moments of all orders and there exist
functions M,(x) such that for 2 > 3,

E(R,..MF,) < My(X,) as.
and M,(x) satisfy
(A5) My(x) = o(x***71).

THEOREM. Assume (Al)-(A5) with (A2a) or (A2b), and that 2¢ > v. Then
as X, » o, X} %/n converges in distribution to a gamma distribution with
parameters (2¢ — va)/(v — va) and 2/(v(1 — a)?).

REMARK. A power of a gamma distribution is known in the literature as a
generalized gamma distribution. We show that x, satisfy x, ~ Cn?/1~%, with
C = (c— ca)/t~%, Thus X,/x, converges in distribution to a generalized
gamma distribution.

We comment on the assumptions. The fact that (X,) is nonnegative is not
very restrictive and (A1) could be replaced by X, > —C. In this case we would
consider the process X,, + C, so that we are only dealing with the processes with
state-space bounded away from — co. Many growth models satisfy this. (A2a) is
satisfied by transient Markov chains on the nonnegative integers. (A2b) is
typically satisfied by branching processes. g(x) = o(x) is a standard assumption
as in Keller, Kersting and Rosler (1987) and Kuster (1985). That is why a < 1. In
the case a = 1 an exponential growth occurs as in supercritical Galton-Watson
processes. Before commenting on (A4) and (A5), we discuss a sufficient condition
for the transience of (X, ). We are considering processes with P(X, — o0) > 0.
Condition (A6) guarantees ’

(A6) E(R,.,.|**%F,) < Co'*%%(X,) forsomed > Oaus.

See Kersting (1986) and Keller, Kersting and Rosler (1987). Lamperti (1960) uses
a more stringent condition of boundedness of the preceding moments. By a result
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of Kersting (1986) if some additional assumptions on growth of g(x) hold, then
(A6) together with

liminfxg(x)v (x) > %

x— +o0
is a sufficient condition for transience. In view of the last condition we demand
2¢c > o.

We shall comment on what happens if we let v(x) = vx? with 8 # 1 + a in
(A4). If (A6) holds and B> 1 + a, then P(X, — o) =0 by Theorem 1 of
Kersting (1986). If 8 < 1 + a, then Keller, Kersting and Rosler’s (1987) joint
growth condition on g(x), v(x) is fulfilled. If in addition g(x) and v(x) satisfy
some regularity assumptions placed there, then the following holds: If 3a — 1 <
B <1+ a, then X,/x, converges to 1 in probability and X, — x, suitably
normalized converges to the standard normal distribution. If 8 < 3a — 1, then
X, /x, converges to 1 a.s. and (X, — x,)/x; converges a.s.

Condition (A5) for some k > 2 is weaker than (A6) in our case since with
k =2 + 8, we have

vl+6/2(x) — vk/z(x) ~ px(Hok/2 — O(xk+a—1)

since a < 1. The demand for (A5) for higher moments is due to technical reasons,
since the method of proof is the method of moments. To prove the theorem we
shall use the following lemma and its corollary which are of interest in their own
right.

LEMMA. Suppose f, g are nonnegative on [0, o), f is bounded on bounded
intervals, g(x) - o0 asx — o, and limsup f(x)/g(x) = C < o0. If X,, > o0 in
probability and Eg(X,) < oo for all n [this implies Ef(X,) < o], then we have

limsup Ef(X,)/Eg(X,) < C.

n— oo

PROOF. Let &€ > 0 and pick M large enough so that f(x)/g(x) < C + ¢ for
x > M. Then
Ef(X,) = E({(X,)I(X, < M)) + E({(X,)[(X,> M))
< sup f(x) + (C + &) Eg(X,).
x<M
Dividing both sides by Eg(X,) and noticing that Eg(X,) — co gives the desired
result since ¢ is arbitrary. O

CoroLLARY. If f, g and X, satisfy the conditions of the lemma and f(x) ~
8(x), then Ef(X,) ~ Eg(X,).

Proofs.

PROOF OF THE THEOREM. The proof is given by the method of moments. We
show by induction on [ that
p,= lim E(XX-9p"1)

n— oo
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exists and is finite; moreover, the following recurrence relation holds:
(4) m=(cl-a)+o(1—-a)(l-al-1)/2u,_;, po=gq.
The starting point is the following binomial expansion. For any £ > 0, x > —1,

integer m,

m—1

(5) 1 +0)*= T (Hara ),

Jj=0

where r,(x) is the remainder.
We show that if £ < m, then for all x > —1,

(6) [1a(2) < Clx|™
and if £ > m, then for all x > —1,
(™) ()] < Clla™ + |x]*).

To see (6) and (7), observe that r,,(x) is continuous on [ —1, + o) since it is the
difference of two continuous functions. |r,(x)|/|x|™ and |r,(x)|/(|x|™ + |x|*) are
continuous functions on [—1, + ), except perhaps at 0. Continuity at 0 is
established by considering the Lagrange form of the remainder,

r.(x) = (rlfl)x”‘(l +6x)*™™ forsome0 < 8 < 1.

Thus r,(x)/x™ ~ (";), x > 0. Since |r,(x) < C1 + |1 + x|* + |x| +
4,
limsup|r,(x)|/|x|™ =0 fork < m.
x— +o00
This implies that |r,(x)|/|x|™ is bounded on [ —1, + o), which is (6).
For k > m, |r,(x)|/(lx|™ + |x|*) ~ (,’;) as x = 0 and it is bounded away from

0o as x = + oo; therefore, it is bounded on [ -1, + o0), which is (7).
Denote by 60X, = (X,,, — X,)/X, for X, > 0. Then X, > —1 and we can
write, by using (5) with m = 3,

Xk, = XX(1 + 6X,)* = X* + kX*8X, + (’;)X,f(sxn)2 + Xr(8X,).

n

Using (1) we obtain

Xboy = X+ X g(X,) + (R)xboms,,
® +[pxi o B)xie(x,)| R,
+(5)xtw(x,) + xir(ox,).

2

If (;\2a) holds, then without loss of generality we can assume X, > 1; otherwise
consider the process X,, + 1. In this case (8) holds for all X,,. If (A2b) holds, then
(8) holds for all X, > 0. Now take expectations in (8) and use E(R,,,|F,) = 0 to
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obtain

E(XkaF) = X5+ kX! 8(X,) + (k) xin(R2, R
+(B)xEe(x,) + XEE((5X,)IF,).
Using (A3) and (A4), we have

2
+X*E(r(8X,)|F,) + o( Xk+a-1),

if (A2a) holds or if (A2b) holds and X, > 0. If (A2b) holds and X, = 0, then
E(X, . ,|F,) = 0. We estimate the expectation of the remainder next.

For 0 < k£ < 3 use the bound in (6) with m = 3 together with the inequality
la + b|™ < C(la|™ + |b|™) to obtain

(10) Xxlr(8X,) < CXk8X,1° < CX}3(g(X,)’ + [R,.1%).

©) E(X,,|F,) = X} + ckXkto1 4 o(k')X,f”‘_l

For k > 3 use the bound in (7) together with the abovementioned inequality to
have

(11) XHr(8X,) < CXF*g(X,)’ + [R,.1l%) + C(g(X,)* + IR, %)

Thus for 0 < £ < 3 with (A3) and (A5) being My(x) = o(x2**) we have from
(10),

XHE(r(0X,)F,)| < o XE-%-9) 4 o( XF*-1) = o Xh+e-1).
. For k > 3 with (A3) and (A5) we have from (11),
XHE(r(8X,)|E,)| < o( XE+e-1) + o( X}) = o XA+a-1),

Thus we can write from (9) for all £ > 0,

2
where D, , = o(X}**~1). Now take expectations in (12) and iterate to obtain

(12)  E(X*,F,) = [X,’f + (ck + o(k))X,’f”_l + Dk,,,]z(x,, >0),

EXk, = (ck + o(’z“’)) ZOEX}*“‘II(XJ. > 0)
(13) i !
+ X D, I(X,>0) + EX}.
Jj=0

Let £ = I(1 — a)in (13), [ = 1,2,..., and write A, , for Dy, _,, ,. Then for I = 1,

n
14 EX!;8=cn+1)+ ¥ EA, ;+ EX}~©
n+1 0 »J
Jj=0
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under (A2a) and

(15) EX)t=c, ), P(X;>0)+ Y EA, ;I(X;>0)+EX;™"
j=0 j=0
under (A2b) with ¢, = c(1 — a) + 0(1 5 “).
A, ,=o01)on X, - + 0. If (A2a) holds, then by the dominated convergence
EA,,— 0and X7_,A, ;= o(n). Thus from (14),

(16) EX!~*=pun+o(n).

If (A2b) holds, then EA, I(X, > 0) = o(1), P(X,, > 0) > g = P(X, > o0) and
from (15) we have (16). Thus (4) holds for / = 1. Suppose now that (4) holds for
all integers up to and including .. A, ,I(X, > 0) = o(X%***=1) as.; hence, for
k > 1 — a we have from (13) and the lemma,

17 EX*  =¢, Y EXtte 149
n k J

Jj=0

n
E EX1k+a—l) ,

Jj=0

with ¢, = ck + v( ’2*) Using the supposition of induction,
n n -1
Y EX10 ~ ¥~ (14 1)
j=1. j=1
Therefore we can see from (17) that
— — ’ -1
EX{[}Pa-op- (D ~ carna-all + 1) p

Hence (4) holds for I + 1 and thus for all ..

The moments of the gamma distribution with parameters (2¢ — va) /(v — va)
and 2/(v(1 — a)?) satisfy relation (4). Since a gamma distribution is uniquely
determined by its moments, it follows that X!~ /n converges in distribution to
the gamma distribution with the parameters given previously and the theorem is
proved. O

PROOF OF THE REMARK. It is clear from (3) and (A3) that x,, = oo. Using (5)
with m = 2 and the Lagrange form of the remainder, we obtain x5 = x1™* +
¢(1 — &) + o(1). Hence x.,7% = ¢(1 — @)n + o(n). The rest is obvious. O

Applications.

1. State dependent random walk. (X,) is a random walk on the nonnegative
integers with transition probabilities '

. D; i =p(i), Pii1=1 - p(i) fori>o0, Py = 1.
It can be seen easily that

gli)=2p(i)—-1, o(i)=1-g%), i>0.
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From this follows that the only case covered by our theorem is
g(i) ~ ci* witha = —1.

In this case

(18) p(i)=1/2+¢c/2i" ' + o(i7}).

If the sequence ( p(7)) satisfies (18), then P(X, —» o) = 1 if and only if ¢ > 3,
which can be seen from a well-known criterion for transience of Markov chains
given later. If ¢ > 3, then conditions (A1)-(A5) with (A2a) of our theorem are
fulfilled. Hence X,/n'/? converges in distribution to a generalized gamma
distribution with density

22T Y (¢ + 1/2)x%%xp(—x2/2).

This is a known result which is given in Guivarc’h, Keane and Roynette (1977)
and also in Keller, Kersting and Rosler (1987).

In the preceding example of a random walk our theorem was applicable only
when p(i) approached  at the rate ;™! resulting in the growth rate n'/% But if
we allow p,; to be positive, we can treat cases producing the convergence rates

B 1
nf,0<B<3.
Let (X,,) be a random walk with transition probabilities

Piiv1 = p(i), pi = r(i), Pii-1 = q(i), i1, Po = 1.
p(@) + q@@) + r(i) = 1, p(i), q(i), r(i) > 0. It can be seen that
g(i) =p(i) —q(i) and o(i) =p(i) + q(i) - £%(i), ix=1
Let p(2), q(i), r(i) satisfiy
r(i) =1—vi'** + o(i'*), p(i) — q(i) = ci* + o(i%),

with¢c,v > 0,2¢c>v,a < —1.

It is easy to see from the preceding relations that p(i) ~ v/2i'** and
q(i)/p(i) =1 — 2¢/vi"! + o(i~1). The criterion for transience and recurrence of
Markov chains [see Karlin and Taylor (1975), page 108] gives P(X,, = o) = 1 if
and only if ¥¥_,IT" ,9(i)/p(i) < oo. Since logIT™ ,q9(i)/p(i) ~ (—2¢/v)log n,
this series converges if and only if 2¢ > v. It is easily checked now that
assumptions (A1)-(A5) with (A2a) are fulfilled and the conclusion holds.

Notice that the first part of our example is a particular case of the second part
corresponding to a = —1 and r(i) = 0. If we let r(i) # 0 while « = —1, then we
obtain another case resulting in n'/2 growth: p(i) =p + c;i ! + o(i™ ), q(i) =
pHei t+oG™), r(i)=1-2p—(c;+¢)i ' +o0(") with p=0v/2<1
and ¢, — ¢, > p.

If @« < —1, then r(i) - 1 and p(i), g(i) — 0. It is seen that p(i)/(1 — r(i)) =
1 4+ (e/v)i™! + o(i™!) so that this case is a “time change” of the previous one.

"9, Generalized state dependent random walk. Let (Y, (i)), n,i >0, be a
double array of integer valued independent random variables with identically
distributed rows, i.e., the distribution of Y,(i) depends on i and does not depend
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on n. Let (X,,) satisfy
(19) Xn+1 = Xn + Yn+1(Xn)'

All Markov chains on the nonnegative integers satisfy (19) with a suitable choice
of (Y,(i)). Equation (19), however, arises naturally in the generalized birth and
death processes. Embedded Markov chains of the generalized birth and death
processes satisfy (19), where Y, (i) + i has the interpretation of the total number
of offspring when the population size is i. For processes satisfying (19) the
conditions of the theorem translate into conditions on the moments of the
defining array (Y,(7)). By using (2), we find

g(i) = EY, (i), o(i) = Var(Y,(i)),  R,.i = Y,.(X,) - &(X,).

Assume P(Y,(i) > —i) =1 for all i. Then X, > 0 as. for all n. If we assume
P(Y,(0) = 1) = 1 then the state 0 is reflecting. If we assume P(Y,(0) =0) =1
and P(Y, (i) = 0) <1 for i > 1, then 0 is the only absorbing state.

Let EY, (i) ~ ci® Var(Y,(i)) ~ vi**}, 2¢ > v and for some & > 2, EYX(i) <
Cit+®*/2 Then by the results of Kersting (1986) P(X, —» o) =1 if 0 is
reflecting or P(X, —» o) + P(X, » 0)=1 if 0 is absorbing. If we assume
further that for £ > 3, EY*(i) = o(i***~!), then the assumptions of the theo-
rem are fulfilled and the conclusion holds. This result appears to be new. The
preceding conditions, of course, can be written in terms of the transition
probabilities of a Markov chain (X,,).

To illustrate this result, here is an example. For a <1 let Y, (i) be integer
valued and equal to v*/2i1*9/2 4 ¢i* + 0(i*) and —0'/2iM+/2 4 ¢i® + 0(i%)
with probability 1 for i > 1 and P(Y,(0) = 1) = 1. One can check that for all
k> 2 EYXi) < Ci****/2 hence X!~ */n converges to a gamma distribution.
To illustrate the theorem for the case when 0 is absorbing one can use an
example given in the next section.

3. Population size dependent branching processes. Let (X,) be defined
recursively by

Xn
(20) Xn+1 = Z Yn, j(Xn)’ XO > 0.

Jj=1

Given X, = i, Y, (i)arei.i.d.distributed as Y(i) and independent of (X}, j < n).
The sum is taken to be 0 if X, = 0. Here X, stands for the population size at
time n, Y, ,(X,) is the number of offspring of the jth member of the nth
generation when the population size is X,,. Here the data of the process are the
offspring distributions (Y(?)), (Y(i) is the offspring distribution when population
size is equal to i). Hence conditions of the theorem should be formulated in
terms of the moments of (Y(7)). -

Suppose P(Y(i) = 0) + P(Y(i) = 1) < 1 for i > 0. It was shown in Fujimagari
(1976) and Klebaner (1984) that P(X, — 0) + P(X, = o) = 1, hence (A2b)
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holds. Let m(i) = EY(i) and 02(i) = Var(¥(i)). Then

8(1) =i(m(i) - 1), o(i) =ioc*(i), R, = g(Yn,j(Xn) - m(X,)).
Assume
(21) m(i) =1+c* ' +0(i*Y), o%3i) ~ viv

Then (A3) and (A4) hold.
Denote m,,; = E|Y, ,(i) — m(i)|*. Assume m,; < co. Moreover

my; = o(i*/27*"1) fork > 3.

Applying the Marcinkiewicz—Zygmund inequality, we have
k

E(R,"\X, =i) = E < Ci*/'my; = o(i**e7Y).

gx,,,-m - m(i)

Thus (A5) is satisfied. If we assume 2¢ > v, then the assumptions of the theorem
are fulfilled and the conclusion holds.

To illustrate the result we provide an example. Let a < L and Y{(i) take values
a; and 0 with probabilities p, and 1 — p;, respectively, i > 1. Take a; = [vi%],
where [a] denotes the integer part of a, and p; = a;! + ca; 1i*"! + o(a; li*™Y).
Then, clearly, (21) holds. For k> 2, EY*(i) = a’p;, ~ a®~! ~ vk~ 1k~ Do =
o(i*/2**~1) If we let a = 0, then we obtain an example similar to the binary
splitting case considered in Klebaner (1983).

A gamma limit for the process X,/n with general offspring distributions
satisfying (21) with a = 0 was obtained by Klebaner (1984) and Hopfner (1985).
The result obtained here is new and is a generalization that covers other rates of
convergence of offspring means m(i) to 1.

Acknowledgment. The author would like to thank the referee for com-
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