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of Towa ‘

Let W(¢t) for 0 < ¢ < oo be a standard Wiener process, suppose 0 < ay < T
for T > 0, and let d(T, t) = {2¢[log(T/t) + loglog ¢]}'/2. Quantities such as

W(T) - W(T - t)

liminf sup

T-w ar<t<T d(Tv t) '
- [W(t+s) - W)
liminf sup —f——7———
T—»o 0<t<T-ay d(t+aT7 aT)
O<s<ap
and
- W(v) -~ W(u)|
liminf sup —F—7F——
T—o 0<u<o<T @(0,0—u)

ar<v—u

are investigated.

1. Introduction. Let W(¢) for 0 < ¢t < oo be a standard Wiener process.
There is a considerable body of literature on the limiting behavior of properly
weighted increments of such a process. Csorg6 and Révész [6], for example, have
given conditions on a, under which

\W(t + ar) - W(2)|

(1.1) limsup sup =1 as.
Tow 0s<t<T-ap {2ap(log(T/ar) + loglogT]}l/2

and

. W(T + az) - W(T)|
(1.2) lim sup 7z =1 as.

T-w {2ap[log(T/ar) + loglogT]}
Variations on these results have been given, some involving weakened conditions
on a;, some involving a slight change in the denominator, some involving the
“sup” over a different collection of increments, and so forth. (See, for example,
[11, [2], [4], [6], [9], [10] and [15].)

Deo [8], Book and Shore [1], Csaki and Révész [5] and Chen, Hong and Hu [3]
have investigated the same sorts of questions but using liminf, _,  instead of
limsupy_, ... In this article we continue that investigation. In Section 2 we state
results. We make some remarks, give an example and compare our results with
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1064 D. L. HANSON AND R. P. RUSSO
the literature in Section 3. We give our proofs in Section 4.

2. Theorems. We assume that 0 < a; < T for all T and define

(2.0a) rp = (log(T/ay))/loglog T
so that

(2.0b) ap=T/(logT)™.

We also define

(2.0c) r= h:I{r_l’igf Irp.

Throughout this article we use the notation loglog x = loglog(max{x, e}) and we
let C denote various positive constants whose exact numerical values do not
matter so that, for example, 1 + C = C might appear in this notation. Most of
the time when square brackets are used they will be used only for variety and
clarity; sometimes [...] will mean “the greatest integer in...”; we hope it is
clear which is which.

There are results for three different, but related, ways of dealing with
increments. We have put them into the following three theorems. As should be
obvious, corresponding parts of the three theorems are analogous.

For notational convenience we define

(2.0d) d(T, t) = {2¢(log(T/¢t) + loglog ¢)}'.

This is the denominator in all three theorems and (unless a “sup” is taken over
increments of the Wiener process associated with a fixed denominator) the
denominator d(7T, t) is associated with the increment W(T') — W(T — t); the
first variable T is the time (or index) of the leading term in the increment and
the second variable ¢ is the “length” (in time or index) of the increment.

THEOREM 1. Suppose 0 < ay < T for T > 0. Then
W(T) - W(T - t)
d(T,t)

liminf sup
T—>oo ap<t<T

(2.1) .. ey . o OT
-1, F .S. f— =
isin [—1, (a)] a.s. if ll;glg 7 =%
= F(a) a.s.ifar/T - a,
where
ifa=0,

0
Fla) = {—1/{1 ~ (loga)/4}? if0<ax<l.

THEOREM 2. Suppose 0 < ar < T for T > 0 and a; = . Let

(r/(r+1)}"?=1 ifr=+o0.
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Then
W(t+ ap) — W(t
(2.2a) liminf sup ad r) ()
T->w 0<t<T-ar d(t+ag,ar)
W(¢+s) — W(2)|
d(t+ap,ar)

(2.2b) liminf sup ={r/(r+ N}'? a.s.,

T—-ow 0<t<T-ar
O<s<ar

.. W(t + ap) — W(¢t)
liminf sup

T—-ow 0<t<T-ar d(t +ar, aT)

(2.2¢) = {r/(r+ 1)} as.ifre(0,0],
isin[-1,] a.s.ifr=0,
a
= G(a) a.s.ifr=0and7T—->a,
where
0 ifa=0,
Ga)={ [(@n+1a-1\"" 1 1
- if <a<—;n=1,2,
n(n+1)a n+1 n
and

W(t+s)— W(t)

_ 1/2
At aman) {r/(r+1)} a.s.

(2.2d) liminf sup
Toow 0<t<T-ar
O<s<ar

THEOREM 3. Suppose 0 < ap < T for T > 0 and ay — oo. Let
{r/(r+ )} =1 ifr=+co.

Then
W(v) — Wi
(2.3a) lirllzninf0 sup Tl ;(Dv) - l(t;t)l = {r/(r+ 1)} as,
- oz
|W(t) — W(s)|

(2.3b) liminf sup = {r/(r+1)}* a.s,

ar<v—u

d(v,v—u)

. W(v) — W(u)
liminf sup ——m—

T-o O<u<ov<T d(D, v - u)
ar<v—u

(2.3¢) = {r/(r+ D}? a.s.ifr>o0,
s isin [-1,0] a.s.ifr=0,

. ar
= G(a) a.s.zfr=0and7—->a,

= {r/(r+ 1)} a.s,
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1066 D. L. HANSON AND R. P. RUSSO

where G(a) comes from Theorem 2, and

050 i Wit) - W)
. 1m in su —_— =
T- o0 0<u<s<I:<u<T d(v’ v - u)

{r/(r+ 1)}1/2 a.s.

Note that from (2.0a) and (2.0c), if liminf,_  a;/T > 0 then r = 0; also,
from (2.0b) and (2.0c), if r > 0 then a;/T — 0. We do not need, or mention, r at
all in Theorem 1 since a;/T — 0 completely determines what happens in (2.1);
that is, the behavior when a;/T — 0 is the same for r = 0 and for all r € (0, o].

3. Remarks and comparison of our results with other results. For
notational convenience we define

(3.1) d(T,t) = {2t[log(T/t) + loglog t] }'"*
and
(3.2) d*(T, t) = {2t[log(T/t) + loglog T']}">.

We used the denominator d(T, t) in our work in [9] while d*(T, t) was used in
[10], by Csorgd and Révész [6] and by Book and Shore [1]. Now d(T,t)/
d*(T,t) » 1 as T — oo uniformly for 0 < ¢ < T. [For fixed y in (0,1) consider
separately the cases t < T and T < t.] Thus, as long as T — o, the same
results are obtained with either denominator. In particular, we obtain exactly
the same results in all three theorems if we use the denominator d*(-,- ) instead
of the denominator d(-,- ).

Our result in (2.2a) is very closely related to the “lim inf” part of Theorem 1 of
Book and Shore [1]. We define r = liminf,_, (log(T/a;))/loglog T and they
define r = lim, _, . (log(T/ay))/loglog T. If their r < oo, then a; - c0asT — oo
automatically. Our assumptions on a, are strictly weaker than theirs except
when r = oo. Because our denominator is smaller than theirs (strictly so except
when a; =T and t = T — a;), if we ignore the differences in assumptions our
result implies that {r/(r + 1)}*/? is a lower bound in their case, and their result
implies that {r/(r + 1)}/ is an upper bound in ours.

Our result (2.2b) is essentially Theorem 2 of Chen, Hong and Hu [3], but
proved under weaker assumptions. Their Theorem 1 is also related to our work.

The first work on “liminf;_, ” seems to have been done by Deo [8] and is
cited by Csaki and Révész [5], page 38. As cited by Csaki and Révész, Deo’s work
says that if limsup,_, ., rr < oo, then both expressions (1.1) and (1.2) change if
limsupy_, ., is replaced by liminf; _ .

As mentioned above, the result in (2.2a) is closely related to work in Theorem
1 of Book and Shore [1] and (2.2b) to work of Chen, Hong and Hu [3].

(2.2¢) is essentially Theorem 2 of Csaki and Révész [5]. We use d(t + a, ar)
for a denominator while they use {27 loglog T'}'/% Now

. arp{log((¢ + ar)/ar) + loglogar}
lim =a
T—oo T loglog T
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uniformly for 0 < ¢ < T — a; if ar/T — a > 0. This accounts for the difference
between the denominator in their C, (or C,) and the denominator in our G(a).
It is not difficult to show that

W(T) - W(T - t)] _

3.3a liminf sup a.s.,
( ) T—-oo 0<t<T d(T’ t)
(3.3b) liminf sup W(T) ~ W(T = 5)] =0 as
‘ T-oo 0<t<T d(Ta t) o
O<s<t
and
. W(T) - W(T - s)
(3.3¢) liminf sup =0 as.
T 0<t<T d(T’ t)
O0<s<t

What denominator should be used, in each case, to obtain a positive, but finite,
“liminf”?

The following miscellaneous comments apply to the behavior of increments of
the Wiener process.

It follows from Theorem 2.2 of [10] that our “lim sup” results (Theorems 3.1,
3.2B and 3.3B of [9]) remain true when absolute values are omitted. In addition,
from Theorem 2.2 of [10] we get equality (not just inequality) in Theorem 3.2B
of [9], with or without absolute values, without requiring the assumption that
“a, is onto.”

If a, is well behaved (e.g., if a; is continuous), then the sets of limit points of
our various functionals are intervals of the form [liminf,_,  “functional,”
limsup;_, ,, “functional”] a.s. In most cases we know what this interval is.
For example, if the functional is sup, _, .7[W(T) - W(T — ¢)]/d(T, t) and
ar/T — %, then, from (2.1) of Theorem 1 of this article and Theorem 3.1 of
[9], with absolute values removed as mentioned above, the set of limit points
is[—1/{1 + 47 1og2}"/%1].

The assumption that a; — oo seems to be required for Theorems 2 and 3. In
particular, these theorems are both false if a; = a for all T > T;, where a and T,
are constants. (See the argument in the middle of page 618 of [9].)

It seems clear that the results of this article, together with the invariance
principle results of Komlos, Major and Tusnady ([11], [12], [13] and [14]), will
give “liminf” results for partial sums of certain ii.d. sequences of random
variables in much the same way that “lim sup” results were obtained in Section
5 of [9].

ExaMPLE. Suppose 0 < a < ¢ < 8 < 1. We show how to construct a contin-
uous function a; such that
(34) a< aT/T <B foral T>0,
(3.5) liminfa,/T=a and limsupar/T = B,

T—- o0 T— o0
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and such that the a.s. “liminf’s” in (2.1), (2.2¢) and (2.3c) are, respectively, F(c),
G(c) and G(c¢).

Choose ¢ > 0 so that —& > max{F(c), G(c)}. Fix 6 > 1, let a; be any func-
tion satisfying (3.4), ar = T would do, and define

T<T*<0T O<u<v<T*
ap<v—u

(3.6) A(T) = { sup sup m;((vv) ;fvil;)' > s}.

Then

P(A(T)) < P{ sup W(o) ~ W(w)| > sd(aT) aT)}

(3.7) = P{ sup  [W(t) — W(s)| = ed(oT, aT)/\/fﬁ}

0<s<t<1/2
a/20<t—s

< P{ sup [W(s + A) — W(s)| > e/aloglog(aT') /\/6_?}
0<t 323k 12

This last probability goes to 0 as T — 0. (See, e.g., Lemma 1.1.1 on page 24 of
[7].) Choose a sequence T; = oo so that YP(A(T})) < o and T;,, > 0T, for all i.
Then

(3.8) P(limsup A(T;)) = 0.
Let
(3.9) S=[0,0) - U[T,6T] and 5= U [T, 0T].

i=1 i=1

Define a§ = ¢T and let a; be any continuous function from (0, c0) to (0, c0) such
that

(3.10) ap=cT=aj forall Tin S

and such that (3.4) and (3.5) are satisfied. (L.e., a; = cT except on S¢, and on S°¢
it “wobbles” enough that liminf,_,  a;/T = a and limsup;_, ,a;/T = B.)

Let B = (limsup A(T}))". Because of (3.8) we have P(B) = 1. It follows from
(3.6) that if w € B, then there is a T(w) such that if T € S°and T > T(w), then
all the weighted increments appearing in (2.1), (2.2c) and (2.3c), for both a, and
a%., lie in the interval [ —e¢, £]. Thus, because we chose ¢ < min{ —F(c), — G(c¢)},
if.we apply Theorems 1, 2 and 3'to a§ we get the same results in (2.1), (2.2c) and
(2.3c) whether we use “liminf,_, , r<s” or “liminfy_, . ”. Since ar = af on S,
if we take “liminf; ,  rcg” and use ay, we get the almost sure results F(c),
G(c) and G(c) in (2.1), (2.2c) and (2.3c), respectively. As in the argument above,
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when we use ar, what happens for T € S° does not change the liminf, except
possibly on a set of probability 0.

4. Proofs. The proofs are of two entirely different forms. We will prove the
“c” parts of the three theorems first. For these, the “heavy machinery” is a
slight variation of a result due to Strassen [16] which can also be found in Cs6rg6
and Révész [6], Theorem 1.3.2, page 37. The form stated here as a lemma,
without proof, comes from [2], Corollary to Theorem 1, page 74, with ar = T.

Let C(0,1) be the space (uniform convergence topology) of continuous real-
valued functions on [0,1] and let K be the subset of functions f from C(0,1)
such that f is absolutely continuous with respect to Lebesgue measure, f(0) = 0,
and

(4.1) f (f(x))dx <1,

where “dx” indicates integration with respect to Lebesgue measure. K is
compact.

LEMMA 1. For x in [0,1] and T > e let np(x) = W(Tx)/{2T loglog T}'/2.
There is a set §, of probability 1 such that if w is in Q,, then

(4.2) the net np(-) = n7(+, w) is relatively compact in C(0,1) and
(4.3) K is the set of its limit points (as T — o).
LEMMA 2. Suppose a < b and f(x) = ax + B for x = a and x = b. Suppose

also that f is absolutely continuous on [a, b] with Radon-Nikodym derivative f’.
Then

[(#2) e = [aax
and equality holds if and only if f(x) = ax + B for all x in [a, b].

Proor. Let p be Lebesgue measure and let P = p/(b — a). Then X = f'isa
random variable on the probability space ([a, b], =, P), where Z is the collection
of Lebesgue measurable subsets of [a, b].

b—}—‘;j:’(f'(x))zdx - EX?=E(X - EX)* + (EX)?

=E(X—a)2+a22a2=b fbazdx

—ad,

and the inequality is strict unless f' = X = a as. O
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PROOF THAT
W(T) — W(T - t)
d(T,t)

liminf sup =F(a) ifar/T—-a>0.

T—-oo ap<t<T

Assume ap/T — a > 0; then for T large enough log(T/t) is uniformly
bounded in ¢ for ay < ¢ < T. Thus we can replace d(T, t) by {2t loglog t}'/2. Fix
wy in the ©; from Lemma 1.

Suppose {T},} is chosen so that T, - co and so that

I W(T,) - W(T, — t) lim inf W(T) - W(T - ¢)
im  sup = liminf sup

n—o ap, <t<Ty {2t10g10g t}1/2 T—o ar<t<T d(T’ t)

From (4.2) of Lemma 1 there exists a subsequence of T, (which we will still call
T,) and an f, in K such that

(%) fo(x) = 0 iformly f in [0,1]
B P — —_ .
2 nloglog a 0 X unirormly ior x 1n )
Thus

W(T, - 1) - W(T,(1 - t/T,)) ;
‘/2Tn loglog T, B (f(’(l) - fo(l - F)) -0

uniformly for 0 < ¢ < T, as n - oo. It follows that (for w,)

lim int W(T) - W(T - t)
imint sup
T—>oo ar<t<T d(T’ t)

li W(Tn) - W(Tn - T) Tn

= lim sup —

n—o0 ap, <t<T, V2Tn logIOg Tn ¢
fo(1) — fo(1 = s)

5172

fQ)-fa-s)

’31/2

(4.4)

a<s<l

inf
feK a<s<l1

v

Using the same approximation argument, using (4.3) from Lemma 1, if f* is in
K, then there is a subsequence T, — oo such that

W(T,) - W(T,—¢t) f*1) - f*(1-s)
d(Tn’ t) - assl:gl ' 31/2 '

lim sup
n—o ap <t<T,

Since K is compact there is an f* in K such that

PO ) -

sl/2 s1/2

(4.5)

a<s<l feK a<s<1
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This gives the reverse inequality in (4.4). Note that (4.5) depends on a, but not
otherwise on the sequence ar; it is our function F(a) whose functional form we
have yet to determine. From symmetry

F(a) = —sup inf f) _‘/fg(l —¢)

feK a<s<l1

., f(s)
= —sup inf .
feK a<s<l1 ‘/‘;

Suppose £ is a function in K which achieves the sup, that is,

s h(s
—F(a) = sup inf %E—)- = agfg ‘2\-)

feK a<s<1

Then:
(4.6) —F(a) > 0. [Consider f(s) =s.]
(4.7) By definition A(s)/ Vs > —F(a) for all s in [a,1] and there
) is equality for at least one s in [a,1].
h is linear on [0, a]. [If not, we could define
_ [sh(a)/a, 0<s<a,
Mu(s) = {h(s), a<s<l.
Then
(4.8)
inf hs) _ inf h(s)
a<s<l1 \/S_ a<s<l1 \/.;
and, from Lemma 2, [l(h{(s))?ds < [§(h'(s))*ds < 1. The
function Ay(s) = hy(s)/{Jl(h{(t))*dt}/* would then be in K
but inf,_,_,(hy(s)/ Vs) > —F(a) would give a contradic-
tion.]
h(s) = —F(a)/s for a < s < 1. [Suppose not, that h(s*) >
—F(a)/s*. Let h(s) be the tangent to y = —F(a)/s at
s =s* and let h, = min{A, h;}. The function h, would
(4.9) satisfy hy(s)/ Vs > —F(a) for all s in [a,1] and, again

because of Lemma 2, [}(hj(s))*ds < [¢(h'(s))*>ds < 1. Then
N if we define hy; = h,/{[J(h}(s))*ds)/? h; would be in K
and inf,_,_,(hy(s)/ Vs) > —F(a) would give a contradic-
tion.]
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fo(R'(s))*ds =1 [otherwise we can multiply A(s) by a
constant and improve upon it].

—F(a)
(4.11)  h(s) = Va
—F(a)Vs, a<s<l,

(4.10)

5 O<s<a, [from (4.8) and (4.9)].

(412)  F(a) = —{(1-loga)/4})™"* [from (4.10) and (4.11)].

PROOF THAT
W(t+ ap) — W(t)

AT ap ap) =G(a) ifap/T—a>0.

liminf  sup
T—oo 0<t<T-ar

As mentioned elsewhere in this article, this particular result was first discovered
by Csaki and Révész and is Theorem 2 in their article [5]. Because of that, our
proof —which proceeds along the lines of the proof in the preceding couple of
pages, exhibits the extremal function in K, and proves directly that it is
extremal —is omitted.

PROOF THAT
o W(v) — W(u) .
liminf sup ——— =G(a) ifay,/T—>a>0.
T-o O<u<v<T d(v’v_ u)

ar<v—u

Fix a. For some positive integer n we have 1/(n+ 1) <a <1/n. Let L =
{0,a,...,na} U {1 —na,...,1 —a,1}. Define b=1—na and ¢ = (n + 1)a —
1; notethat a = b+ cand that1 = (n + 1)b+ nc.[b=0ifa=1/nand ¢ =0
" if @ =1/(n + 1).] Define 4 in K so that

, e, ka < s <ka+ b, k=0,...,n,
@19 K = [T haihie<(ea  k-0n1
(4.14) [ "(W(s))%ds = (n + 1)a®b + nB% = 1

0
and ,
(4.15) ba + cB is maximized subject to (4.14).

Because of (4.13) h(s) and h(s — a) are always traveling along parallel line
segments so that h(s) — h(s — a) is constant for a < s < 1 and, in fact,

(4.16) —ba—cB="h(s)—h(s—a) fora<s<l.
The maximization in (4.15) subject to (4.14) gives
" «=n%/{(n+1)[@n + 1)a - 1]},

(4.17)
B=(n+1)""/{n[@n+1)a - 1]}
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and

—ba—cB = —{[(2n +1)a - 1]/[n(n + 1)]}1/2

(4.18)
=h(s) —h(s—a) forall sin[a,1].

This function is produced by Csaki and Révész in [5]. Clearly (using Strassen’s
result and the approximation argument given previously)

WIT(t/T + a/T)| - WIT(/T)] [T

liminf sup

T—oo 0<t<T—ar {2T loglog T'}'/* ar
(4.19) = min max fls +e) - f(s)
feK0<s<l-a \/E

V% max (h(s) = h(s - a)) = G(a)

from (4.18). Csaki and Révész proved, using a probabilistic argument, that the
inequality in (4.19) is actually an equality.
For purposes of our current argument we get

W[T(v/T)] - W[T(u/T)] [T

IA

liminf sup

T—-o0o O<u<v<T {2T 10g10gT}1/2 v—U
(4.20) ar<v-u
= min max G————f(t) —#(s)
feK 0ss<t<1 Ve—s
Clearly
f(¢) —£(s) f(s +a) — f(s)
421 i = s mi - G(a).
@ R TS P RREST G
We will argue that
h(t) — h(s)
—_— <G
052133(51 VE— s (a)

a<t—s )
from which it follows that (4.20) = G(a) and we will be done.
Ifa=1/n,then b=0and B=1.1fa=1/(n+1),thenc=0and a =1.
In either case, by (4.13) and (4.14) we have A(s) = —s so that

h(t) — h(s) —(t-s) |
Osr‘lsl??sl vt—s B Osrg;l;{sl Vvt —s B _‘/E B G(a).
Now assume that 1/(n+ 1) <a<1/n.Let t=s+ a + § with § > 0.
(4.22) V1+8/a —1<(1/2)(8/a) forall § > 0.

From (4.17) we get 8 = (n + 1)a/n so that a < 8 < 2a for every n. Then from
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(4.13) we get —2a < A'(s) < —a so that

(4.23) a> —h(a)/(2a).

Putting (4.22) and (4.23) together gives da > —h(a)[m —1]or
h(a) —8a  h(a)

4.24 < forall § > 0.
( ) s < e or all § >

Now

h(t) — h(s) _ [A(s+a+8)—h(s+a)] + [h(s+a)— h(s)]

Vt—s va + é
(4.25) dmax{—a,—B} + h(a) —8a+ h(a)
= Vats S Vats
Thus
h(t) — h(s) h(a)
(4.26) o T s S e ¢

ast—s

as was to be shown.

REMAINDER OF THE PROOF OF THEOREM 1. If a,/T — 0, then as.
W(T) - W(T - t)

g ST )
r<t<
(4.27)
i it W(T) - W(T - ¢t) ()
= Imint su =F(a
o arster  A(T,0)
. for every a > 0 so (4.27) is bounded below by 0 = F(0). On the other hand
(4.28) sup{T|W(T) = min W(t)} =+ as.
0<t<T

so (4.27) is always bounded above by 0 a.s.
We always have a.s.

W(T) — W(T - t)
—1=F(1) = liminf su
( ) T- l-Tslt)sT d(T’ t)
e WD) - W(T - )
< lmint su
T— oo aTstpsT d(T’ t)

If liminf,_,  a;/T = a =0, then, from (4.28), we see that (4.29) is bounded
above by 0 = F(0). If liminf,_,  ar/T = a > 0, then for every 0 < e < a we
have

(4.29)

(459) < timint WT) - W(T - 1)
.29) < limin sup
T (a—e)T<t<T d(T, t)

and the last part of the proof of Theorem 1 is completed by letting ¢ = 0. O

=F(a —¢)
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LEMMA 3. If 0 <arp<af <TforT> T, then for all v,

lirn inf W(v) — W(u)
1m 1n su —_—
T— oo Osu<ro,sT d(v’v_ u)
(4.30) oo
’ W(v) — W(u)

. hTr‘Ill:f o;glst d(v,v—u)
ap<v—u
If, in addition, a; — oo and a} is continuous, then
W(t+ af) — W(¢)
d(t+ af,ak)
W(t + arp) — W(t)
d(t+ar,ap)

liminf  sup
T-ow 0<t<T-af

(4.31)

< liminf sup
T-oo 0<t<T-ar

' PROOF. (4.30) is obvious. From the continuity of a} there exists, for each T
sufficiently large, a 7" such that 0 < 7" < T and a} = a;. Since a; - © we
have T — oo. For fixed w and T sufficiently large

() W(t+ ap) — W(t)
o = su
Osts?r‘,—aT d(t + ar, aT)
W(t+ a) — W(¢)
> sup

0<t<T'—af d(t + ai‘k” a;)

= B(T).

Thus
W(t+ a}) — W(t)
d(t+ af,a})

liminfa(T) > liminf3(T) > liminf  sup

T- o T— o0 T-ow 0<t<T-af

LEMMA 4. Suppose 0 <ap<T for T>0, ap > o as T - oo and, for
some r in (0, 0],

. log(T/ar)
(4.32) hqr}l lgf Toglog T =
Then
W(t+ ap) — W(2)
d(t+ap,ar)

(4.33) liminf sup > {r/(1’"+1)}1/2 a.s.,

T-o 0<t<T-ar
where we set oo /(o0 + 1) = 1.
Proor. It is sufficient to show that the left-hand side of (4.33)is > {s/(s +

1)}*/2 for every s in (0, 7). Fix such an s, fix 0 < b < b, < {s/(s + 1)}'/? and fix
6 in (1,2). For T > e let a(T) = T(logT)~*. For k > (log §)~" and sufficiently
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large, and for j = 1,...,[(k log 8)°] = a,, we define
i { W(Jja(6")) - W((j = Da(8") _ b}
4 d(ja(6%), a(6%))
and note that (for k sufficiently large)
exp{ —b* [log j + loglog a(6%)]}
b{2[log j + loglog a(8*)] }1/2
<1- exp{—bg[log(ks) + loglog e*] }
=1- k—b%(s+1) < exp{_k—b%(s+1)}.
Thus, since for each fixed & the A ’s are independent, we have

0 A 0 a
Y P( N Ajk) <C+ Y {exp(—k_”?’(”‘))}
j k=1

k=1 Jj=1

P(Ay)<1-C

< C+ Y exp{—Ckstis+1)
k
which is finite since b, < {s/(s + 1)}'/% It follows that

b
(4.34) P{w € () A, infinitely often} =0.
Jj=1

Suppose 8% < T < §**! and k is sufficiently large. Then
W(t+ a(T)) — W(¢)
vzeroary d(t+ a(T), a(T))

{ W(t + a(6%)) — W(t) y d(t+ a(6%), a(6%))
d(t+ a(6*%),a(6%)" d(¢t+ a(T),a(T))
W(t+ a(T)) — W(t + a(6*))
d(t+ a(T), a(6**?) — a(6*))

d(t+ a(T), a(8**) — a(6*)) }
d(t+ a(T),a(T))

sup {BuCru + DryEqy}-
0<t<0*—a(8%)
From (4.34), with probability 1, for all % sufficiently large there is a ¢ = t(k) of
the form (j — 1)a(8*) in [0, 8% — a(6*)] for which B,, > b. Using Lemma 3.1
from [9] and some analysis, we see that

= sup
0<t<0*—a(6%)

P . G Cad L)
in >

lkn—l-l:: 0k <T<g*+! ek lkn—{loro} Osts;?—a(o”)d(t-i-a(0k+1),a(0k+l))
0<t<0*—a(6*)

=612,
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For k large enough a(8**') — a(6*%) < a(8%) < t + a(T). We have a(6**') —
a(6%) > oo as k — oo. Thinking of a(8**') — a(8*) as a value of “a,” we can
use (3.13b) from Theorem 3.3a of [9] to get

lim sup sup |Dpg| <1 ass.

k— o0 0k<T50k+l
0<t<0*—a(8*)

Finally, Lemma 3.1 of [9] and some analysis give
lim sup sup E .
k— o0 0k<T50k+l
0<t<0%—a(8*)
d(t+ a(8%*'), a(6%*') — a(6%))

< limsup sup
k=00 0<t<0*—a(6%) d(t + a(ak)’ a(ok))

=(8-1)"~

Thus

_ Wt + a(T)) - W)

imin sup

T->w-  0<t<T—-a(T) d(t + a(T)7 a(T))
for every b such that 0 < b < {s/(s + 1)}'/> and every 8 in (1,3). Letting
911 and b1{s/(s+ 1)}/? gives the desired result, but with a; replaced
by a(T). For all T large enough, say T > T;, log(T/ar)/loglogT > s so
ar; < T(log T)~* = a(T). An application of Lemma 3 completes the proof of
this lemma. O

> b0 12— (6-1)"

LEMMA 5. Suppose that 0 < ap < T for T > 0, that ap — o, and that

log(T/ar)
4. liminf ————— .
(4.35) qgll:.}f loglog T sree

Then

(4.36) liminf sup LWL(_t)_—lV(_s;)_I <{r/(r+ D}? as.

Too O<uss<t<o<T d(v’v_u

ar<v—u

ProoF. Fix r/(r+1)<b<1,fix$8in(0,b), andset 6 =1+ 8. For T > e
let b, = T(logT)™", ky = [r(loglog T')/log 6] + 1 and n, = [(88) '(log T) ] +
1. Define

z |W(n86%by, + 6*by) — W(nd6*by)|
Thn d(nd6*b, + 6*by, 0%by)
Then for T large enough we get forall k= 0,...,kp and n=0,..., np,

P(Eq,) < exp{ —b[log(nd + 1) + loglog(8*b7)]}
<c{(n+ l)log(Oka)} < C{(n + 1)log bT}_b.

> b1/2}.

(4.37)
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Define E; = Utz (U (Eq,... From (4.37), for T > e€ we get

kr np

P(E;) < ckzo Y {(n+ Dlogby) ~°

< C(ky + 1)(log by)” f"T“ - dx

< C(loglog T)(log by) ~*(ny)" ™"
< C(loglog T)(log T) ~°*¢ ="
and P(E;) — 0since —b + (1 — b)r < 0 is implied by b > r/(r + 1).
Since
log(T/ar)  log(T/(8ar))
loglog T loglog T

b

it follows from assumption (4.35) that there is an r, < r and a sequence T; 1 o0
such that da;, > e° and such that dag, > Ty(log T;)" " for all i. Since P(Er) — 0
we will assume that YP(E;) < oo—by choosing a subsequence of T, if neces-
sary—so that P(limsup ET) = 0. Let

F={w:we E;, only finitely often }

N{ limsup sup W(T) - WIT — )] <1
T—-oo 1<t<T d(T’t) B .

O0<s<t

By what we have just argued and (3.9b) from Theorem 3.1 of [9] we get
P(F)=1.
Fix  in F and fix j large enough that (for our fixed w)

[W(T) — W(T —s)|

4.38 su su su <4,
( ) Tz&ll)»rl lstET OSsI;t d(T’ t)
(4.39) by, > e?/8, TlogT) °>6b; and e (Ep)".

Suppose u, v, s and tareﬁxedw1th0<u<s<t<v<Tjand t—s>8aT.
which is > T;(log T;)~"™ because of the choice of {T;} which was made earlier.
From (4.39) and the definitions of bT, ky and ng it follows that there exist
integers %, in {1,.. .» kg, — 1} and ng in {1, np} such that

O*%oby <t — s < Gk by,
and (note that we now define x)

(ng — 1)86%by, < s < nd8*by, = x.
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Define y = x + 0”°bT It follows from the above that [x — s| < 80k°bT and that
|y — ¢| < 86%0by,. We have that

W)~ W)l _ [W() ~ W(s)
d(v,o—u) ~— d(t,t—s)

_ W) — W(o)) d(t, 86y
d(t 86%b,) (- s)

W(y) - W(x)| d(y, y — x)
dly,y—x) d(t,t—s)

[W(x) = W(s)| d(x,80%br)
d(x,80%b,) d(t,t~s)

= AD + BE + CG.

From (4.39) we have 80k°bT >60>1;also, t>x> 80k°bT > 8by; hence (4.38)
can be used to give A < @ and C < 0.
Since w € (Eg)° we have B < b'/2. Now from Lemma 3.1 of [9]

d(¢, 86%by,)
< JE
d(t, 8%by)
so that
limsup sup D <82
J—oo 0s<s<t<T;
8a7-lst—s
The same argument works for G and a similar argument gives
limsup sup E =1.
Jj—ooo 0<s<t<T;
8a1;st—s
Thus for w € F,
lim sup sup [W(t) — W(s)|/d(v,v— u)
Jj—=oo O<u<s<t<o<T;
8a7}st—s
(4.40) < limsup sup (AD + BE + CG)

Jo oo Osuss<t<o<T;
Sar<t-s

< 08V% + b'/? + 9562
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Now
. = (t) — W(s)|
lim inf sup —_—
Too O<uss<t<o<T @(0,0— 1)
ar<v—u
(4.41) , (W(t) — W(s)|
< limsup sup —_—
jooo O<uss<t<v<T, d(v,v—u)
aTj<v—u
= max{I,II},
where
. (W(¢) — W(s)|
I = limsup sup —_—
Jo o O<uss<t<v<T; d(v: v - u)
SaTlst—s
GESD—U
and
. [W(t) — W(s)|
II = limsup sup —_—
J—ooo O<u<s<t<v<T, d(v’ v - u)
aTISO—u
t—ssSar,}
From (4.40), I < b'/% + 2608'/? a.s. Now from (3.14b) of Theorem 3.3B of [9]
Wi(t) — W(s
(4.42) lim sup sup l——u <1 as.
joo 0<v'-dap<s<t<v'<T; d(v "SaTj)
In addition,
(4.43) limsup sup d(o, 8aT)/d(v v—u) =282
Jo oo Osus<o<T;
ap<v-u
Whenever s, t, uandvsat1sfy0<u<s< t<v<T, <t—-sandt—s <

8aT, we can (in addition) find ¢’ so that (in addltlon) 0 < u<v — 8aT <s<
t<v<v< T.. Since d(v, SaT) is increasing in v for v > 8aT (see Lemma 3.1
of [10]), (4. 42) and (4.43) can be combined to give II < 1.8Y2 as. Thus
(4.41) < max{b*% + 2056'/2, 8"/} a.s. Recall that 0 < 8 < b, that § = § + 1, and
now let 8 |0 and b | r/(r + 1) to complete the proof of the lemma. O

REMAINDER OF PROOFS OF THEOREMS 2 AND 3. Consider the left-hand sides
of expressions (2.2a)-(2.2d) and (2.3a)-(2. 3d) For notational convenience let
L(2.ni) refer to the left-hand side of expression (2.ni). Just by comparing the
terms involved in the various sup’s we see that

L(2.2¢c) = min{L(2.2a), L(2.2b), L(2.2c), L(2.2d), L(2.3a),
L(2.3b), L(2.3c), L(2.3d)}
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and that
L(2.3b) = max{L(2.2a), L(2.2b), L(2.2c), L(2.2d), L(2.3a),
L(2.3b), L(2.3¢), L(2.3d)}.

It follows from Lemma 4 that when 0 < r < oo we have the lower bound
{r/(r + 1)}}/? for all eight left-hand sides. Lemma 5 shows that {r/(r + 1)}'/? is
an upper bound when 0 < r < oo0; (3.14b) from Theorem 3.3B of [9] shows that
when r = oo we get the upper bound 1 = {r/(r + 1)}*/2 for all eight left-hand
sides.

Suppose r = 0. It is easy to see that L(2.3b) < {¢/(e + 1)}!/2 for every ¢ > 0
so that L(2.3b) = 0, and hence that L(2.ni) = 0 for n = 1,2 and { = a,b, d.

We are done except for the cases where r = 0 and a;/T + a > 0in (2.2c) and
(2.3c). Suppose r=0. Fix ¢ >0 and let a} = min{a;, T/(log T)?} =
T/(log T )™*x{rr-¢), Then, using the law of the iterated logarithm and (2.3b) of
Theorem 3 with r = ¢ (in that order) gives

. W(t + ap) — W(t)
—1 < liminf sup
Toow t-0 d(t+ar,ar)

< L(2.2¢) < L(2.3¢) < L(2.3b)
|W(t) - W(S)l 1/2
< hmlnf su —_— ={e/(1 + ¢ a.s.
T— o Osu<s<rt)<u<T d(D1D - u) { /( )}

af<v-u

Letting ¢ | 0 shows that both L(2.2c) and L(2.3c) are in[—1,0] as. if r = 0.
Now let a} = T. Then using that part of (2.2c) already proved and (4.31)
from Lemma 3 gives

- W(t+ af) — W(t)
G(e) = liminf  sup a—
Toow 0<t<T—ax d(t+af, af)
<L(22c) <L(23c) <0 as.

Letting £} 0 so that G(¢)10 completes our proof that L(2.2c) = L(2.3c) = G(0)
a.s. when r = 0 and a;/T — 0. It also completes our proofs of Theorems 2 and 3.
a
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