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AN EDGEWORTH EXPANSION FOR U-STATISTICS BASED ON
SAMPLES FROM FINITE POPULATIONS

By P. N. Kokic AND N. C. WEBER
University of Sydney

Suppose that U is a U-statistic of degree 2 based on a simple random
sample of size n selected without replacement from a finite population of N
elements. A bound for the difference between the distribution function of a
standardized version of U and its single-term Edgeworth expansion is given.
We apply these results to obtain an Edgeworth expansion for the variance
estimator in a finite population. Some simuletion results are reported in this
case.

1. Introduction. Nandi and Sen (1963) studied the behaviour of U-statis-
tics based on samples drawn from finite populations as part of a study of
U-statistics based on dependent samples. In particular, under suitable regularity
conditions, Nandi and Sen established a central limit theorem for a sequence of
standardized U-statistics. In this paper we will consider a class of symmetric
statistics that includes the U-statistics of degree 2 studied by Nandi and Sen and
establish the validity of a single-term Edgeworth expansion of the normalized
statistics.

Let W = {w;;} be an N X N array of real numbers satisfying w;; = w;; and
w; = 0. Let (R,,..., Ry) be a vector selected at random from the set of N!
permutations of (1,2,..., N). If 1 < n < N, we will be interested in the statistics

n i—-1

U= ZZ iz

where W, = Wg R,

Note that if we have a finite population, denoted by the real numbers
a,, ay,..., Gy, a symmetric functlon h: R? > R, and we set w;; = h(a;, a )
i # j, w; = 0, then the statistic ( ) U is the U-statistic with kernel h based on
the sample consisting of the n terms ag, ap,..., ap drawn without replace-
ment from the finite populatlon

Let A = n"'Y% ap, @ = N"'LYa, and suppose that A(x, y) = L(x — y)%
Then ( ) U= S?2, where

S2=(n-1)""'Y (aRi - A_)2
i=1
is the finite population estimator of variance as defined in Cochran (1963, page
25). In sample survey theory S? is extensively used as an unbiased estimator of
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U-STATISTICS FROM FINITE POPULATIONS 391

02 = (N - 1)"'TN (a; — @)% It would therefore be useful to know its distribu-
tional properties. Except in the simplest of cases, the exact distribution of S% can
only be approximated. In Section 2.2 we shall derive the single-term Edgeworth
expansion for S% and perform a numerical study to illustrate its accuracy in
comparison to the simple normal approximation.

Statistical inference based on data resampling has drawn considerable atten-
tion in recent years. Wu (1986), for example, has considered variance estimation
in regression analysis using the jackknife, bootstrap and other resampling tech-
niques. The similarity of resampling and simple random sampling from a finite
population is apparent. It would therefore be of interest in the context of
resampling to investigate the asymptotic properties of U.

" Following the work of Callaert, Janssen and Veraverbeke (1980), Bickel, Gotze
and van Zwet (1986) obtained an Edgeworth expansion for U-statistics based on
samples of independent and identically distributed (iid) random variables. The
approach adopted here is to develop a decomposition of U similar to that used
for classical U-statistics, then to use techniques similar to Bickel et al. to
establish a single-term Edgeworth expansion for U.

Robinson (1978) developed an Edgeworth expansion for the mean of a sample
drawn without replacement from a finite population. In this paper we shall
develop an Edgeworth expansion to approximate the distribution of U under a
condition similar to Robinson’s condition (c). Bickel and van Zwet (1978) and
Babu and Singh (1985) also provide further results on Edgeworth expansions for
statistics based on samples from a finite population.

The techniques used to establish the Edgeworth expansions can also be used
to obtain a Berry—Esseen-type bound for U. The result, stated in Theorem 2, is
more general than that given in a recent paper by Zhao and Chen (1987) and it
provides an asymptotic normality result that holds under weaker assumptions
than those obtained by Nandi and Sen (1963) and Zhao and Chen (1987).

In Section 2.1 we state our main theorems and relate them to results known
for U-statistics based on samples of iid random variables. In Section 3 we provide
details of the decomposition of U and outline the proof of the Edgeworth
expansion. In Section 4 proofs are given of the technical lemmas used in Section
3. Throughout the rest of this paper we shall assume, without loss of generality,
that the array (w;,) satisfies

N N N i-1
(1.1) Y Yw,;=0 and } Y w)=1
i=1j=1 i=2j=1

2. Main results. This section has been divided into two subsections. In the
first we state our main theorems for U-statistics in general and in the second
subsection we report the details of a simulation study to investigate the accuracy
of the Edgeworth expansion for the variance estimator in a finite population.

2.1. U-statistics. Let p=n/N, ¢ =1 — p and w; = =} w; . In the classical
case of U-statistics based on iid random variables the normalizing constant is
often the standard deviation of the projection term. By analogy, in the finite



392 P. N. KOKIC AND N. C. WEBER

population case we can use

Var{ fiE(Wi,-lRi)} - (le : )( - )2p3q 5 ug.

i) i=1

However, it is more convenient to standardize our statistic using
N
2 _ .3 2
v? =pq Y w}.
i=1

To avoid trivial cases assume that »2 > 0.
We shall approximate the distribution of »~'U by the asymptotic expansion

F(x) = ®(x) — Hy(x)o(x)

(2.1)

k=1 k=1
g\V2[ N i-1 N —3/2
+(‘) > w; ;w;w; ( > wi )
p i=2 j=1 k=1

where ®(x) = [* _o(t)dt, p(x)=(27) V% /2 and H,(x)= (x%— 1). We
shall show that the expansion is a valid approximation in Theorem 1 below,
subject to the condition:

(C) Given & > 0 and a positive sequence {ey} converging to zero as N - oo,
there exists ¢ > 0 and § > 0 not depending on N such that, for all real x and all
s € (eby', T'), the number of indices j, for which

N -1/2
2 ’
sz(Zwk) —x—2ro|>¢

k=1

forall r =0, + 1, + 2,..., is greater than 8N, for all sufficiently large N, where

N ~1/2

by = max |w|| Y w?
1<i<N i=1

and

-1

N 321 N
sl (£
j=1 J=1

Condition (C), first introduced by Albers, Bickel and van Zwet (1976), is
similar to the version in Robinson (1978), and it ensures that the values of w; do
not cluster around too few values. Note, however, that the order of statements in
condition (C) differs from Robinson’s condition and hence is satisfied by a
broader class of {w;, 1 <j < N}. An alternative form of condition (C) is obtained
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in Kokic (1988). The approximation at (2.1) provides more accuracy than a
simple normal approximation to the distribution of »~'U.

THEOREM 1. Suppose

N N -3/2
(2.2) (pq) ™ lef’l( 3 w) 50 and 1> o

j=1 i=1
as N — oo. Furthermore, assume condition (C) holds for some sequence {&y > 0}
which converges to zero as N — oo. Then, for some constant C(p) > 0, depend-
ing only on p, and some sequence ¢y — 0 as N - oo,

A=|P(» U < x) — F(x)|

N N -3/2 N -1/2
< C(P)Efv{( ) |w,-3|)( ) w,?) + X wf) }
j=1 j=1 j=1

Notice that C(p) depends on n and N through p only. The bound in
Theorem 1 is typically of small order N~'/2 as is the case for the corresponding
result for U-statistics based on independent and identically distributed random
variables. To illustrate this point more clearly we give the following corollary,
which includes the case of U-statistics with a bounded kernel.

COROLLARY 1. Suppose condition (C) holds and there exists a constant K
such that for all N

N N
Y w?>K 'N and } |w}| <KN.
j=1 j=1
Then there exists a constant C(p), depending only on p, and a sequence {ay}
with ay = o(N~Y?) as N —» oo, such that

sup |[P(»"'U < x) — F(x)| < C(p)ay.

If we only wish to approximate the distribution of »~'U by a normal
distribution function, then condition (C) may be removed. Zhao and Chen (1987)
obtained a Berry-Esseen bound for U-statistics based on a sample from a finite
population under the condition that p is strictly bounded away from 0 and 1.
Our theorem holds universally for all p and gives a bound which is of the same
or smaller order than that provided by Zhao and Chen (1987).

THEOREM 2. There exists an absolute constant C > 0 such that
sup |[P(» U < x) — ®(x)|

J=1

= C{(pq)_l/z( Z ij{il)( g’ wf) + (pQ)l/zv'l}.
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The following simple example indicates that the bound in Theorem 2 can be of
smaller order than that of Zhao and Chen. As in Zhao and Chen, assume there
exist fixed constants A, and A, such that 0 < A; < p < A, < 1 and consider the
N X N arrays defined hy

w,;=2/(l(1-2)" ifi+j,iand jareoddand i, j < I

= —2/(I(1-2))"* ifi+#j iand jareevenand i, j <l

=0 otherwise,
where [ is the smallest even integer greater than or equal to N'/% It is easy to
check that {w;} satisfies (1.1) and the bound in Theorem 2 is O(N~1/*), whereas
the corresponding bound of Zhao and Chen is O(1).

The proof of Theorem 2 is excluded because the techniques used are very
similar to those used in Sections 3 and 4 to prove Theorem 1.

The asymptotic normality result for » U in Nandi and Sen (1963) was
improved in Theorem 2 of Zhao and Chen (1987). The following result, which is
obtained from Theorem 2, provides even weaker conditions than those given in
Zhao and Chen.

COROLLARY 2. Suppose as N — oo, (pq)~"/*L_,|wl|(X_w?) %2 - 0 and
(pq)/%v=' = 0. Then v~ 'U converges weakly to a standard normal distribution

as N - oo.

In fact, we do not require the restriction imposed by Zhao and Chen that the
sampling fraction p = n/N is strictly bounded away from 0 and 1 for all N. We
see from Corollary 2 that asymptotic normality may even occur when p — 0 or
p — 1 as N — co. However, for the conditions of the corollary to hold we must
have Npg — o0 as N — .

2.2. The variance estimator. As mentioned in the Introduction, the finite
population estimator of variance S? is the U-statistic with kernel A(x, y) =
1(x — y)® If we normalize this statistic according to (1.1), then by (2.1) a
single-term Edgeworth approximation to the tail probability

(2:3) P((n = 1)(Npg) ™"y = 13) (S - 0?) > 2)
is
1 - ®(x) + Hy(x)p(x)N"2(p, — u2) ™"

(a-p) ; v,
| = s+ 28) - (2) )

q\'? -1/2
+H2(x>qo<x>(l—,) N-9/2%2(, — y2) ™,

where p, = N7'TN (a;, — @)%, k > 1. For details refer to Kokic (1988). Under
condition (2.2) we may show that the final term of this expansion is o( N~'/2),
and so for the purposes of the present investigation it is ignored. We examined
the performance of this Edgeworth expansion for three different finite popula-
tions, each of size N = 100.
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TABLE 2.1
Estimated tail probabilities (given in parentheses) from the normalized distribution of S% and the
single-term Edgeworth approximation to these probabilities. The normal approximation is given at

the base of the table.
x
Population D 0 0.5 1 1.282 1.645 1.96 2.326
Normal 0.1 0.461 0.283 0.159 0.111 0.067 0.041 0.021

(0.448)  (0.278)  (0.151)  (0.104)  (0.061)  (0.036)  (0.021)
02 0479 0294 0159  0.106 0.059 0.034 0.016
(0.483)  (0.296)  (0.159)  (0.108)  (0.062)  (0.031)  (0.017)
04 0495 0305  0.159 0.101 0.052 0.027 0.011
(0.501)  (0.309)  (0.165)  (0.111)  (0.059)  (0.030)  (0.012)

X2 0.1 0458 028 0.159 0.112 0069  0.043 0.023
(0.442)  (0266)  (0.162)  (0.107)  (0.084)  (0.040)  (0.021)
02 0478 0294 0159  0.106 0.06 0.034 0.016
(0.469)  (0.299)  (0.168)  (0.117)  (0.063)  (0.030)  (0.015)
04 0498  0.307 0.159 0.1 0.051 0026  0.01
0491)  (0.317)  (0.175)  (0.108)  (0.054)  (0.024)  (0.01)
Lattice 0.1  0.489 0.301 0.159 0.103 0.055 0.03 0.013

(0.482)  (0.299)  (0.172)  (0.112)  (0.063)  (0.036)  (0.017)

02  0.494 0.304 0.159 0.102 0.053 0.028 0.012
(0.489)  (0.309)  (0.169)  (0.109)  (0.058)  (0.03)  (0.01)

04 0498 0.307 0.159 0.1 0.051 0.026 0.011
(0.505)  (0.306)  (0.163)  (0.106)  (0.056)  (0.029)  (0.012)

Normal
approximation 0.5 0.309 0.159 0.1 0.05 0.025 0.01

The first population consists of 100 independent observations from a standard
normal random variable, the second is 100 observations from a xZ random
variable and the third consists of the integers 1 up to 100. The third population,
which we shall refer to as the lattice case, although not of practical importance
in its own right, is of interest because often in practice the observations a;,
1 < i < N, represent counts and hence are distributed on a lattice.

The probability (2.3) was estimated by producing 10,000 independent simple
random samples and determining the proportion of times the left-hand quantity
inside the probability exceeded x. Table 1 lists the tail probabilities, the
Edgeworth approximations and normal approximations 1 — ®(x) for the stan-
dard normal, x2 and lattice populations. The values p = 0.1,0.2,0.4 and x =
0,0.5,1,1.645,1.96, 2.326 were chosen to cover most cases of interest.

The Edgeworth expansion provided a very good approximation to the true tail
probability in all cases. In fact, the maximum absolute error of this approxima-
tion of 0.016 occurred for the x2 population when x = 1 and p = 0.4. Note that
H,(1) = 0, so that the normal and Edgeworth approximations correspond when

= 1. The normal approximation is much worse, in general, with maximum
absolute error 0.058 in this study. Examining the results for each population
separately, we see that the Edgeworth expansion provides greater accuracy than
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the normal approximation in most cases. In fact, it is worse than the normal
approximation in only 8 out of the 63 cases and then by no more than 0.005.

3. The decomposition of U and proof of Theorem 1. Given N and n, let
Y,,..., Yy beiid Bernoulli random variables with expectatlon p, independent of
(Ry, ..., Ry). Conditional on By = LY (Y, — p) = 0, ZN,T'YY;W;; has the
same distribution as U. Let

Pij = (Yi—p)(y}—p)’ "Vizwk,- and Vij=”R,Rj,
where
Dij = wij - N—lwi - N—le

Then, conditional on By = 0,

where
N i-1
U= PZ(Y P)W and Cy= Z Z(pijVijy
i=1 =2 j=1

since, conditional on B, = 0,
m i—1

= Z E‘Pijvvij=%

i=2 j=1

Z Vjy, 2<m<N.

||'M5

Theorem 1 is established by approx1mat1ng the distribution of U by that of
U+ C,., conditional on B, = 0, for some m. A smoothing lemma is then used to
bound the difference in the conditional distribution function of U + C,, and
F(x) by an expression in terms of their Fourier transformations.

Let 7> = Npq, H;= Wspv™' + tr~! and ;= wispr ™' + tr
1,2,..., Nand s, t € R. Also let

N
(832) Dy= X (Y,-p)H, and dy= {277P(By=0)}""' <2 /=,

i=1

~1, where j =

by Hoglund (1978). Since » — oo and &5 — 0, choose N so large that »2 > 1 and
T > eby'. The value of ¢ will be specified in the proof of Lemma 1. Now using
(3.1) and a decomposition similar to that used by Callaert and Janssen (1978), A
is bounded by

sup|P( U+ C,) <x|By = O) - F(x)l
(3.3)
+ P(»7'|Cy — C,| > A|By = 0) + O(4,), whereA, > 0.

This follows as sup,|F(x + A;) — F(x)| is bounded by a constant multiple of A,
when »? > 1. Let ¢ be the Fourier transformation of F. That is,

-3/2
Y(s) = 6‘32/2{1 + (is)*4(p — q)(pq)_l/z( r w;?)( r wzf)

k=1

+(is)*(q/p)"*

S e £t) )

k=2 j=1
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From a result in Erdos and Rényi (1959), which says for any random
variable X,

E(eisxlBN _ 0 dN/ exp st + T lBN)} dt,

and by Esseen’s smoothing lemma, the first term in (3.3) is bounded by

2 T
34) — | s!
(3.4) W/O

Using the relationships
exp(iDy + is»~'C,,)
= (1 + isv~'Cy)exp(iDy) — isv"'(Cy — C,)exp(iDy)
+1(is)*vr 2C2exp(iDy) + (is)’»~°C exp(iDy)
- exp(iDN){l + sy 1C, + 1(is)%v%CE + L(is)*»3C2 — exp(isy~C, )}

dej" E{exp(iDy + isv~'C,,) ) dt — ¥(s)|ds + O(T ).

m

when s € (0, eby'), we may conclude via (3.3) and (3.4) that

7
(3.5) A< Y T,+O(T ") +0(4,),
i=1
where
2 ebN B . [
Tl = 77'/(; l dN-/;']rT exp(lDN)(l + sy ICN)} dt—
2 7T
T, = ;/:4871 deiﬂE{exp(iDN +isv™IC,)} dt — ¥(s)|ds
2 Fb;/l _ T ;
7= 2[5 a [ E((C - Coens(iDy)) | s
eby' 9
1= [ day [ BlCien(Dy) d| s,
1 eby! — i 7
1= o [t ay [ E(CLepliny)) at] s
2 1 7T
Ty = 2[5y [ BlexpliDy) (1 + isv G, + H(is)v7CE
7 Y0 —aT

+1(is)*°C3 — exp(isv 'C,,) }]| dt’ ds,

T, = P(v'|Cy — C,| > A,|By =0)
and A, = eyv .

Theorem 1 may be proved by bounding the terms T, to T,. We present the
seven bounds in the following lemmas. Throughout, assume K,, K,,... are
positive constants independent of p and A, A,,... are expressions which
depend only on p. The lemmas are proved in Section 4. In the sequel all
summations will be over 2 = 1,..., N unless otherwise indicated.
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LEMMA 1. The term T, is bounded by
A[(Zwd)(Zwp)  + (T (Twp) ™
+(Zhof)(Zwd) " + (Zwd) *(Zwd) ™,

for some A, > 0.
Lemma 2. If (pg)~"AZ|wi)Ew;)~*? < 1, (¢/p)/*Ewi)* <1, by <&
and condition (C) holds, then T, is bounded by
Kzlog(T)[Nl/zexp{ ~K;Y N - m)pq} + exp{ —K;l(sNT)z/a}] for some K ,.

LEmMA 3. For some K4, K, and K,
Ty < K3pqv~'(N — m)/N,
T, < K,(pq)*v?
and
T; < K5(pg)’v™>.

LeEmMA 4. For some K¢, T, < Ky *N%2(N — m)~%2,
LeEmMA 5. For some K, T, < K,pqA;?v~"* N — m)/N.

ProOOF oF THEOREM 1. Since condition (C) holds for all s € (eby!, T), it
also holds with ey replaced by e} = ey if ey > »™* and e = v~ otherwise,
where a is a fixed constant 0 < « < 1. Hence, assume without loss of generality
that ey > »™°

Condition (2.2) implies that all the conditions of Lemma 2 are satisfied for
sufficiently large N. For some 0 < Ky < K, < 1 choose m so that

(3.6) K& /v < (N —m)/N < Kye3,/v.

Using (2.2) and since Lw; < (Z|wg|)*/3, it may be shown that T, is bounded
by

Afo( T/ (Zwd)”?) + o (Zwt) ")),

as N — oo, where all small order terms hold uniformly in p. Since N — m >
KgNv~'73% then for some K,

P o _ ~2/3
T, = Koo log(T)| (g) "N #2499 + exp{ ~ K5+ T (L) )]

_ —-3/2
= o((p/@)"*N712) + o Tiwyl*/(Lwi) ")
as N — oo, if a < 1/9. Furthermore, by the right-hand inequality at (3.6),
Ty, T,, Ts = o(v?)
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as N — oo, and since (N — m)N~! > Kgp™173* and A, = eyv ™},
T6 < KGV—3/2+1501/2 = O(V—l)
if @ <1/15 and
T, < K;pgeyv™ = o(v7")

as N — co. The theorem now follows via expression (3.5) if we choose a < 1/15.
O

4. Proofs of the lemmas.
ProOF OF LEMMA 1. Let B(n) = ge”P" + pe'd" be the characteristic func-

tion of (Y; — p). Recall the definition at (3.2) and also that n; = w;spr~ Ly gr L,
Then, by 1ndependence and the inequality |e®* — 1 — ix| < |x|2/2, 2

{exp(zDN)(l + lsv‘ICN)}

N N N

l_[,B(nj) + Jisy! Z_: E. hl:[ B(n;)

(4.1) x E[exp{mkm p) + (Y~ p)} (% — p)(% - p)]

[[B(nj) + tisv ™Y pq)*

N
l l_[ 'B(ni)(einkq — e_i"kp)(ei"llq — e—imp)
*k,1

||[\12

11

N

x X

k=
N

[18(n;) - 5isv™'(pq

N
;kakm 1—[ .3(77,

Jj=1

(4.2) + Lisv™Y pg)®

ﬁl

TTMz
||Mz

B(n;)

Xvkz{O(nkm) + O(Inklm) + O(myn}) }»

where the large order terms here and elsewhere hold uniformly over s, ¢, p and
the subscripts of any summation. Let us now estimate the final term at (4.2).
Fixing 0 < b < 7 and choosing 0 < a < b/2, define

K= {k € [1,N]: |w > (b g:1|w13|)/(a g:leg)}.

Using a technique similar to that used to bound expression (16) in Héglund
(1978), we have that

N
II |B(n;)] Sexp{—%pqﬂ(b) Y 773}
J*k,1 jeK

J*k,1

< 3exp| - 10(8) (s°(4 — (a/8) + £2(3 = (a/0))}],
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where
a(b 27—b)\2 0
(8) = (77 T+ b)
Since a < b/2, there exists a K,; such that
N
(4.3) ;l:kl 1|B(nj)| < 3exp{ —K,(s® + t?)}.
J s

Also, by Cauchy’s inequality,

N N N N
Y Xlogmni<4 Y, Y |vyl 1‘[ (wjzszpz,,—z + tzT—z)
k=11=1 k=11=1  J=kl

M=

>

k=11

< 4s'pty~*

vzl)l/z(zw:)

(4.4) 1

™M=

N
+ 882p2V—2t27'_2( Z

vz 1/2
) (NEw)
k=11

1

N N 172
+ 4t4T—4(N2 Z Z 01221 .
k=11=1

Using the inequalities p~%»% = pgXw? < pgN**(Zwi)"/? and

N N N N
(4.5) Y Yous Y wy = 2,
k=11=1 k=11=1
we find via (4.4) that
A 2.2 2 42\2 -1 -2 4\1/2
(4.6) Y X loudmin; < 4V2(s® + ¢2) pg~ (Zwk) .

k=11=1
Using a similar argument, we have that
AR 2 3 -1/2_ 9 _9 4\1/2
@7) X X loul Indnf < 22 (sl + 16)*(pg) " p (L wi)
k=11=1

and so by (4.3), (4.6) and (4.7), the final term in (4.2) is

(4.8) O(jsIPi(lsl, 1t exp{ - Kyy(s2 + £2)}pg» =¥ L wf) "),

where P(x, y) is a polynomial in x and y with coefficients which are absolute
constants. Now we estimate the second term in (4.2).
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By (4.3) and since |B(1)| < 1 and |1 — B(n)| < 2pq|nl,
N

N
jl_k[ lﬁ(’?j) - J_lj[l(.B("I,)

N
(4.9) =TT [B@)] 10 = B(n)B(n) + (1 = B(nn)|

< 6pq(Ingl + Inf)exp{ - Kyy(s® + £2)}.
Furthermore, since YY_ 0., = LN 10, = 0 = Zw,
N N N N

(4.10) Z Z Op MMy = s?p?v? Z Z W Wiy
k=11=1 k=11=1

By (4.2), (4.8), (4.9) and (4.10), and again applying (4.7), (4.1) equals

N N N
l_[.B("?j)[l + %(is)ap4q21’ Y X wklwkwl]

(4.11) Jj=1 k=11=1
+ O(|sIP(Isl, 1eexp{ ~ Kyi(s* + )} p'av=( L wit) ")

for some polynomial P,. To complete the proof we need to integrate (4.11) over s
and ¢.

Using expression (8) of Hoglund (1978), it may be shown that for some K,,
e > 0 and |s| < eCwi)*AZIwih) ™

N N N
de {(is)3p4q2v Z_: lgwkzwszjl:lﬁ("lj)}dt

— 7T

(4.12) = (is)’e™""/2p~/2q"*( L w} ) Wy Wy,

||M2
™M=z

11

+ O(js|Py(ls))exp{ — K 5} lilwkl(z A7)

where Py(|s|) is a polynomial in |s|. Using the results of Robinson (1978), it may
also be shown that

f“’” s 1
) {1 et () (Eut) )
< Af(Zwt)(Zw) "+ (Zwd) (Zwi) )

for some C’, A, > 0, both of which depend on p. Choosing ¢ = min(C’, ¢,) and
noting that by > T|w?|(Zw?) %72, the lemma follows from the results at (4.11),
(4.12) and (4.13). O

1

dy " ﬂB(n,)dt — e

—WTJ

ds
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Proor oF LEMMA 2. Now by (3.2) and conditioning on R,,..., Ry,
T T N
T, < 2y2 -2 -1 E
p < 2V27 fsb&ls f_m k=z+1|,B(Hk)|dtds

(4.14) 2 .r . -

+—= B .

SR O!

Let o/, = {t € (—ar,77): foralll <j < N, [n;l > 0}. Since (— 77, 77)\ &, is a

finite set it has Lebesgue measure zero, and so we may perform the inner integral

on the right-hand side of (4.14) over «/, instead. By Theorem 4 of Hoeffding
(1963), for each t € &7,

Ek=%+l|,B(Hk)| = Eexp( Y log| B(H,)|}

< (Blp() |}

As E|B(H))|?> =1 - 2pg N"'E(1 — cos n,) and condition (C) implies that for all
sufficiently large N, the number of indices j for which |n; — 27r| > ¢ for all
integers r is at least ON, the first term on the right-hand side of (4.14) is
bounded by

(4.15)

2\/577‘2/T st fm exp{—(1 — cos¢’) 8pg(N — m)} dtds
(4.16) by

— 7T

< 4/27 Y (Npg)"* 1og(T )exp{ — (1 — cos ¢') dp q(N — m)}.

Also, using a result similar to (16) in Robinson (1978), the second term on the
right-hand side of (4.14) is bounded by a constant multiple of

(4.17) 1og(T)e’by® exp{ — 1e%by?} < 6%/% /2 log(T)exp{ —12(eyT )2/3}

as b3, < (eyT) L The result follows on applying the bounds at (4.16) and (4.17)
to (4.14). O

ProoF oF LEMMA 3. Using (4.3) and the fact that
|E[(Y, - p)exp{i(Y, - p)H,}|R,, ..., Ry]| < pq|H,],
| E{(Cy — Cy)exp(iDy)}|

N -1 N
<E Y YV IT |8(H)|

i=m+1 j=1 r#i, j

X rLIjIE[(Y, —p)exp{i(Y, — p)H,}IR,,..., Ry]|

N i—1
<3(pq)’ exp{-K, (s> + %)} ¥ Y E|V,|HH),

i=m+1 j=1
< 3/2(pq)’ exp{ —K,y(s* + t*) }(N — m)N"* L
by (4.5) and since m < N. On noting that Zn? = (pg) (s + ¢2), T} is bounded
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by a constant multiple of
pgv (N —m)N~! fwfoo (s? + t2)exp{ —K,,(s® + %)} dtds.
0 — o0

The bound for T} follows simply from this expression.
The proofs of the bounds for T, and T are very similar to the proof of the T,
bound and so are not included here. O

PrROOF OF LEMMA 4. Since E(CE|R,,..., Ry) is bounded by a constant, it
follows from (3.2) that Ty is bounded by a constant multiple of

-1 T N
vt [Vs3 [T B T1 |B(H,)|dtds
0 1

—mT k=m+

IA

vt _/()817&133./_1’1 {1 -2pg N~} (1- cosn,z)}(N_m)/2 dtds [by (4.15)]

IA

y4 fows3f_°o exp{ —K, (N — m)N"'(s* + ¢*)} dtds,

using steps similar to those used to bound (4.3). The result follows on evaluating
the double integral in the preceding expression. O

Proor or LEMMA 5. By Chebyshev’s inequality,
P(v7!|Cy — C,l > A|By = 0) < A7%2E{(Cy — C,,)1By = 0}
< K,pgA;?»"%(N — m)/N.

The lemma follows. O
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