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Let L(a, t) be the local time of a Wiener process. Our main result says
that the process L(a, t) — L(0, t) can be strongly approximated by a process
obtained from a Wiener sheet W(a, t) and a local time process Lo, t),
independent of W(-, -).

1. Introduction. Let {W{(¢); ¢ > 0} be a Wiener process with local time
L(a, t), that is, the two-parameter process {L(a, t); a € R, t > 0} satisfies

/;L(a, t)da =\{s:0<s <t W(s)eA}

for any ¢ > 0 and Borel set A € R!, where A(-) is the Lebesgue measure. L(0, ¢),
the restriction of L(a, t) for a = 0, will play a crucial role in the sequel. We will
call both, the two-parameter process L(a,t) as well as the one-parameter
process L(0, t), simply local time. Let

T,=inf{¢t:¢>0,L(0,¢) > u},
and consider the process
#(a,u)=L(a,T,) - L(O,T,) =L(a,T,) - u.

It is well known that #(a, u) has a finite moment generating function in a
neighbourhood of the origin,

(A.) EZ(a,u) =0, EZL%*a,u)=4au.

(Aii) {Z(a, u); u > 0} is a strictly stationary process of independent incre-
ments in u for any a € R

(Aiii) For any fixed u > 0, {L(a, T,); a > 0} is the square of a zero-dimen-
sional Bessel process starting at u, that is, an R’ -valued diffusion process with
generator 2xd?/dx? on C%(0, ). Moreover, {Z(a, u); a > 0} for any fixed u
has orthogonal increments and is a martingale in a.
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For these and further properties we refer to Ray (1963), Knight (1963), Walsh
(1978) and Bass and Griffin (1985).

The Komlds, Major and Tusnady (1975) strong approximation theorem says
that, on a rich enough probability space, a strictly stationary stochastic process
{Z(u); u = 0} of independent increments with EZ(u) =0, EZ*(u) = u and a
finite moment generating function in a neighbourhood of the origin can be
approximated by a Wiener process W(-) such that |Z(u) — W(u)| = O(log u) a.s.
(u — ). In short, we say that Z(u) can be approximated by W(u) with rate
O(log u). Applying this theorem with Z(u) = 1a~'/%2%(a, u), we obtain that the
process {ia~'2%(a,u); u < 0} can be approximated by a Wiener process
{W,(u); u = 0} for any fixed a # 0 with rate O(log ©). We note that W (u) has
nothing to do with our original Wiener process {W(¢t); ¢ > 0} and, at this stage,
we cannot say anything about the joint distribution of the process {W,(¢); ¢t > 0}
in a.

Berkes and Philipp (1979) investigated the problem of approximating a finite
family of pairwise orthogonal processes of independent increments by a family of
independent Wiener processes. Their results imply that for any fixed 0 < a, <
a, < -+ <a,<oo; k=12,..., the vector-valued process

{,?(al, t) L(ayt) —L(a,t) Z(ay, t) —L(a;_y, t) . O}
2/a; 2/a, — a; T 2/a;, —a;,_, T
can be approximated by a vector-valued process
(WL(8), Wile), .., Wil£); £ = 0},

where W, W,, ..., W, are independent Wiener processes, but the rate of approxi-
mation is worse than in the case of having only a single process of independent
increments to be approximated. In any case, one can say equivalently that for
any fixed 0 < aq, <a, < -+ < a, < oo there exists a Wiener sheet

(W, gy af@,8);0<a<0,0<t<o0)

such that W, .  .(a; t) approximates the process ;:¥(a; t), i = 1,2,..., k;
¢t > 0. Clearly then, W, ,, . .(a,t) can be constructed as an arbitrary Wiener
sheet satisfying W, , . .(a; t) =X/ (a;— a,;_)*Wi(t), ay=10; j=
1,2,..., k. By a Wiener sheet we mean a two-parameter Gaussian process
{(W(a,u);0 <a < o,0<u< o} with covariance function (a, A a,)(u, A u,)
[cf., e.g., Section 1.11 in Cs6rgd and Révész (1981)].

This observation suggests the question: Can the process #(a, u) be strongly
approximated by a single two-parameter Wiener process?

Since, by the law of interated logarithm, L(a,u) =0 as. if a >
((2 + €)uloglog u)!/? and u is big enough, we have £(a, u) = —u for any u big
enough. This clearly shows that the structure of #(a, ) is quite different from
that of W{(a, u) whenever a is big. Hence we modify our question as follows. Can
the process #(a, u) be strongly approximated by a Wiener sheet provided that

u is big but a is not very big?
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Our proposition of Section 2 gives a positive answer to this question by saying
that one can find a Wiener sheet W{(a, ) for which £(a, u) — 2W(a, u) is small
a.s. if u is big but a is not very big. Replacing u in this proposition by L(0, ¢),
we get

(1.1) (L(a,t) — L(0,t)) — 2W(a, L(0,t)) issmallas.

Since we do not know anything about the joint behaviour of W{(-, -) and L(0, -),
it is hard to apply this result for the study of the process L(a,t) — L(0, ¢).
However, we also prove that the process {T,; u > 0} can be approximated by a
process {T; u > 0} having the following two properties:

(B.i) {T; u>0} =5{T,; u>0}.
(B.ii) The processes {Tu; u > 0} and {(W(a, u); a > 0, u > 0} are independent.
Define the local time process L(0, -) by

I:(O, f‘u) =u, u=>0.

By the continuity properties of L(0, -), we have [cf. Csaki, Csorgo, ‘Foldes and
Révész (1983)]

IL(0,T,) - L(0,7,)|
Um0 T, — T,)'*logu

a.s.

Consequently, having defined the local time process L(0, -) as the right-continu-
ous (in fact, continuous) inverse of 7, we have

L(o,7,)=L(0,T,) = L(0,T,) + L(0,T,) — L(0,T,)
=L(0,T,) + o(T, - T,)**logu) as.,

that is,
(1.2) L(0,7,) - L(0,7,) = o(IT, - T,)'*log u) a.s.

Thus, knowing (B.i) and (B.ii), we conclude that the process {I':(O, t); t =0}
has the following properties:

(Ci) |L(0,t) — L(0,t)| issmallas., t > oo,

(C.ii) {£(0,8); t >0} =5 {L(0,t); t =0},

(Ciii) {L£(0,t);¢> 0} and {W(a,u); a = 0, u > 0} are independent.

Now (1.1), (C.i), (C.i), (C.iii) and the continuity of W(-, -) imply
(1.3) I(L(a,t) — L(0, ¢)) — 2W(a, L(0, t))| issmallas.,

where £(0, ) satisfies (C.ii) and (C.iii).

The above sketched results are precisely formulated in Section 2. Section 3 is
devoted to the proofs. In Section 4 some applications are given.

A weak convergence analog of our theorem was given by Yor (1983) as follows.
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THEOREM A [Yor (1983)]. As A - oo,
1 1 1
_ 2 _ 2 - }‘2 _ }‘2
X W(A\t), }\L(a,A t), o (L(a, t) — L(0, t))

~5(W(¢), L(a, t)), W*(a, L(0, t)),
where W*(a, u) is a Wiener sheet independent of W(t) and —, denotes weak
convergence over the function space C(R%; R3?).

This result also follows from our theorem. Here C(R2 ; R?) is the space of all
continuous functions from R2 to R® endowed with the topology of compact
uniform convergence.

2. Main results.

PROPOSITION. There is a probability space with

(i) a standard Wiener process {W(t); t > 0}, its two-parameter local time
process {L(a, t); a € R', ¢t > 0} and the inverse process T, of L(0, t) defined by

T,=inf{t: ¢t > 0, L(0, t) > u},

(i) a two-time parameter Wiener process {W(a, u); a > 0, u > 0},
(iii) a process {T; u > 0} with

{T;u>0} =5 {T;u=0),

such that
(a) sup |L(a,T,) —u—2W(a,u)| = O(u®*9/27¢) a.s,u— oo,
O<a<a*u®
(B) 1T, — Tl = 0(u®) a.s,u- o,
and

(v) {Tu; u > O} and {W(a,u); a > 0,u > 0} are independent,
where a* > 0,0 <8 <7/100,0 <e<1/72 - §/17.

Applying the method sketched in the Introduction, we obtain the following
theorem.

THEOREM. There is a probability space with

(i) a standard Wiener process {W(t); t > 0} and its two-parameter local
time process {L(a, t); a € R, ¢t > 0},
(i) a two-time parameter Wiener process {W(a, u); a > 0, u > 0},
(iii) a process {ﬁ(O, t); t = 0} with

{£(0,2); t = 0} =, {L(0,¢); t > 0},
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such that
(a) sup |L(a,t) — L(0,¢t) — 2W(a, L(0, 2))|
O<a<a*t®/?
= O(t@+®/9-¢/2) q.s.,t— o,
(B) IL(0,t) — L(0, t)| = O(£***log®t) a.s.,t— oo,

(v) {I:(O, t);t> 0} and {W(a,u); a > 0,u > 0} are independent,
where a* > 0,0<8 <7/100,0 <e<1/72 —48/7.

3. Proofs. At first we give a special case of a theorem of Berkes and Philipp
(1979) for the sake of using it as a basic tool of construction in our proofs.

THEOREM B. Let{X;j=1,2,...} be a sequence of r.v.’s and let { ¥
.} bea nondecreaszng sequence of o-fields such that X is &; -measurable
Suppose that for some nonnegative X ;, 8; and D; > 10°,

E|E(exp iuX|F;_,) — e /2| <A,
for all u with |u| < D; and
P{IN| > iD;} < §;,

where N is a normal (0,1) r.v. Then without changing its distribution we can
redefine the sequence {X;; j > 1} together with a sequence {Y;; j > 1} of inde-
pendent, standard normal r.v.’s such that

p{|X,_Y;|Z7IJ}511p j=1’2"",
where

1’] = 16Dj_l log Dj + 4XI:]/2‘DJ + 81, ] = 2,3,---

Now we formulate and prove our first of the six lemmas which will lead to the
proofs of our proposition and theorem.

LEmMMA 1. Let a* >0, a;=jr % j=0,1,...,[a*r"**], with some B > 0,
y > 0. Assume also that r is big enough. Then on a suitable probability space

one can define a sequence of random vectors {(X;,Y)); j L,2,...,[a*r"*A])
such that
@) {X;J LSLa*r Py = (XX ) = L@ rAY,

(i) {Y ] > 1} are independent standard normal r.v.’s and
(iii) IP{|X Yizn)y<n, Jj=12,...,[a*r"*#], where

F(B-1/2
n=0((logr)r=Y/%) and X} = 5 (L(a,,T,) - L(a;_,, T,)).
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PrOOF. In order to apply Theorem A, we give an upper estimate of
. — 2
E; = E|E(exp iuX*|%_,) — e ¥/,

where %;_, is the smallest o-algebra with respect to which the r.vs X,
k=1,2,..., j — 1, are measurable.
Since for fixed r {L(a, T,); a = 0} is a diffusion and

rn
(3.1) E(expnL(a,T))) = XD oam

[cf. Itd and McKean (1965), Problem 4, pages 73-74, or Bass and Griffin (1985)],
we have

E(exp iuX*|L(a;_,, T,) = z)

& o 5 (Llan ) - 2) |

I

u’z 1
- s - | -a _; -
exp( o 1o iu‘/.;__i___ﬁ) e * exp(—iAuVr ),

where
u’z 1
T o 1+ utr F
Since
|Re® — B|? = R? + B2 — RB(e™ + e ™),
we obtain

e 4 exp(—iAu\/rT‘”) — e /22
u2
=e M te - exp(— — —A- iAu\/r“‘B)

2

2

u
-——-A+ iAuVr“‘B)

—exp| —

u’z 1
= exp ro1+u?r 178

u? u’z 1

|- - )

u? u%z 1

—-exp|l—— - — ———
( R

+e ¥,
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Replacing z by L(a;_,, T,) = L;_, and applying (3.1), we get

2
exp(— : ——LJ;—) — e ¥/?

2rq - iuyr-1-#

2
E2<E

J

u? . 1
—exp|l——|1+
2 1+a;_ u?r™' —u/r'-f

u? 1
—exp| —— |1+

+e ¥
2 ( 1+a; u?r ' +iu/r '7F ))

ru? »
= —_ + —ut ,
i u(a;+a;_,) ¢ @
where
u? . 1 u? . 1
= exp| ——[1 + +exp|——|[1+ ,
@ = exp 2( K—iL) exp 2( K+iL)
K=1+a; w’r " and L=u/r ',
Consequently,
0 u? ) K u’L
@=Zexp _?( T xEr7) |k + 1Y)

= 2¢ * ex _u_2 L -1 cosi
P72 &xevee 2(K?+ L*)
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and

2o, 2j-1 ,  (2j-1)u?

2 2 _
K*+L*=1+ PrrY L r2rep U 1B

- 2 . 4.-2 2,.-1
=l+a; w'r?+(a;+a, )u’r

Hence E? < I + II, where

I —ru? 2
= ex —e
Plo T u¥(a; +a;_,)

and
TS u? K u’L
II=2|e —e exp —?(m—l COSW—'LT).
Since
—u? 2 2 .
0 < exp il e " <2u'e ™™ ifute<1
and
w < 2,-7—1(1*’
r
we have
1oy /4
I <du'a*r e < Crla* if ul < ,
2a*
where C; = 4max (u%e~*").
In order to estimate II we observe
K 1<0
—— 1<
K2+ 12 -
and conclude
u’L u'L?
II<2e “|1 — cos ) <e ¥ < e “utL?

2(K?+ L?) (K% +L%)° ~
<ube P 1P < oL,
Hence we have

Ej < (IE|lE(exp iqu*l'g}—l) _ e—u2/2|2)1/2 < (Kla*r7—1)1/2’

provided that |u| < (r'77/2a*)'/*, where K, is an absolute constant.

523
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Hence, by choosing
D= r0VA 5 = exp(—1r0-1/4), A= [Ka¥r0-V2,

4
n; =21 - y)r9%logr + 4/K,a* r=V/% + exp(— 1r@-/8)
< M(log r)r(r—b/8, j=12,...,[a*r7],
we can apply Theorem B and thus conclude Lemma 1. O

Lemma 1 can be easily reformulated by using Lemma A.1 of Berkes and
Philipp (1979). First we state the latter and then the hinted at reformulation as
Lemma 1%,

LEMMA A.1 [Berkes and Philipp (1979)]. Let S;, i =1,2,3, be separable
Banach spaces. Let F be a distribution on S, X S, and let G be a distribution on
S, X S, such that the second marginal of F equals the first marginal of G. Then
there exists a probability space and three random variables Z;, i=1,2,3,
defined on it such that the joint distribution of Z, and Z, is F and the joint
distribution of Z, and Z3 is G.

This lemma will be used repeatedly in the sequel without mention. It allows
us to redefine sequences of random variables without changing their distribu-
tions and to embed them in a more extended probabilistic setup at the same
time.

LEmMMA 1*. Leta* >0,a;=jr % j= 0,1,2,...,[a*r*#], with some B > 0,
y > 0. Assume also that r is big enough. Then on a suitable probability space
one can define two Wiener processes {W\(t); t > 0} and {Wy(t); t > 0} such that

PX* - Y* 20} <n, Jj=1L2,...,[a*r"*?],
where 1 < (log r)r(*~b/8,

1
Xt = W(Ll(aﬁ TO) = Ly(a;,, TV)),

Y = ,.—B/2(VVz(aj) - %(aj—l))’
L(-, ) is the local time of Wy-) and TY is the inverse of the local time process
L, ).

Our next lemma collects those properties of L(a, T,) which will be needed in
the sequel.

LEMMA 2.
(i) For x > 0 we have

IF"( sup L(a,T)) > x) < l/@A)—x/(44),
0<a<A
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(ii) For 0 < x < 2U we have

x2
IP( sup sup|L(a,T,) — u| > x) < 8exp{— }

us<U a<A 16AU
(iii) For
. hz_'hl
0 < x <minu,2u 7 s 0 < h, < hy,
1
we have

x2
IP( sup |[L(2,T,) — L(h,, T, >x)s2ex -—— ).
s 1L T) = L(h, T,) 2| - T

Proor. (i) Since {L(a, T}); a > 0} is a martingale in a, by (3.1) we have

P( swp L(a,T) > x) < e ME(AT)

0O<ax<A

= exp(—)\x + m)

for any A > 0. Hence on choosing A = 1/(4A), we get the result in (i).

(i) To prove this statement, we use the facts that {L(a,T,); a > 0} is a
martingale in a, and that sup, _ 4|(L(a, T,) — u| is a submartingale in u. Thus,
for any A > 0,

IP( sup sup|L(a,T,) — u| > x)

u<Ua<A

< e ME( et UPasa ”‘(“’TU)_U')

— e—)\xE( sup (e(>\/2)|L(a,Tu)—U|)2) < 4e_A1|E(e>\|L(A»Tu)—U|)
a<A

< 4e—)\x{|E(e)\(L(A,TU)—U)) + IE(e"‘(L(A'Tu)‘U))}.

Based on (3.1) again, we get

IP( sup sup|L(a,T,) — u| > x)

u<U a<A
4e? AU + o + AU o
< X —_ P — -
=%e e"p{ 1- 2A>\} e"p{ 1+ 2A>\}
8 A 2XUA 8 Ax + 4NUA
< exp{— x+ m}s exp{ —Ax + }s

where the last inequality holds if A < 1/(44). On choosing A = x/(8UA), we
get (ii).
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(iii) The proof of this statement is similar to that of the preceding one. Hence
we give only a brief sketch of it. As in (ii) we get

P swp IL(2T) - L, T.)| > %)

h <z<h,
(32) < exp( ~AxJE(exp{AL(ky, T,) — AL(hy, T,)})
+exp{ —Ax}E(exp{AL(hy, T,) — AL(h,,T,)}).

In order to compute the above expectation we use the strong Markov property of
L(a,T,). Namely, for any y > 0 and s > 0, we have

P(L(hz’Tu) - L(hl’ Tu) < ylL(thu) = S) = P(L(h2 - hl’ Te) —s< y)'
Consequently,

E(exp{N(L(hy, T,) = L(hy, T)NL(R1, T,) = 5)

2X2s(hy — hy)
1—2(h,— h)A |

- E(epM(L(hs~ by T) - ) - exp|

Hence
E(exp{A(L(h,, T,) = L(h;, T,))})

N hy—hy
_ E(exp{ e T)

= exp > R
1— 2(hy — A\ — ANR,(hy — hy)

and similarly for the second term in (3.2). This implies that if

1 1
A < min , ,
{ 8(h2 - hl) 4\/51(’12 - hl) }
then

IP( sup |L(2,T,) — L(h,,T,) > x) < 2exp{ —Ax + AN (hy — h))u}.

hy<z<h,
By choosing A = x/(8u(h, — h,)) we get (iii). O
Using the notation of Lemma 1* we prove the following lemma.

LEmMmaA 3. For any

9y + 48+ 3 I—B}

>
T max{ 3 B
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we have
P= IP{ sup |L(a,T®) - r — 2r'?Wy(a)| > r’} < C*r4,
O<ax<[a*r’]
where C* > 0 is an absolute constant and A = (9y — 1)/8 + B.
Proor.
P = IP{ sup sup |Ly(a,T®) - r — 2rV?Wy(a)| = r’}
1<j<[a*r"*#f] @, <a<aq;

Jj-1

) (Ll(al’ Tr(l)) - Ll(al—l’ Tr(l)))

=1

+Ly(a,T®) - L\(a;_,, TV)

J—1 *r

= IP{ sup sup

1<j<[a*r'*P] a;_<a<aq;

_2,-1/2(:1(1472(%) - Wala;_y)) + Wyla) — m(aj—‘l))

> r’}
[a*rt+8]

< P{|L1(a,~, TO) = Ly(a;_,, TO) - 2r'/%(Wy(a,) - Wyla,_,))|
=1

J

r‘r
> ——————
~ 8[a*r *A] }

rT
+P{ sup sup |L,(a,T®) - L(a,_,, T®)| = -—}
1<j<[a*r'*F] aj_1<a=<a; 3
r‘r
+P{ sup sup  |Wy(a) — Wy(a, ) > }=I + II + III.
l1<j<[a*r?*#] aj_1<a<aq; 6/r

Choose such a 7 for which we have
r
6[a*rv+B]Vri-8"’
that is, 7 > (9y + 4B + 3)/8. Then by Lemma 1* we obtain
I<[a*r'#](log r)r*=v/8 < C(log r)r4,
and by Lemma 2(iii)

(log r)rty=b/8 <

144r1-#

if 7 <1 - (B + v)/2. Obviously, we have to choose 7> (1 — 8)/2 in order to
get an exponent tending to .
A similar estimate can be obtained for III. Hence we have Lemma 3. O

r2‘r
I < 2[a*r7+3]exp( - )
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Our next aim is to prove that the local time process L,(a, T\V), resp. the
inverse process T,V of L,(0, ), can be replaced by another local time process
L(a, T,), resp. the inverse process T, of L(0, -), such that

(i) the statement of Lemma 3 remains valid with L(a, T,), resp. T,, instead
of Ll(a, T‘r(l)), resp. Tr(l),
(ii) T, will be independent of Wy(-).

In order to construct the processes L(a, T,) and 7T,, consider a Wiener process
{Wy(t); t = 0}, independent of W,(-) and Wy(-). Let Ly(-, -) be the local time of
Wy(-) and T® be the inverse process of L0, -).

Consider the increments T® — T®),, i = 1,2,..., r, and call these increments
large if T® — T®, > r% where 0 < 8 < 2 will be specified later. Otherwise these
increments will be called small. Similarly, we define the large and small incre-
ments of the process T). Assume that the number of the large increments of
T, resp. those of TV, are p® and p®, resp. Denote the sequences of the small
increments by

3 3 3) _ M@ 3 _ e
ij ) — ij—)l’ Tjg) ng—)l"“’ ff—),‘(ii) TJ}_,L(s)—l’
lsj1<j2<... <jr_’t(3)<r,

and s1m11arly l)y
1 1
T (1) _ fz'ifl)l’ fl'igl) — fl'igl) Lreeos T 1 fl'if._)“(l) 1

i)

1<i;<ip< ++ <i_m<r.

Now the constructions of 7, and L(a, T,) are as follows. The large increments of
T® and the corresponding increments of L®(a, T,*) should remain unchanged

but the small increments should be changed by the corresponding increments of
T®, resp., by those of L®(a, T.?), that is,

r T, if T® — T® is large,
“T\TO, - TO, it T® - T is small,

utu
where 0 < u < 1 and i, is the smallest integer for which T\®, — T,® is small,
T® —TO®, it T® — TO is large,

T,,.-T,= . .
tru 1 {Tigllu -TO, it T® - T® is small,

where again 0 < u < 1, and i, is the smallest integer not used before for which
T8, — T is small. In the case of p® < u® one cannot perform all the
indicated changes. Hence we stop after the first r — y® changes and leave
the remaining short increments and local time increments unchanged. We denote
the arising processes by T, L(a, T,), s < r. Observe that in T, the number and

ordering of the large and small increments are the same as in 7/®. Clearly,
{(T,,L(a,T,));a>0,r>s=>0}
= {(T®, L(a,T®)); a2 0,r > s > 0}
=, {(Ts(l), LY(a, Ts(l))); a>0,r>s> 0}.
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We prove that
T, is close to T,® (Lemma 4)
and
L(a,T,) - risclose to LY(a, ") — r (Lemma 5).

Consequently, by Lemma 3 the latter is also close to 2r'/2W,(a). The indepen-
dence of T,® and W,(a) is clear from the above construction.

LEMMA 4. For any "> 0 we have

IP{ sup |T, — T®| > r’“} < Cri+b/2=X

O<s<r

ProOOF. Observe that

.
sup|T, - T®| < ¥ (T® - TON[T® - T®, < r*]

s<r i=1

+ L (T - TON[TO - T8 < r].

i=1

Clearly,

T® - IO, = T® — TY = Ty, i=1,2,...,r,
and

P(T, <u) =2(1 - ¢(u"1?)).
Consequently,
E(TR[T, < r®]) < Cro?

and

IE( sup |T, — T;‘3)|) < Cri+92,

O<s<r

Thus the lemma follows by the Markov inequality. O

LEMMA 5. For y < 7 we have

IP{ sup |LY(a,T?) - L(a,T.) > r’} < brexp{—Cr?5)

O<ax<a*r?

with B = (7 — v)/2.

PrOOF. It is easy to see that
sup [L®(a,T®) - L(a, T)|

O<a<a*r?

< (p©+ p‘3))max( sup sup [LO(a,T®) - LO(a,TH,)],

1<i<r O<a<a*r?

s sup [L9(a, T0) - LO(a, T )

1<i<r O<a<a*r?’
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Moreover, it is also clear that:

(i) p® + u® is a binomial r.v. with parameters 2r and p = P(T, > r).
(i) P(T, > r) =2¢(r*?) -1 <r 2 6>0.

Hence
P(H(l) + u® > 4,.1—0/2)
< E(exp(“(l) + p‘3))exp(—4r1‘”/2))
=(ep+1 —p)2’exp(—4r1-"/2) < exp{_C,J—o/z}’ 0<8 <.

Now Lemma 2(i) gives

rn-y
IP{ sup |L9(a,T®) — LO(a, TS, > r"} < Cexp(— )

O<a<a*r’ 4a*
if 7 > y. Consequently,
IP{ sup |LP(a,T,®) - L(a,T,)| > r’}

O<a<a*r’

< exp{-Cr'~%/%}

+2IP{ sup sup |LO(a,T®) - LO(a,TH,) = ér"“"/“’}

1<i<r O<a<a*r?
< Cexp{—Cr"=17%2-7} 4 exp{—Cr'~%?}.
Choosing
T—1+6/2—-y=1-10/2,
that is,
0=2-(r-7v),

we obtain Lemma 5. O
Combining Lemmas 3, 4 and 5, we have

LEMMA 6. For any

1—8 9y +48+3 1-B 9y +48+3
2 8 }_max{ 2’ 8 }

T> max{y,

we have
IP{ sup |L(a,T.)—r—2r*Wy(a)| = r’} < Cr4,
O0<ax<[a*r’]

where A = (9y — 1)/8 + B. Furthermore, the inverse local time process T, can
be approximated by an inverse local time process T®, which is independent of
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Wy(+), such that for any X > 0,

P{ sup |T, - T®| > r"’} < CrB,

O<s<r
where

— T—Y
B=2- — - .
2

Consider the sequence 0 = A, < A; < A, < --- defined by
Ak_Ak_1=kd, k=1,2,...,...;a>0.

The required Wiener processes as well as local time and Wiener sheet will be
constructed bit by bit via Lemma 6, separately on the intervals [A4,_,, A,].
In fact for each 2=1,2,... one can construct a local time process
{(:L(a,T,);0 <s<A,— A, ,}, a Wiener process {,Wy(¢); >0} and an
inverse local time process {,T®;0<s<A,— A,_,} such that the state-
ments of Lemma 6 [T, =, T, the inverse of ,L(0, -)] hold true, and the processes
(Wo()s x L+, ),k T®Y, k = 1,2,..., are independent.
Now we proceed to construct a Wiener sheet. We let

k
W(a, Ay) = X (A - Ai—1)1/2i%(a)
i=1
and define W(a, t) for A, <t < A,,, by joining W(a, A,) and W(a, A,,,) by a
suitable independent Wiener sheet [cf. Csorgé and Révész (1981), Section 1.11].
Similarly, we define

k-1
T,= X iTa-a, tilu-a,, A <us<A,,
i=1

E—1
3) _ 3 3 .
TO= 3 TP, + T2, ifA,_ <u<A,

i=1
and

k—1

L(a,T,)= Y L(a,Ty_4_,) +1L(a,xT-s, ), Ap-i<u<A;ax=0.
i=1

The independence of L(a,T,) and T, is clear from the above construction. By
Lemma A.1 we can also construct Wiener processes W(t) and W®(¢) with local
times L(a, t) and L®(a, t), respectively, such that 7, is the inverse of L(0, t),
T® is the inverse of L®(0, ) and W®(¢) and W(a, u) are independent.

Now we prove the statements (a) and () of the proposition.

Replace r in Lemma 6 by £* = A, — A,_, and, in order to obtain a conver-
gent series for the sake of applying the Borel-Cantelli lemma, choose « such that
aA = 9ya —a)/8 +aBf < —1, aB=a2 — (1 —v)/2 — X )a < —1. Then
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Lemma 6 and the Borel-Cantelli lemma imply
sup |kL(a7kTAk—Ak_1) (A=A, y) —2(A, - Ak-1)1/2kvv2(a)|
O0<a<[a*k*]
= O(k*") as.
and
sup [T, =4I| = O(k**) as.

0<s<k®

Let now k be a given positive integer and define k, by k, = [£%''°]. Then
sup |L(a,Ty,) — Ay — 2W(a, 4,)

0<a<a*kd

< sup |L(a,TAk0)—Ako|+2 sup |W(a,Ak0)|

O<a<a*k§’ O<a<a*k§’

k
+ Z sup IiL(a’iTA,-—A,_l) -(4,-4,_)

i=ko+1 0<a<a*kgy”

-2(A; - Ai—1)1/2ivvz(a)|
=1+ II + III.
By (iii) of Lemma 2
I = O((log k)k§/?AY?),
and routine calculations yield
11 = O((log k)k§?AY?).
Hence our above inequalities imply
sup |L(a,T,,) — Ay — 2W(a, A)|
0<a<a*k§”
k
= O((log k)RS?AY?) + ¥ O(i™)
i=ko+1
— O((logk)k(9ay/20)+9(a+1)/20) + O(kar+1)
and
k
sup |1, — T.%) = 0( ) i“f) = O(k**1).
0<s<A, i=1
We have to choose the parameters involved here such that we should have

1-8 9y +4B8+3
>
T max{ 5 3 },
9y — 1
A= 3 + B, aA < -1,
— T—Y

B=2——2——3i’, aB < —1and X< 2.
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Some possible choices are
1 9y 1
a = 35, ,B=H—?, T=5 "
Consequently, we have
sup |L(a,Ty,) — A, — 2W(a, A,)| = O(k9) as,
O<ax<a*r®/10
where
Q> max{a*r +1,5(ay +a+ 1)},
as well as
sup |T, = T = O(kO%/5+),
O<s<kot!

Let A,_, < u < A,. Then by standard methods and (ii) of Lemma 2
sup |L(a,T,) — u—2W(a,u)|

O<a<a*u’
< s L(a, Ty, )~ Ap = 2W(a, A
O<a<a*(k—1)**D?
+ sup sup |L(a,T,) - L(a,T,, ) - (u—A,,)
O<a<a*(k—-1)@*D¥ A, ,<u<A4,
+2 sup sup |W(a,u) — W(a, A,_))|

O<a<a*(k—1)¢*D8 A, <u<4,
< O(kQ) + O(k[a+(a+1)8]/2 logk)
= O(uQ/(a+1)) + O(u[a+(a+l)8]/(2(a+1)) logu),
provided that (a + 1)8 < 9ay/10 and
sup |Ts - 1’;(3)| = 0(u(15a+1)/(8(a+1))) - 0(u15/8),

0<s<u

By choosing y = 83/7, a simple calculation shows that our proposition holds
with 7, = T®. .

We can now formalize the proof of the theorem as follows. Let L(a, t) be the
local time of the Wiener process W®(¢), that is, L(a, t) = L®(a, t). Then (1.2)
and (B) of the proposition imply that almost surely

L£(0,8) = L(0,¢) < L(0, Ty, y) = L(0, T10,4))
= 0((L(0, 1)) 10g £(0, ¢))

= O(t%/321og?t).

Here we have used the facts that f};(o’ » < t and that L(0, £) = O(¢"2log t) as.
Similarly, one gets

L(0,t) — L(0,t) = O(t*/®10g%t) as.,
and hence (B) of the theorem.



534 E. CSAKI, M. CSORGO, A. FOLDES AND P. REVESZ

To verify (a) of the theorem, we let u = L(0, t) in (a) of the proposition.
Then we have almost surely

sup IL(a, Ty, ) — L(0, t) — 2W(a, L(0, t))|

0<a<a*(L(, t)®
— O((L(O, t))(1+8)/2—e) — O(t(1+s)/4—e1/2),
where ¢, < &. This implies also
sup |L(a,Tye ) — L(0,¢) — 2W(a, L(0, t))|
(3.3) O<as<a*th/?
= O(t(l+8)/4_51/2) a.s.,

where 8, < 6.
It follows from

L(a,t) < L(a, Ty, t)+1)
and
sup (L(a,T,,,) — L(a,T,)) = O(u?) as.,

a<a*u’

which can be easily seen from the proof of Lemma 5 [see (i) of Lemma 2], that
sup (L(a, t) — L(a, Ty, t))) = 0(t%log t)
(3.4) a<a*th/?
= O(ta+d/4-a/2) g,
Furthermore, by standard methods one gets
sup |W(a, L(0,¢)) — W(a, L(0, t))|
a<a*th/?
(3.5) = O(t%4|L(0, t) — L(0, £)|*/2 log )
_ O(t81/4+15/64 log3t) - O(t(1+8)/2—el/4) a.s.

Now (3.3), (3.4) and (3.5) imply (a) of the theorem, while (y) is obvious by the
construction. This also completes the proof of the theorem.

4. Applications. At first we list a few simple properties of the process
(2W(a, L(0, t)), t1/4L(0, ¢)) which are mostly known or can be obtained by
standard methods of proof. Namely, we have

W(a, L(0, 1))

“ Jf©.0

=y N, foranya >0,

L(0,¢t)
(4.2) 7 = |Nol,
Wla, L 0,¢
(4.3) —-(—(Zl =, N;|N,|*/% for any a > 0,

al/2f/4

where N,, N, are independent normal (0,1) r.v.’s.
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Also, for any a > 0, the set of the limit points of

_ W(a, L(o,¢))
‘ /2aL(0, t)loglog ¢

(4.4)

is the interval [ —1,1] a.s. The set of the limit points of

L(0, 1)
y2tloglog ¢

is the interval [0,1] a.s. The set of the limit points of

(U, V)
is the semicircle {(x, y): ¥ > 0, x2 + y2 < 1}. The set of the limit points of

W(a, L(0,t))
2%4q1/2¢1/4(loglog t)*/*

UV =

is the interval [0,2'/2373/4] a.s. for any a > 0, that is,

(4.5) lim sup W(a, L(0, 1))

— 95/43-3/4_
> a/%tY*(loglog t)**

Similarly, one can obtain

) W(a, L(0, t))
limsup sup —
-0 o<a<a® Y2a*L(0, t)t’loglog t

(4.6)
i ( 27 )1/4 W(a, L(0, t)) .
= limsup sup |— =1 as.
t>00 O<a<a 32 (a*t8)1/2t1/4(10g10g t)3/4
for any a* > 0 and § > 0.
Consequently, by our theorem we obtain
(41%) L(a,t) — L(0,t) N ; ; 0
. - , — o0, for any a > 0,
2//aL(0, t) 2 Y
(4.2%) t2L(0, t) =5| Ny,
L(a,t) - L(0,t
(4.3%) (a, t) ©,¢) =g NIN,|'2,  t— oo, foranya > 0,

2q1/21/4
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as well as

L(a,t) — L(0,¢t
(4.4*) lim sup (e, 1) ©.9
t>oo  2y2aL(0, t)loglog ¢

=1 as.foranya >0,

L(a,t) — L(0,¢
(e, 1) ©.9) =4.6"* as.foranya >0,

4.5* lim su
(4.5%) t— oop a'/?t/4(loglog ¢)**

and

. L(a,t) — L(0,¢)
limsup sup
to0 Og<a<a* 2\/2a*t8L(0, t)loglog ¢
(4.6%)

L(a,t) — L(O, t
= limsup sup 2-67'* (1/2 )~ L0, 1) =
t=>0 O<as<a*t (a*t®) "“#/4(loglog t)*

for any ¢* > 0 and 0 < § < 7,/200.

We note that (4.1*%), (4.2*) and (4.3*) are also consequences of Theorem A,
while (4.4*), (4.5*) and (4.6*) cannot be obtained from any weak invariance
principle like Theorem A. For a direct proof of (4.4*) and (4.5*) we refer to Csaki
and Foldes (1988).
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