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ON SERIES REPRESENTATIONS OF INFINITELY DIVISIBLE
RANDOM VECTORS!

BY JAN ROSINSKI

University of Tennessee

General results on series representations, involving arrival times in a
Poisson process, are established for infinitely divisible Banach space valued
random vectors without Gaussian components. Applying these results, vari-
ous generalizations of LePage’s representation are obtained in a unified way.
Certain conditionally Gaussian infinitely divisible random vectors are charac-
terized and some problems related to a Gaussian randomization method are
investigated.

1. Introduction. In this paper we study the convergence and limit distribu-
tion of the centered sums of the form

(1.1) ZH(T],gj) _Ana
Jj=1

in connection with series representations of infinitely divisible random vectors.
Here {7;} is a sequence of arrival times in a Poisson process, {{;} is a sequence of
ii.d. random elements, which is independent of {7;}, and H is a Banach space
valued function. If these sums converge with A, = 0, then their limit can be
written as a series of dependent random vectors

(1.2) iH(Tj, £)-

J

Random elements of this type, usually with H taking values in a space of
nonnegative functions, have been studied in the applied literature for quite a
long time and they are known as “shot noise” (see, e.g., Vervaat [26] and
references therein). OQur results, in particular, yield conditions for the a.s. conver-
gence of the series (1.2) in general Banach spaces.

Series representations involving arrival times in a Poisson process have been
given by Ferguson and Klass [7], for real independent increment processes
without Gaussian components and with positive jumps. Kallenberg [11] showed
the uniform convergence in the Ferguson—Klass decomposition and Resnick [22]
related the decomposition to the well-known Ito6-Lévy representation of pro-
cesses with independent increments. A series representation of Hilbert space
valued stable random vectors, which generalizes and improves the Ferguson-
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406 J. ROSINSKI

Klass representation of one-dimensional stable random variables, has been estab-
lished by LePage, Woodroofe and Zinn [16]. LePage [14] observed that symmet-
ric stable random vectors can be represented as conditionally Gaussian. This
important property has been generalized and extensively used by Marcus and
Pisier [19] in their investigation of continuity of stable processes. Marcus and
Pisier’s work showed the significance of the series decompositions in the study of
stable probability measures on general Banach spaces (see also [2] and [23]). A
generalization of the Ferguson-Klass representation (one-dimensional, Lévy
measure concentrated on positive reals) to the case of random vectors taking
values in Banach spaces of cotype 2 is due to LePage [15]. Since this assumption
on the geometry of Banach spaces is too restrictive for many interesting applica-
tions of the representation (e.g., for studying the continuity of stochastic pro-
cesses), it is necessary to investigate series developments without any restrictions
on the Banach spaces. The validity of the LePage representation for certain
symmetric infinitely divisible random vectors in general Banach spaces has been
recently shown in Marcus [18].

The main goal of the present paper is to give a simple and general scheme of
deriving series representations of arbitrary Banach space valued infinitely divisi-
ble random vectors. Such representations can be regarded as particular cases of
(1.1) and, in this respect, our approach is similar to the one in Vervaat [26], who
obtained the Ferguson-Klass representation of positive infinitely divisible ran-
dom variables as a special case of shot noise random variables. In Section 2
necessary and sufficient conditions for the a.s. convergence of centered sums (1.1)
are given. Some important special cases of (1.1) are investigated in Section 3. The
results of Sections 2 and 3 are applied in Section 4 to derive series representa-
tions of infinitely divisible random vectors. This approach enables us to obtain
various series representations, which generalize those of LePage [15], in a unified
way, while avoiding many obscuring details due to specific forms of the function
H in concrete situations. In Section 5 an interesting subclass of infinitely
divisible random vectors which can be represented as conditionally Gaussian is
characterized. Certain problems regarding Gaussian randomization of H are
studied in the conclusions of Sections 3 and 5.

Finally we would like to mention something about the methods in this paper.
To determine the convergence in (1.1), we use a slight modification of the
technique previously employed by Ferguson and Klass [7], who transformed
certain dependent summand series into independent ones. The modification is
that we associate with (1.1) a continuous time, independent increment, stochastic
process, instead of the discrete time one, so that (1.1) is obtained by a random
time substitution. This approach gives the results on the L ”-convergence imme-
diately (see Corollary 2.5), and reveals a martingale structure of the decomposi-
tion [see Corollary 4.4(iv) and Theorem 3.1].

2. The convergence and limit distribution of centered sums (1.1). We
recall and complete some notation that will be used throughout the paper.
{§,)72, is a sequence of ii.d. random elements taking values in a measurable
space (D, Z) with the common distribution £(§;) = A. By {N(¢)},, , is denoted
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a Poisson process with parameter 1 and 7; is the jth arrival time of N(%), i.e.,

. =1inf{¢t > 0: N(¢) =j}, j=12,.... {Uj ® , stands for a sequence of ii.d.

3
uniform on (0,1) random variables. We ‘assume that {§,21, {N(?)};» and
{U;)72, are defined on the same probability space (2, #, P) and they are
mutually independent.

In order to use the method of Ferguson and Klass [7] mentioned in the
Introduction we shall need the following lemma which in the case 2= R can be
deduced from Lemma 2 [7] and then easily extended to the case when % is a
separable Banach space. Since this lemma constitutes the first important step of
the method we shall give below a straightforward and different proof in a more

general case.

LEMMA 2.1. Let (%, #) be a measurable vector space and let G: (0, 00) X D —
Z be a measurable map. Then the Z-valued stochastic process given by

N(t)
X(t) = Z G(Tja gj)’ = 07
Jj=1

has independent increments and

L(X(t+s)— X(s)) =$(1§)G(s +tU;, £j)).

J=1

ProOF. Let %" = o(N(s): s < t) and F? = o(¢,,...,§,). Put
(21) #={AeF:An(N(t)<k) eFOVFD forevery k >1}.

Then {#},., is an increasing filtration and {X(¢)},., is adapted to this
filtration.

In order to prove that {X(¢)},., has independent increments it is enough to
show that o(X(¢ + s) — X(s)) and %, are independent for every ¢, s > 0. Let
A % and B e %. We get

s

P{X(t+s) — X(s) € B, A)

Y P(X(t+s)—X(s)€B,N(s) =i, N(s+¢t) =i+k, A
(2.2) i, k=0

i+k
E A T 6(5,6) BN 0) - M) - ),
i k=0 | j=it+1

where A, = {N(s) = i, A} € Z® v F® by (2.1). Since we have on { N(s) = i},

i+k i+k

Y G(ng)= L G(s+10,4),

j=i+1 j=i+1

where 7{ is the mth arrival time in the Poisson process NV(u) = N(u + s) —
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N(s),u >0, we conclude that the events A, and (X%, G(7,¢) € B,
N(t + s) — N(s) = k} are independent. Therefore the last expression in (2.2) is
equal to

> p{ if;k G(s+10,¢) eB, N(l)(t)=k}P(Ai)

J=i+1

Y P{ Zk: G(s + 70, §m) € B, NY(¢t) = k}P(Ai)

i, k>0 m=1

Y P{ i G(s +1,,£,) € B,N(t) = k}P(A)

k>0 m=1

N(t)
= P{ Y. G(s+1,¢) € B/P(A),

Jj=1

which proves the independence of o(X(t + s) — X(s)) and &%, as well as the
equality L(X(t + s) — X(s)) = LENQG(s + 1, £))).

In the proof of the second part of the lemma we shall use the well-known fact
that the conditional distribution of (..., 7y) given that N(¢) =k >1 is
equal to the distribution of (tU,,, ..., tUy,), where U, ;) is the jth order statistic

of U,,...,U,. We have, for every B € %,

N(t)
P{X(t+s) - X(s) e B} = P{ Z G(s+1,¢) e B}

00 k t*
= Z P{ Z G(s + tU(j), §j) S B} Z'—e‘t
k=0 | j=1 :

tk

G(s+tU,¢,) € B} Z!—e“

Il
™3

)
M=

N(t)
= P{ G(s+tU,¢)) € B},

Jj=1

which completes the proof. O

LEmMmaA 22, If (%, &) = (R, By), then, under the notation of Lemma 2.1,
@) EX(t) = [} [pG(u, 0)A(do) du,

provided either one of the above quantities, on the left or right side, exists;
(i) E exp[iX ()] = exp(fg [p[e®® — 1]A(dv) du).
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Proor. By Lemma 2.1 and Wald’s lemma we get

N(t)

E[X(t)] =E G(tlj}réj)

— tEG(tU,, ¢,) = fO‘fDG(u,o)A(dv)du,

J

which gives (i). The proof of (ii) is similar. O

Further we shall need the following standard fact which follows, for instance,
from Doob [5], Chapter 2, Theorem 2.3.

LEmMA 2.3. Let {Y(t)},. , be a stochastic process with values in a separable
metric space and whose sample paths are right-continuous. Then lim, _, , Y(t, )
exists for a.e. w if and only if for every increasing sequence {t,}*_, with
lim, _, t, = oo, the sequence {Y(t,)}*_, converges a.s.

To state and prove the main result of this section, we shall need some
notation that will be also used throughout this paper. E will stand for a
separable Banach space with the norm || || and B,== {x € E: ||x|| <7}, r >0
(B,, == E). The dual of E will be denoted by E” and (x’, x) = x'(x), x’ € E’,
x € E.

We recall that a measure M on %, with M({0}) = 0 is said to be a Lévy
measure if for every x’ € E’, [;({(x’,x)*> A 1)M(dx) < oo and for some (each)
r € (0, o) the function ¢, defined by

() = exp| [ [ 1 = iCar, )Ty ()] M(a),

x'" € E’, is the characteristic function of a probability measure on E. The
probability measure with characteristic function ¢, will be denoted by c, Pois(M)
(see de Acosta, Araujo and Giné [4]). If M is a Lévy measure and additionally
s ||| M(dx) < oo ([, ||lx||M(dx) < oo, respectively), then we define c,, Pois(M)
[co Pois(M), respectively] as a probability measure with characteristic function

¢, (¢, respectively).
Now let H:(0,00) X D — E be a Borel measurable map and define a measure
F on %, by

(2.3) F(A) = f()”/DIA\{O}(H(u,v));\(dD)du, Ac B,
Note that F({0}) = 0. Put

A(t) = /OthH(u,v)IBl(H(u,v))A(dv)du, t>0,
and

T,= Y H(r,%) - A(r,), n=102,....
j=1
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THEOREM 2.4. The sequence of E-valued random vectors {T,} converges a.s.
if and only if F is a Lévy measure on E. Further, if F is a Lévy measure and
T, = lim T,, then

n—-o0o"n’

Z(T,) = ¢, Pois(F).

Proor. Let
N(t)
X(¢)= Y H(w,§) - A(2), t=0.
j=1
By Lemma 2.1 {X(¢)},,, is an independent increment E-valued stochastic
process with right-continuous sample paths. Using Lemma 2.2(ii), we get

(2.4)  #(X(t)) = ¢, Pois(F®),
where
(2.5) FO(A) = j:j;)IA\{O}(H(u,v))}\(dv)du, Ac®,

[note that F((E) = t < «o].

Assume first that F is a Lévy measure. Since F) 2 F as t 7 oo, we get

¢, Pois(F®) = ¢, Pois(F) ast / oo

(see de Acosta, Araujo and Giné [4], Theorem 1.6). Hence, by the It6—Nisio
theorem ([10], Theorem 3.1) and (2.4), {X(¢,)}?-, converges a.s. for each ¢, <
ty < -+ <t,—> oo. In view of Lemma 2.3, X(o0) := lim,_,  X(¢) exists a.s.
Clearly, Z(X(o0)) = ¢, Pois(F'). Now we notice that T, = X(r,) and 7, > o a.s.
Therefore T, > T, := X() a.s. as n = oo, which ends the proof of the suffi-
ciency part of the theorem.

Now we prove the necessity. Assume that {T},} converges a.s. We have, for
every ¢,
(2'6) TN(t)+l = X(t) + Y(t),
where

Y(t) = H(TN(t)+17 'fN(t)+1) + A(t) - A(TN(t)+1)'

By the Markov property of {N(s)},.,, the random vectors X(¢) and Y(¢) are
independent for each ¢. Since Ty, = T, as.as t = oo, by (2.6) {L(X(¢))},5,
is relatively shift-compact. In view of (2.4) and [4], Theorem 1.6, F is a Lévy
measure. The proof is complete. O

COROLLARY 2.5. Let F be a Lévy measure and [p ||x||PF(dx) < oo for some
0<p<oo.ThenT,- T, a.s. and in L}.

ProoF. Since E|X(0)||? < 00, ESupy_,.. ||X(¢)|]|”? < oo in Hoffmann-
Jorgensen [9], Corollary 3.3. Hence

Esup|T,||” = Esup|| X(7,)|” < E sup || X(¢)||I” < oo,
n n

0<t<oo

which ends the proof. O
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REMARK 2.6. Theorem 2.4, when specified to those Banach spaces for which
a full characterization of Lévy measures is known, gives definite conditions
in terms of the function H for the a.s. convergence of {T,}. For example, if
E = R* or more general, if E is a separable Hilbert space, then
(1 A || H(u, v)||*)A(dv) du < oo is necessary and sufficient for the a.s. conver-
gence of {T,}. Similarly, if E = [?, 2 < p < oo, the conjunction of the following
two conditions is equivalent to the a.s. convergence of {7} }:

L7 L@ A I, )1 )M (o) dit < o0

and
p/2

21 [f()w/;)|(H(u, v),e;)* Ig(H(u, v))\(dv) du < o0,

where {e;} denotes the standard basis (see Giné, Mandrekar and Zinn [8],
Theorem 4.2).

From now on {e,} will stand for a sequence of i.i.d. random variables,
independent of the other random sequences defined in this paper, and such that
P, =1} = P{e, = —1} = ;. Put

n
$.= ¥ e H(r,8).
j=1
Further, let ¥ denote a symmetrization of a measure F given by

F(A)=2"F(A) + F(-A)], Ae€%,.

PROPOSITION 2.7. Under the above notation, the following are equivalent:

(i) T, converges a.s. to T,  and £ (T, ) = c, Pois(F).
(i) S, converges a.s. to S:,o and J(S;) = ¢, Pois(F).
(iii) {#(S,): n = 1} is uniformly tight.

ProoF. Let D:={-1,1} XD, §;:=(e;,¢,), A=2¢)=[27'6, +5_)] ®
N, H(u, ©) == eH(u, v) for every & = (¢, v) € D. Then we can write

n
$,= L A7 ).
Jj=1
Since
~ t ~ ~ ~
A(t) = ff.H(u,5)131(H(u,5))>\(d6)du =0,
0’D
for every t > 0, by Theorem 2.4, §n converges a.s. if and only if
G(4) =f0 _[I)IA\(O}(H(u,ﬁ))X(dﬁ)du

=27F(A) + F(-A)] = F(A), A%,
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is a Lévy measure on E. Using the fact that F is a Lévy measure if and only if F
is too, and again Theorem 2.4, we prove the equivalence of (i) and (ii).

It remains to show that (iii) implies (ii). Indeed, there exists a o-compact
convex symmetric set K C E such that sup, P(§, ¢ K} = 0. Using Lévy’s in-
equality, we get

EP[S,, ¢ K for some n > 1| {1'}] =0.

Hence, for almost all realizations of {7;}, the sequence of conditional distribu-
tions of S given {7}, is uniformly tight. Conditionally, S are sums of indepen-
dent symmetric random vectors, hence by the It6-Nisio theorern ([10], Theorem
4.1) S converges a.s. for almost every (fixed) realization of {7;}. Now Fubini’s
theorem implies that S converges a.s., which completes the proof O

Proposition 2.7 shows the equivalence of the following two statements: (a) a
measure F, defined by (2.3), is a Lévy measure, and (b) the series ¥5_, ¢;H(7;, §;)
of dependent sign-invariant random vectors converges. The next propos1t10n
proves, under some additional hypotheses on H, that the dependent components
7; in (b) can be replaced by integers j and the equivalence of (a) and (b) still
holds. This reduces the problem of determining whether F is a Lévy measure to
a more tractable one, when a certain series of independent symmetric summands
converges. This idea was first presented in Marcus and Pisier [19], Remark 3.15,
in the context of series expansions of stable random vectors and recently
extended by Marcus [18] to the case of the so-called ¢-radial random vectors.

PROPOSITION 2.8. Suppose that function H admits a factorization
H(u,v) = K(u, v)B(v),

where K:(0,00) X D - R, B: D - E are measurable functions such that, for
each v € D, |K(u,v)| is a nonincreasing function of u > 0. Then the following
are equivalent:

(i) A measure F, given by (2.3), is a Lévy measure on E.
(i) X%, ¢&;H(J, ;) converges a.s.

j=1&;

ProOF. First notice that F is a Lévy measure if and only if, for each (some)
a > 0, aF is a Lévy measure. In view of Theorem 2.4 and Proposition 2.7 the
latter condition is equivalent to: For each (some) a > 0 series

(2.7) Y eH(na™, ¢;)
j=1

converges a.s. Now, by the strong law of large numbers, 7,/j —» 1 a.s., so that
P27 <j< 27; eventually} = 1. Hence, with probability 1,

K (277, ¢;)l < [K(J,8,) < K (27, ;)]

eventually. Using the contraction principle conditionally, for a fixed realization
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of {7}, we prove that the convergence in (2.7) with a = 27" implies (ii) which, in
turn, implies the convergence in (2.7) with a = 2. The proof is complete. O

3. Convergence and centering in (1.1) in some special cases. In this
section we shall discuss some interesting modifications in (1.1) which are possible
when F satisfies certain additional hypotheses.

THEOREM 3.1. Assume that F, defined by (2.3), is a Lévy measure on E such
that [g||x||PF(dx) < oo for some p > 1. Let

C(t) = fO‘fDH(u,u)x(du)du, t>0.
Then:

) M,=X3_,H(1,§,)— C(r,), n>1, is a martingale with respect to
0(Tyyeees Ty &peves &)
(i) M, > M_ a.s. andin L} as n - co.
(iii) L(M,) = c_ Pois(F).

Proor. First note that C(t) is well defined as a Bochner integral. Indeed,
¢ ¢
[ [ 1H @, 0)IM(do) du < ¢ + [*[ |H(z, o) 15(H(x, v))A(do) du
0’D 0'D
< t+f llx||PF(dx) < oo.
By

Put X,(2) = Y9 H(r;, §;) — C(t) = X(¢) + A(t) — C(t), where X(¢) is defined
in the proof of Theorem 2.4. In the proofs of Theorem 2.4 and Corollary 2.5 we
have shown that X(f) —» X(o0) as. t— o0, L(X()) = ¢, Pois(F) and
E sup, _, ., | X(8)||” < o0. Since

A(t) - C(¢) = —fo‘fDH(u, 0)Ie( H(u, v))\(dv) du — —/;cxdF(x),

as t — oo, we conclude that
X,(t) > X,(0) as.ast— oo,
Z(X,(0)) = c,, Pois(F)
and
(3.1) E sup || X,(2)]P < .

0<t<oo
By Lemmas 2.1 and 2.2, {X,(¢)},., is an independent increment process with
right-continuous sample paths and EX,(¢) = 0. Moreover, { X (¢)},., is adapted
to the filtration {%,},, , defined by (2.1) and X (¢ + s) — X,(s) is independent of
%,. Hence {X|(t), #},., is a martingale. Using (3.1) and the optional sampling
theorem, we conclude that

Mn=X1('rn), n>1,
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forms a martingale with respect to F D o(Ty.ees Ty, €yy..0, €,) and clearly
M, - M_ = X (o) as. and in L}. The proof is complete. O

THEOREM 3.2. Assume that F, defined by (2.3), is a Lévy measure such that
s ||x||F(dx) < oco. Then

M8

IH(7;, &)l < o0 a.s.

~.
I
-

and

,S,”( i H(r;, §j)) = ¢, Pois(F).

Proor. Since
| [ 1Hu, o)L (H(u, 0))A(do) du = [ |2l|F(dx) < oo,
) B,
it follows by the dominated convergence theorem that

A(r,) » f xF(dx) as.asn— oo.
B,

Applying Theorem 2.4 twice, for positive real and vector valued random vari-
ables, we complete the proof. O

Random centers A, = A(7,) in (1.1) provide a fine connection between the
centered sums and the associated compound Poisson process. Random centers
A, = C(7,) are also necessary for the martingale property in Theorem 3.1.
Nevertheless, it is an interesting question whether random centers can be
replaced by nonrandom ones with the a.s. convergence still holding. We cannot
answer this question in its full generality but under certain additional conditions
the answer is yes. To proceed with this question, we begin with a lemma that is a
special case of Lemma 4 in Ferguson and Klass [7]. We shall give below a short
proof of this lemma and also indicate that our method can be easily extended to
obtain a new and short proof of Lemma 4 in [7].

LEMMA 3.3. Let g be a nonincreasing square integrable function defined on
(0, 0). Then

ffng(u) du—0 a.s.asn— 0.

n

ProorF. We have
(3.2) [e(w)dt

by the monotonicity of g. Further, by the strong law of large numbers we have

=< g(Tn A n)lTn - n|9
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with probability 1,
n
(3.3) g(r,An) < g(E) eventually.

Using the Hajek—Rényi—Chow inequality ([3], page 243) we get, for every £ > 0,

k n k m
P{ mr;lg)s(ng(g)hk -k > e} < 8_2( Y g2(§) + mgz(—Q—-)) -0,

k=m+1

as m, n — oo. Thus g(n/2)|r, — n| — 0 as., which combined with (3.2) and (3.3)
completes the proof. O

THEOREM 3.4. Assume that F, defined by (2.3), is a Lévy measure on E such

that [z(||x||? A 1)F(dx) < c. Suppose that, for each v € D, ||H(u,v)| is a
nonincreasing function of u € (0, o0). Then

Z H(Tj’gj) —A(n) > T,
J=1
where T, is specified in Theorem 2.4.
Proor. Let
V, = A(7,) - A(n) = [" [ H(u, v)Ip(H(u, 0))A(dv) du
n YD
and
1/2
#(w) = { [ (1w, o)1 A 1)F(de) < o] .
£ is nonincreasing,
[78%(w) du= [ (Iall? A 1)F(dx) < oo
0 E
and we have

IVall <

fT"fD(IIH(u,v)u A 1)A(dv) du

S

<

f"g(u) du

n

by Jensen’s inequality. Applying Lemma 3.3, we get V, = 0 a.s. Theorem 2.4
completes the proof. O

In the rest of this section we study random series of the form
0
(3.4) > n;H(7, &),
j=1

where {7,} is a (nonzero) sequence of ii.d. symmetric random variables,
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independent of the other random sequences defined so far. Series of this form in
the case when {7;} is a Rademacher sequence have been investigated in the last
part of Section 2. The other case of importance is when {7;} is a Gaussian
sequence and we devote Section 5 to study of this case. Here we shall establish
some general results on the convergence and distribution of (3.4).

ProprosITION 3.5. The following are equivalent:

(i) Series (3.4) converges a.s.
(ii) F, defined by F,(A) = E[F(An;")], A € By, is a Lévy measure, where F
is defined by (2.3) [F(A - 071) = 0, by convention].

Further,

2| £ (s, 8)) - o o).

ProOF. A proof of this proposition = analogous to the first part of the proof
of Proposition 2.7; one replaces (¢;, £;) by (1, §;), {—1,1} X Dby R X D, etc. O

COROLLARY 3.6. (a) If series (3.4) converges, then F is a Lévy measure.
(b) If m; = v, are standard normal random variables and ¥ v H(T, §))
converges a.s., then

j( éYjH('rp ij))(x’) = eXP{fE[exp(—@’, x)2/2) — I]F(dx)},

where F is the symmetrization of F.

(c) If ¢, Pois(F') is a p-stable probability measure, then F(A) = c”F(A) for
every A € By, where ¢ = (En,|P)"/P. Thus, series (3.4) converges a.s. if and
only if E\n,|P < oo and, further,

(3.5) ,?( i_o: njH('rj,éj)) =$(c i st('rj, .fl) .

J=1

(d) Equality (3.5) characterizes Lévy measures F corresponding to p-stable
probability measures.

ProoF. (a) By the contraction principle the convergence in (3.4) implies
the convergence of the corresponding series with Rademacher coefficients,
Y e;H(T;, &;). Therefore, by Proposition 2.7, F is a Lévy measure.

(b) Follows by a direct computation.

(c) Note that the symmetric Lévy measure F, which corresponds to a p-stable
probability measure, has the property: F(Au~') = uPF(A) for every A € By
and u > 0. Hence for all A € %,

F(A) = E[F(Apm,|™")] = EmPPF(A) = F(Ac™),
and (3.5) follows.
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(d) If n, are such that P(|y;| =1} =t=1 — P{n = 0}, then the left side in
(3.5) is equal to c, Pois(¢F') and the right side is ¢, P01s(F ), where F(A) =
F(At™'/P), A € #,. Since t € (0,1) is arbitrary, ¢, Pois(F) is p-stable. The
proof is complete. O

REMARK. The fact given in Corollary 3.6(c) was first observed by LePage,
Woodroote and Zinn [16] and LePage [14] and was established for some special
forms of H.

The following lemma shows, in particular, that in general Banach spaces
XY v;H(7;, §;) may diverge while ¥.° ¢ H(;, §;) converges a.s., where the Y,’s are
N(0,1) random variables. This clearly indicates certain limitations for applying
Gaussian randomization techniques in order to determine the convergence in
(1.1) (see [18] and also Theorem 5.8 in Section 5 for positive results in this
direction).

LEMMA 3.7. For any unbounded random variable 7 there is a Lévy measure
F on E = C[0,1] such that F, is not a Lévy measure (F,(A) = E[F(An~")],
A € By).

Proor. Let g(t) be the right-continuous (1 — ¢)-quantile of |y| and put
h(t) = 1/q(t), 0 < t < 1. Then, for every symmetric measure F, we have

F({x:llxll 2 1)) = E[F({=: llxl| = nl™})]
(3.6) = f(ovl)F({xr =l = [q(2)] 7'}) de

- j('O,l)F({x: llxll = h(2)}) de

We also observe that % is nondecreasing, A(t) > 0 for all 0 < ¢ < 1, and since
71 is unbounded, A(0+) =0

We now construct a Lévy measure on C[0,1] in a similar way as in [1], page
140. For every k > 2 and 2*~! < n < 2*, define x, € C[0,1] by

0 ifse¢[27",2774],
x,(8) ={h(k™") ifs=3-27"
linear ifse [2_n,3-2_"] or s € [3.2—n,2—n+1]'

Then, by the argument in [1], page 141,



418 J. ROSINSKI

is a Lévy measure. Using (3.6), we get

F((=lxl21) 2 ¥ [ F({: 11 > h(2)}) de

E=2"(k+1)7 k7Y

I\

é [2(k+ 1)] 'F({x: 12| = h(E7Y)})

k

i [k(E+1)]" 2212n_1 = +o0.
k=2

n=2

v

Thus F, is not a Lévy measure. O

4. Series representations of infinitely divisible random vectors. In the
previous sections we studied the convergence in (1.1) for a general function H.
Now, assuming that a measure F is given, we shall construct some examples of H
which satisfy equality (2.3). .

Let F be a Borel measure on E with F({0}) = 0. We say that F admits a
polar decomposition with respect to a Borel set D,0 & D C E, if

(4.1) F(A) = /D/(O oo)IA(tx)p(dt,x))\(dx), AeB,,

where {p(-, x)}, < p is a measurable family of Borel measures on (0, c0) and A is a
Borel probability measure on D.

EXAMPLE 4.1. Let F be a o-finite Borel measure on E with F({0}) = 0 and
let A be an arbitrary Borel probability measure on E such that F is absolutely
continuous with respect to A. Put f(x) := (dF/d\)(x). Then, for every A € %,

F(A) = fA fd\ = j;g o fw (83 (@) [ (x)M(d).

This is an example of a polar decomposition of F' with respect to D = E \ {0},
and with p(dt, x) == 8,(dt)f(x).

Polar decompositions with respect to the unit sphere of Lévy measures on
Hilbert spaces and their applications to stochastic integral representations of
infinitely divisible processes were studied by Rajput and Rosinski [21]. We shall
show here that arbitrary Lévy measures on Banach spaces admit polar decompo-
sitions with respect to the unit sphere dB, := {x € E: ||x|| = 1}. This fact seems
to be known but we cannot find appropriate references. We include its proof for
the sake of completeness.

PROPOSITION 4.2. Let F be a Borel measure on E such that F({0}) = 0 and
F(Bf) < oo for everyr > 0. Then F admits a polar decomposition with respect to
0B,.
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ProOF. If F = 0, then (4.1) holds trivially with p(-, - ) = 0 and an arbitrary
A. Therefore we may assume that 0 < F(E) < c0. Let ®@: E \ {0} — (0, ) X
dB, be defined by ®(x):= (||x|, x/||lx|) and put G = Fyo ®~ ' where F,:=
F\ g« (0)- Since ~

G((r,) X dB,) = F(Bf) < wo forevery r > 0,
G is o-finite and there exists a Borel function g: (0, 00) = (0, ) such that
G,(dt, dx) = g(t)G(dt, dx)
is a probability measure on (0, 00) X dB,. Define
A(B) = G,((0, ) X B), B € %5

Using the well-known fact on the existence of regular conditional probabilities,
we infer that there exists a measurable family {v(-,x)},,p of probability
measures on (0, 00) such that, for every C € % x5,

G,C) = faB j(o w)IC(t,x)v(dt,x))\(dx).
Hence
G(O) = [ [ It x)lg()]'v(dt )\(ds).

Therefore, for every A € %,
F(A) = F(A N {0}) = G(2(A \ {0}))

= [ [ I(&x)[g(6)] " "w(dt, x)\(dx),
3B,7(0, )
so that (4.1) is fulfilled with p(dt, x) = »(dt, x)/g(¢). O

PROPOSITION 4.3. Let F be a Borel measure on E satisfying (4.1). Let, for
each v € D, .
(4.2) R(u,v) = inf{t > 0: p((¢,0),v) <u}, u>0,

be the right-continuous inverse of the function t - p((t, ), v). Then the func-
tion H defined by

H(u,v) = R(u,v)v
satisfies (2.3).

ProoF. For every A € #; we have

j(;ooj;)IA\(O)(R(u, v)v)A(dv) du = /D[/(;wIA\(O)(R(u, v)v) du])\(dv)
= [ i@t o) |a(a0) = Fa),
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where we utilized the fact that Leb({u = 0: R(u, v) € (t,0)}) = p((t, »), v),
t>0.0

The results of Sections 2 and 3 when specified to the case H(u,v) = R(u,v)v
give the following generalizations of LePage’s result ([15], Theorem 2).

COROLLARY 4.4. Let pn be an infinitely divisible probability measure on E
without Gaussian component, i.e.,

(4.3) p = 8,°c, Pois(F),

where a € E and F is a Lévy measure. Assume that F admits a polar decompo-
sition (4.1) and let R be defined by (4.2). Put S, = X%_\R(7;, §,)¢; and

A(¢) =j:fDR(u,v)vIgl(R(u,v)o))\(dv)du, t>0.

Then:

(i) S, — A(7,) converges a.s., as n - o, and ZL(lim[S, — A(7,) + a]) = p.
If [gllx||Pu(dx) < oo for some p > 0, then the convergence holds also in the
LE-norm.

(@) If [g(llxlI* A DF(dx) < oo, then S, — A(n) converges a.s., as n — o,
and Z(lim[S, — A(n) + a]) = p.

(i) If [p ||lx||F(dx) < oo, then L |1R(;, £)éll < 0 a.s., and L(lim S, +
ay) = p, where ay = a — g, xF(dx). In addition, S, converges in LY provided
Je 1x||Pu(dx) < oo for some p > 0.

(iv) If [g |lx|Pp(dx) < oo for some p > 1, then M, = S, — C(7,) is a martin-
gale with respect to o(ry,...,1,,&,...,£,), M, converges a.s. and in LE as
n — oo, and £(lim M, + a,) = p, where a, = a + Jps xF(dx) and

C(¢) =j0‘/DR(u,u)o>\(do)du, t>0.

(V) If p is symmetric, then S, = L5 1&;R(;, §,)¢, converges a.s. as n > o

and #(lim S,) = u. In addition, S, converges in L} provided [ ||x||Pu(dx) < oo,
for some p > 0.

PrOOF. Indeed, by Proposition 4.2 the equality (2.3) is satisfied. Thus, @)
follows from Theorem 2.4 and Corollary 2.5, (ii) is a consequence of Theorem 34,
Theorem 3.2 justifies the first part of (iii) and the second part follows from
Corollary 2.5 and the observation that ||A(r,)| is uniformly bounded by
I, lx||F(dx), (iv) is a corollary to Theorem 3.1 and (v) follows from Proposition
2.7 and Corollary 2.5. The proof is complete. O

A few comments are now in order. First note that Corollary 4.4(i) and (ii)
generalize LePage ([15], Theorem 2), by removing the restriction concerning the
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geometry of Banach space E and in our case D is an arbitrary Borel set. This
makes the representation useful, e.g., in investigation of general infinitely divisi-
ble processes with sample paths in arbitrary Banach spaces. The results on the
Lf-convergence and the martingale development given in (iv) are also new.
Further, one may consider more general polar decompositions of Lévy measures,
for example, by replacing #x in (4.1) with ¢2(x) := exp[(log ¢)B](x), where B is a
given linear operator. Then H(u, ») = [ R(u, v)]Pv satisfies (2.3), and Corollary
4.4 holds with obvious modifications. This in particular proves the validity of
LePage’s representation for operator stable random vectors in general Banach
spaces ([15], Theorem 1). Finally, we note that the centering constants in LePage
[15], Theorem 2, are erroneous. They should be asymptotically equal to A(n).
Applying Proposition 2.8, we get immediately

COROLLARY 4.5. Let F be a Borel measure on E which admits a polar

decomposition (4.1). Then F is a Lévy measure if and only if Y5_,¢;R(J, §;)§;
converges a.s.

EXAMPLE 4.6. Consider the polar decomposition given in Example 4.1. Then

R(u,v) = I(f(v) > u) and A(t) = [z(t A f(x))xA(dx). By Corollary 4.4(i) and
),

and
) EjI( f(gj) > Tj)gj - S, as,
Jj=1

as n — oo, provided F is a Lévy measure [#(T,) = ¢, Pois(F') and :?(S;) =
¢, Pois(F')]. Moreover, by Corollary 4.5, F is a Lévy measure if and only if

i ejI( (&) >j)£j converges a.s.
j=1

Series developments given in the example above provide a simple argument
for zero—one laws for infinitely divisible probability measures; a detailed proof
will appear elsewhere.

The representation of u becomes simpler when a polar decomposition of F is
of product type for some D, i.e.,

(4.4) F(A) = [ [ I(tx)p(dt)\(dx)
DY(0, 00)
for all A € %p. In this case, p(:, x) = p(+) is the same Lévy measure for all x’s.

LEMMA 4.7. Let F be a Lévy measure on E which satisfies (4.4), where D is
bounded. Then [z(||x||> A D)F(dx) < o0.
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Proor. Put d = sup{||x||: x € D} < co. We have

S (1e® A 1) F(d) = fo(O’w)(ntxuz A 1)p(dt)A(dx)
< f(ovw)(d%“’ A 1)p(dt) < . ]

The above lemma and Corollary 4.4(ii) give the following.

COROLLARY 4.8. Let u be given by (4.3) and let F admit decomposition (4.4)
with D bounded. Define

R(u) =inf{t > 0: p((¢,0)) <u}, u>0,

as the right-continuous inverse of the function t - p((t, ©)). Then
i R(7)¢;—b,+a—>T, as,asn— o,
j=1
and £(T,) = pn, where
b, = j:l[R(u)j;)vIBl(R(u)v))\(dv)] du.

EXAMPLE 4.9 (General stable distributions). Let u be a p-stable probability
measure on E, 0 < p < 2. By the Lévy spectral representation theorem there
exist a finite Borel measure o on 9B, and x, € E such that the characteristic
function {i of p can be written as

@5)  A) = ew| = [ DFo(ds) + (0, ) + i),
where

tan(mp/2) [ 1(x', %) sign(x’, x)o(dx),  p#1,
Q,(0,x") = ‘
—2/7rj;B (x’, x)In|{x’, x)|a(dx), p=1

(for this and further facts concerning stable measures we refer the reader to
Linde [17], Chapter 6.3). In order to obtain the series representation of u we
write p in the form (4.3). Put m := [¢(dB,)]'/?. Elementary computations give

Xo — (cp(p - 1))_1mp§o, p#*1,
x0_2(1_y)/ﬂnﬁa’ b= 1,

a =



INFINITELY DIVISIBLE RANDOM VECTORS 423

where ¢, = cos(7p/2)['(—p), p # 1, ¢; = m/2, y denotes Euler’s constant and

X,=m™ P | xo(dx).
9B,

Further, we can represent the Lévy measure F of p as

F(A) = c;l/;Bl_/(o’oo)IA(tx)t‘l"’dto(dx)

= ja i /(O’M)IA(tx)p(dt)A(dx),

where p(dt) = ¢, 'mPt' P dt, N(dx) = m~Po(dx). Therefore the assumptions of
Corollary 4.8 are satisfied, and we compute

R(u) = d,mu~"?,
where d, = (pc,)”"/?, and, for n > dfm?,
b = p/(p—1)[dpmn1'1/p—d11,’m1’]£o, p#1,
" \2/7[lnn - In(2/7m)] mx,, p=1

Under the above notation, using Corollaries 4.8, 4.4(iii) and (iv), we obtain

COROLLARY 4.10. Let p be a p-stable probability measure on E with the
characteristic function given by (4.5), 0 < p < 2. Let

V, = dpm{ > T VPE — k(n)ia} + x,,

j=1
where
(1-1/p) '-P, 1<p<2,
k(t)={Int+1-y—In(dm), p=1,
0, 0<p<l.

Then V = lim,, _, V, exists a.s. and £ (V) = p. Further, for 1 <p < 2, put

J=1

Mn = dpm{ Z Tj_l/ng - k(Tn)fo} + xo-

Then M, is a martingale with respect to (..., 7, §,...,6,), n=1, M =
lim, _, M, exists a.s. and in L}, for every 0 < q < p and L(M) = p.

EXAMPLE 4.11 (Symmetric semistable measures). We recall that an infinitely
divisible measure p on E is said to be a (r, p)-semistable probability measure
O<r<1,0<p<2)if

p* = (r'/Pop)+8, forsomex, € E.

Here, the measure a oy is defined by (a°u)(B) = u(a"'B), B€ B, a + 0.
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The spectral representation of the characteristic function of semistable measures
was obtained independently by Krakowiak [13] and by Rajput and Rama-Murthy
[20], which, in the symmetric case, reduces to

@) a)-ew| ¥

ne— o A

[cos(r™/2(x’, x)) — l]a(dx)},
where o is a finite symmetric measure on A = {x € E: r'/? < ||x|| < 1)}. Since

g(x)) = exp{'élo’w)[cos<x’, x) — l]v(dt)o(dx)},

where » is a discrete measure concentrated on the set {r"*/?: n € Z}, such that
v({r*/P))=r"" ne€Z, we conclude that (4.4) is satisfied with A(dx) =
0 }(A)o(dx) and p(dt) = o(A)v(dt). Now by elementary computations we ob-
tain

R(u) = [(1/r - 1o (A)u] ",

where [¢], = r* if r¥ < ¢ < r¥=1 In view of Corollary 4.4(v) we get that
(4.7) Y g[(1/r— 1o H(a)r] L - S as.
j=1

and in L}, for every 0 < g < p and ZL(S) = p. We have obtained a series
representation of semistable random vectors in the symmetric case.

Now we note that the multipliers in (4.7) are bounded on both sides, up to a
constant multiplier, by ¢'/?(A)7'/?, because rt < [t], < t, t > 0. Further, a
p-stable limit is obtained in (4.7) when one replaces [(1/r — l)o’l(A)’rj], by
a/r— l)o’l(A)'rj. This, in conjunction with the contraction principle, explains
why the moment properties of stable and semistable distributions, are so closely
related. Using a different method of stochastic integral, this observation was also
justified in Rosinski [24], pages 67-68, and comparisons of moments of stable
and semistable measures were given.

5. Conditionally Gaussian infinitely divisible random vectors. Now we
return to some problems considered in the last part of Section 3. Let {v;} be a
sequence of i.i.d. standard normal random variables, which is independent of
other random sequences defined in this paper. Let F be a Borel measure which
admits a decomposition (4.1) and consider the series

(5-1) 2 YjR(”'jy gj)gj,
j=1

where R, 7;, ¢ are as in Corollary 4.4. If this series converges a.s., then its
distribution is infinitely divisible without Gaussian component, while, for each
fixed realization of {7,} and (£}, series (5.1) represents a Gaussian random vector
in E. Proposition 3.5 shows that neither the convergence nor distribution of the
above series depends on the decomposition (4.1). Specifically, series (5.1) con-
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verges a.s. if and only if F, is a Lévy measure, where

F(4)= E[F(Am|™)] = %/RF(Au_I)e_”Z/Z du,

and further, L(X7° v;R(7, §;)¢;) = ¢, Pois(F,). In particular, F has to be a Lévy
measure provided series (5.1) converges.

We shall say that a measure p on E is of type G if there exists a o-finite
measure F on E such that p = ¢, Pois(F,). From the above discussion it follows
that every measure of type G has a series representation of the form (5.1). Thus
measures of type G are mixtures (of a special kind) of Gaussian probability
measures on E.

REMARK. The notion of a measure of type G has been introduced by Marcus
[18], but his definition is more restrictive than ours. Namely, in [18] it is
assumed that F admits a “ product-type” polar decomposition (4.4), so that R in
(5.1) depends only on the 7,’s. We shall characterize this subclass of measures of
type G in Corollary 5.3.

THEOREM 5.1. A measure p is of type G if and only if its characteristic
function can be written in the form

(5.2) A(x) = exp{— . ¢(<x',x>2)V<dx>},

where V is a Borel measure on E and {:[0,00) — [0,00) has completely
monotone derivative [i.e., (—1)" [d™/ds"] >0 for all s >0, n=1,2,...]
and Y(0) = 0.

PrROOF. The necessity follows by Corollary 3.6(b). Namely, one takes V = F
and Y(s) =1 — exp(—s/2). To prove the sufficiency, note that by Feller [6],
Chapter 13.7, Theorems 1-2, there exists a Borel measure » on (0, 00) with
Jio,00(1 A u”M)p(du) < oo such that

Y(s) = / [1-e**]u"tv(du), s> 0.
(O’w)
Define

p(B) = /(0 (2w (dw),

F(A) :=[

[ L(e)e(de)V(dr),
EX{0}Y(0, 0)
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A € By, B € %, Then we have

p(x) = exp{—/E\(o}j(‘o oo)[1 - e‘<""">2“]u‘1v(du)V(dx)}
- exp{ frog o fememren 1]p<dt>v<dx>}
= expl [ Eleos((x', 5ym) ~ 1] F(a))

= exp{f [cos(x’, x) — l]Fy(dx)}
E
Hence F, is a Lévy measure and p = c, Pois(F,), which completes the proof. O

ExamPLE 5.2. (i) If p is a symmetric p-stable probability measure, then the
usual representation of f, .

(5.3) i) = exp{— [, x>upo<dx>},

is of the form (5.2) with (s) = s?/2 and V = 0. Thus the fact that p-stable
random vectors can be represented as conditionally Gaussian follows immedi-
ately from Theorem 5.1.

(ii)) Consider a probability measure p whose characteristic function can be
written in the form

(5.4) A(x') = exp - [ log(1 + () V(a),

where V is a measure on E. If V is discrete, say, V = X7 p18 p; > 0, then p is
the distribution of LI(§; — §))x;, where §, §{,...,§,, §; are 1ndependent random
variables such that §; and §f have the same gamma distribution with parameters
(p;,1). We shall call probability measures satisfying (5.4) symmetric gamma
distributions on E. Since {(s) = log(1 + s) has completely monotone derivative,
clearly symmetric gamma distributions are of type G.

COROLLARY 5.3. A probability measure p. is of the form p = c, Pois(F,) for
some F which admits a “product-type” polar decomposition (4.4) if and only if i
can be written in the form (5.2) where V is a probability measure.

Proor. By Corollary 3.6(b) and (4.4) we get

A(x’) = exp{—fD(f(O)w)[l — exp(—(x/, x>2t2/2)]p(dt))7\(dx)}-

This proves the necessity since y(s) = Jio, y[1 — €xp(—st®/2)]p(dt) has com-
pletely monotone derivative [one can interchange differentiation and integration
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since [ o)[1 A u?]p(du) < oo] and V := X is a probability measure. A proof of
the sufficiency is the same as in Theorem 5.1. O

COROLLARY 5.4. A probability measure p on R is of type G if and only if

(5.5) A(s) = exp(-y(s?)), s<R,
for some :[0, 00) — [0, c0) with completely monotone derivative and ¥ (0) = 0.

ProOOF. From Corollary 3.6(b) i satisfies (5.5) with
Y(s) = fR[l — exp(—st?/2)| F(dt),

which proves the necessity. Sufficiency follows from Theorem 5.1. O

REMARK 5.5. Marcus [18], Lemma 2.6, showed that every measure p of type
G on R is a variance mixture of the normal distribution, i.e.,

(5.6) p=2(yn),

where y and 7 are independent and y is 47(0,1). Moreover, 7* is infinitely
divisible. Using Corollary 5.4 and Feller [6], Chapter 13.7, Theorem 1, it is easy
to prove the following: a measure p on R is of type G if and only if p is of the
form (5.6) where w? is infinitely divisible. Note that the assumption that 7? is
infinitely divisible is crucial for the converse to hold. Indeed, Kelker [12] gave an
example of an infinitely divisible distribution p which satisfies (5.6) and such
that »? is not infinitely divisible. Since #(7?) is completely determined by u in
(5.6), it follows that there are infinitely divisible distributions which are variance
mixtures of the normal distribution and, at the same time, they are not of type
G. This disproves the conjecture in Marcus [18], Remark 2.7.

REMARK 5.6. The right side in (5.2) represents a characteristic function of a
certain cylindrical measure on E, for any choice of ¢ and V, provided V is a
measure on E such that [ ¢((x’, x)?)V(dx) < oo for every x’ € E’, and ¢ has
completely monotone derivative with ¢/(0) = 0. This fact can be used to produce
a number of examples of measures of type G on R", and on general Banach
spaces (where an additional problem of extension of cylindrical measures must be
dealt with). The above fact can be also used to give an appropriate definition of
stochastic processes of type G.

Lemma 3.6 proves that there are Lévy measures F on E = C[0,1] for which
series (5.1) diverges. On the other hand, if the Banach space E is of finite cotype,
then it follows, from a more general fact (see, e.g., [1], Theorem 8.19), that series
(5.1) converges a.s., provided F' is a Lévy measure. In the theorem below we shall
give a condition on a Lévy measure F which guarantees the convergence in (5.1)
without any hypothesis on E. The next lemma will be used for this purpose but
it also has an independent interest. In particular, it generalizes the contraction
principles for certain stochastic integrals and ¢-radial processes (see Rosinski
[24], Theorem 4.3.3, and Marcus [18], Lemma 7.3, respectively).
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LEMMA 5.7 (Contraction principle for Lévy measures). Let F, be Borel
measures on E with F({0}) = 0, i = 1,2. Suppose that F, is a Lévy measure and
there are constants c, k, r, > 0 such that

(5.7)  F({x:llxll > r, x/llx|l € B}) < cF({x:||x|| > kr, x/|x| € B}),
for every 0 <r < r, and B € %B,5. Then F, is also a Lévy measure.
ProoOF. Since cF| is also a Lévy measure we may (and do) assume that

¢ = 1. Further, by (5.7), Fy(B;) < oo, therefore it is enough to show that
F, = F, B, is a Lévy measure. Inequality (5.7) yields

(5.8)  Fy({a:llxll > r, x/llxll € B}) < F({x:||xl| > r, x/|lx|| € B}),
for all r > 0 and B € %,5. Let

F(A) = /aBl/(O‘w)IA(tx)pi(dt,x)}\i(dx), Ae By,

be polar decompositions of F,, i = 1,3 (see Proposition 4.2). Put A, = (A; + A;)
and p}(dt, x) == p,(dt, x)[d\;/dA,](x), i = 1,3. Then we have

F(4)= [ [ Ta(e)er(dt )h(dx),

for all A € %, i = 1,3. Using (5.8), we get, for A -almost all x € 9B;,

p3((r, ), x) < pt((r,0), %),

for all r > 0. Let R, be defined by (4.2) with p replaced by p}, i = 1,3. The
above inequality yields, for A,-almost all x € dB,,

(5.9) Ry(u,x) < R(u,x) forall u>0.

By Corollary 4.4(v), e, R (7, ;)§; converges a.s., where the §;’s have common
distribution A,. Using (5.9) and the contraction principle, X% ;R (7, £;)§; con-
verges a.s. which implies, by Proposition 2.7, that F; is a Lévy measure. The
proof is complete. O

THEOREM 5.8. Let F be a Lévy measure which admits decomposition (4.1)
such that

p((271, ), %) < ap((t, ), %),

for all 0 < t < ry||x||~%, x € D and some constants c, r, > 0. Then series (5.1)
converges a.s.

ProoF. The condition for p implies

p((s7',00),x) < e(s7 Vv 1)p((¢, 0), %),

for all s >0, 0 <t<ryx| ' and x € D, where g = log, c. Without loss of
generality we may assume that F' is symmetric. Let 0 <r <r,, B € %;5 and
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put A = {x:||x|| > r, x/||x|| € B}. We get
F(A) = E[F(AmI™)] = E [ p((mI 7 rlixll ™", 00), ) In(x/llxl) A(dx)
D

<E /D e[ml? v 1p((rllxl 7, 00), x)Ig(x/IxI)A(dx) = e, F(A),

where ¢, = cE[]y,|? V 1] < 0. Lemma 5.5 completes the proof. O
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