The Annals of Probability
1990, Vol. 18, No. 1, 378-389

AN ASYMPTOTIC EXPRESSION FOR THE PROBABILITY OF
RUIN WITHIN FINITE TIME

By THOMAS H6GLUND
Royal Institute of Technology, Stockholm

We consider quantities such as the probability that a two-dimensional
random walk crosses the ordinate y for the first time to the left of the
abscissa x, and describe the asymptotic behaviour as x and y tend to oo. The
result is applied to the risk reserve process of insurance mathematics as well
as to one-dimensional random walks.

L Introduction. Consider a two-dimensional random walk ¥7Z;, where Z; =
(X,,Y),i=1,2,..., are independent with a common distribution F. Define

N(x) =min{n > 1; S, > x},

(1.1)

when x > 0. Here S, = X'X;, T, = XI'Y;, a > 0 and B is a regular set, a finite
union of intervals, say.

von Bahr (1974) derived a renewal equation for u (when a = 0, B = (— o0, 0]
and Y, > 0) and then applied a renewal theorem to derive an asymptotic
expression for u. The approximation is valid when x and y tend to infinity in
the first quadrant in a neighbourhood of a certain line: x/a = y/B. We shall
here do about the same thing, but instead apply the renewal theorem of Hoglund
(1988) and obtain approximations which in some cases are valid when x and y
tend to infinity in any other direction in the half-plane x > 0. It turns out that
the problem is a truly two-dimensional one when x/a > y/B and an essentially
one-dimensional one when x/a < y/B. See also Stam (1971) for a related result
valid in a neighbourhood of the line x/EX = y/EY. Approximations for u(x, y)
have applications in sequential analysis; see Siegmund (1985) and Woodroofe

u(x,y) = prob(N(x) <0,Syy>x+a, Ty, Ey+ B)

(1982).
A classical example is the risk reserve process
P(t)
(1.2) R(t)y=x+ct— Y U,
k=1

where ¢ > 0, P(t)is a Poisson process and U,, U,,... are ii.d. random variables,
independent of the Poisson process. Ruin occurs before time y if

(1.3) inf{R(¢); 0 <t<y} <O.
The probability of this event equals u(x, y) in the special case when a = 0,
B =(-w,0), X,=U, - cr, Y, =r1,. Here 7, 1,,... denotes the interarrival

times of the Poisson process.
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RUIN WITHIN FINITE TIME 379

The same remark applies to the more general case when the Poisson process is
replaced by a renewal process, i.e., when 7, 7,,... are ii.d. and positive, but not
necessarily exponentially distributed. Thorin (1982) considered this case and
gave the ruin probability a form suited for numerical calculations. See this paper
and Asmussen (1984) for some of the history of the subject.

Arfwedson (1954 and 1955) considered the original risk reserve process and
gave (in Section 14) approximations for u(x, y). Recent results for this process
are those of Asmussen (1984) and Martin-Lof (1986). Asmussen considered u in a
neighbourhood of the same line as von Bahr, and his method made it possible to
evaluate the approximation numerically in some cases. Martin-Lof gave upper
bounds for u. The results of Arfwedson and Martin-Léf are valid for arbitrary x
and y in the first quadrant, and they are as far as I know the only previous
results that have this property.

2. Results. Define

(2.1) 9(5) = [eF(dz),  Fi(de) = e °F(dz) /9(%)

for those { € R? for which ¢({) < oo and let E; denote expectation with respect
to the probability measure F;. Then

(2.2) EZ = (EX,EY) = (9,:0(%), 3,6(£))/9(¢)

at least when ¢ is finite in a neighbourhood of §.

Put A = {{ € R% ¢(¢) = 1). Then A # @ because 0 € A. The function ¢(¢)
is convex and so is therefore also the set {{; $({) < 1}. Its boundary coincides
with A in regular cases. We are able to determine the asymptotic behaviour of
u(z) when z tends to infinity in the cone

(2.3) K={tEZ;t>0,{ €A, EX >0},

provided F is sufficiently regular.

Let N denote the first strict ascending ladder index N = min{n > 0; S, > O}
and let G and G, denote the smallest closed additive subgroups of IR2 respec-
tively R, that contain the supports of the measures prob(N < o, Sy € dx,
Ty € dy), respectively prob(N < oo, Sy € dx). Let z = (x, ), { = (£, 7n) and
put

cf(a,B)=f f P;(SN>x)e§ o(dz)/E,Sy,

x>a’yeB

(2.4)
Cy(a) =f Py(Sy > x)e ¥o,(dz) /E,Sy

x>a
provided { is such that E.Sy < oo. Here P; stands for the product measure on
RZ+ determined by the cyhnder set probabilities P(X, € A,,..., X, €A,) =
Ja e F(dx,R) /() - - [4 € F(dx,R)/$(¢), and E; denotes expectatlon with
respect to this measure. The measures ¢ and o, are the Haar measures on G,
respectively G,, normed in such a way that o(zD,)/ly(tD,) - 1 and
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o(tD,)/l(tD,) > 1 as t — oo. Here /; and D; denote the Lebesgue measure,
respectively the unit ball in R/, j =1, 2

THEOREM 2.1. Assume that dim G = 2, that ¢ is finite in neighbourhoods of
the points § = (§,1),(0,n) and that ¢(§) =1, E. X >0. Let z € G tend to
infinity in such a way that z/|2| = E.Z/|E,Z|.

(@) If [ge™"dt < oo, then C(a, B) < « and

(2.5) (2ﬂQ(§)x/E§X)1/2e‘°""u(z) - C(a, B).

Here Q(¢) = E((Y — XE,Y/E,X)* > 0.
(b) If fpee ™ dt < oo and if there is a §{,=(x,0) with ¢(,) =1 and
0 < E X < o0, then C(a) < o and

(2.6) el *u(z) - Cy(a).

Proor. The theorem is a direct consequence of Proposition 3.2 and Lemma
3.3. 0 ‘ :

In order to use the approximations of the theorem we thus have to solve the
equation z/|z| = E.Z/|EZ|, i.e., choose { so that E.Z has the same direction as
z. An alternative formulation of the theorem would be to state that the
approximations hold uniformly when z/|z| belongs to certain sets of directions,
i.e., when { belongs to certain subsets of the plane. I have chosen to keep ¢ fixed
because this simplifies the formulation slightly. (Note that the ray {¢tE,Z, ¢ > 0}
contains infinitely many z € G even when G is discrete, provided G and the ray
have at least one point in common.) The approximations (2.5) and (2.6) hold even
when z deviates o(|z|'/?) from the ray.

Note that [ze " dt < oo for all 5 if B is bounded, for all n > 0 if inf B > 0
and for all n < 0 if sup B < 0. If B is bounded, then the case [g. < o0 never
occurs, but if B = (— o0, 0], say, then the first approximation holds when 7 < 0
and the second when n > 0. What happens when 7 = 0? The approximation of
von Bahr mentioned in the introduction is

(2.7) u(z) ~ C(0)exp(—kx)®(w),

valid when

(2.8) w=(y— xEY/E X)(Q(5)x/EX)
is bounded. Here

(2.9) o(w) = (27) " [* exp(-1t?) at.

The function £ — ¢(¢,0) is convex and E; X and 9,¢(£,0) have the same
sign. Therefore if E, 0X >0, then k=0 and if E;,X <0, then there is a
possibility that there is a k > 0 such that ¢(k,0) =1 and then we must
necessarily have E, ;X > 0. Finally if E, (X = 0, then ¢(£,0) > 1 for all £ # 0.
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It follows from the definition (2.4) that C;(a) < C;(0) and that C,(0) <1, =1
or > 1according as ¢ > 0, = 0 or < 0. If G has the special form G = G, X G,,
then

(2.10) ¢(a, B) = C(a) fy _ ¢ o(d).

Here o, is the Haar measure on G, normed as o, above. (That is, o, equals the
Lebesgue measure if G, = R and it equals A times the counting measure if
G, = hZ.) The constant C¢(0) can be expressed in terms of the quantities

_ | éh/(ef"—1) if G, =hZand £+ 0,
211) Ie) = {1 if G, =Ror{=0,

SHE) = Loat [ [esFm(dz),
n=1 x>0
(2.12) w
2 (¢) = n! e$2F™*(dz).
(g) n§1 '/.;50‘[ ( )
It will be shown at the end of the paper that

(1 _ ¢(0, n))($E§X)—162‘(0,11)—2‘(0 if£<0,
(2.13) C(0)/1(¢) = |1 if ¢ = 0,
((EX) le T Om-2® if £ > 0.

Note that
Ty = Y = Ty — N(x)EY + (N(x) - x/E;X)EgY,
x/N(x) < Syiy/N(x) < x/N(x) + &(N(x)),

1

(2.14)

where &(n) = max,_,_,X,n /%> - 0 in probability as n — oo, since X has
finite second moment. Therefore by Anscombe’s central limit theorem,

(2.15) (Te) — 2)/(Q($)x/E, X )"

is asymptotically N(0,1) under P,. This is one of several comments made by a
referee which have improved the paper.

An interesting special case is when prob(Y =1) =1, a = 0 and B = (— o0, 0].
Let x(¢) = Eexp(¢X) and let p(¢) and 72(£) be the expectation and variance of
the conjugate distribution, i.e.,

p(¢) = E(Xexp(¢X)/x(8)) = x'(£)/x (),
(2.16) 12(¢) = E((X - p(£))*exp(¢X) /x(£))

= x"(&)/x(£) = (x'(§)/x(§))".

Then (¢, 1) = x(£)e", E; ,Z = (p(£),1) and Q(£, 1) = 7°(£)/n(§)".
Furthermore e™" = x(£) and hence [ge™ " dt < oo if and only if x(£¢) > 1, and

[ge " dt < oo if and only if x(§) < 1. Assume that u(£) > 0 and that there is a
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k such that x(x) =1 and p(x) > 0. Then p(x) = 0 implies k = 0. Furthermore,

x(§) > 1is equivalent to u($) > u(x) and x(§) <1 to p(¢) < p(k).
The constants (2.4) take the form

G = L>ofysoP€(SN > x)e *x(¢)’o(dx, dy)/E,Sy,

c- |

X

(2.17)
P(Sy = x)e *%o,(dx)/E,Sy.
>0

Here P, stands for the product measure on R%+ determined by the cylinder set
probabilities

P(X,€A,...,X,€A,) = Lefol(dx)/x(g) Ce -Le‘f"Fl(dx)/x(g)

and E; denotes expectation with respect to this measure. Here F, is the original
distribution of X.

The observation that if X is not concentrated at one point, then dim G = 2
now gives

COROLLARY 2.2. Let X, X,,... be independent (one-dimensional) random
variables with a common distribution and put S, = X, + --- + X,. Assume that
X, is not concentrated at one point, that x is finite in a neighbourhood of the
point ¢ and that p(£) > 0. Assume further that there is a k such that x(x) = 1
and 0 < p(x) < oo. If (x, n) € G tends to infinity in such a way that x/n = p({),
then

(218) P(maxS,> x) ~ Cen($)(27n72(8)) " *x(8)"e ¥ ifx/n > p(k),
k<n Ce—"** ifx/n < “(K)’
Compare (2.18) with
(2.19) P(Sn > x) ~ f Oe—fyol(dy)(27rn1_2(£))_1/2x(§)ne_€x
y>

valid when x/n = p(£) > p(0). [See Blackwell and Hodges (1959) for the case
G, = Z, Bahadur and Ranga Rao (1960) for the case G; = R or Héglund (1979)
for a unified treatment.] The two probabilities are thus of the same order of
magnitude when x/n > p(k).

ExamMPLE. Let P(X=1)=p and P(X=—-1)=1-p=gq. Then G =
{(x, y) €Z% x — y is even}, Sy = 1 identically, and x(£) = pef + ge¢. Fur-
ther calculations show that the approximations to the right in (2.18) in this case
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take the form
5)2(a/6)9)" P —1/2pd(ﬁ—4) . B
(2.20) ((P/P) (a/4) ) (27npg) —(pq—ﬁq") ifx/n> p - ql,
(min(1, P/q))x+1 if0<x/n<p—q|

Here p= (1 +x/n)/2and § = (1 — x/n)/2.

The approximation (2.18) can also be expressed in another way. Let s denote
the convex function

(2.21) s(t) = Sup {&t — log x(£)}.

Then s(p(§)) = éu(§) — log x(£) and hence
(2.22) x(§)"e 8 = emnstx/m

when x/n = p(£¢). Furthermore, s(t) > «t for all ¢ with equality if and only if
t = p(x), and hence ns(x/n) > kx with equality only if x/n = p(k).

If we instead apply the theorem to the same situation as in Corollary 2.2, but
with B = {0} we obtain the variant

(2.238). P(S,<x,...,8,_,<x,8,>x)~ Qu(é)(2wn¢2(£))_1/2x(£)ne_5"

as x and n tend to oo in such a way that (x,n) € G and x/n = p(§) > 0. Here
(2.24) 6= [ P(Sy=x)e ¥o(ds, {0})/E,Sy-
x>0

Note that the constant (2.24) equals zero in the example above. This is as it
should be because the expression to the left in (2.23) equals zero when (x, n) € G.

Another special case is the risk reserve process described in the introduction.
Put T(x) = inf{t > 0; R(t) <O0}. Then prob(T(x) < o, T(x) €y + B) =
u(x, y) when a = 0.

Let w(§¢) = Eexp(¢U). Then ¢(&, 1) = w(§)p/(p + c§ — n) where p is the
intensity of the Poisson process, and hence ¢(§, 1) = 1 if and only if n = ¢§ —
p(w(§) — 1). If this is the case, then

EZ = (pw(£)) '(pw'(§) = c,1),

Q) = w(£)/(w(&)(pw'(£) — ¢)’).

Furthermore, E,X > 0 implies that dimG = 2. In this context « is known as
Lundberg’s constant, which is usually denoted by R, and it is convenient to
express the conditions in terms of the function g(£¢) = p(w(£§) — 1) — ¢é.

Note that —n = g(¢) > 0 if and only if g’(£) > g’(R) under the condition
g'(£) > 0, since g is convex. Some further calculations therefore yield.

(2.25)

COROLLARY 2.3. The following holds for the risk reserve process. Assume
that w is finite in a neighbourhood of the point § and that g'(¢) > 0. Assume
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further that there is a R > 0 such that g(R) = 0 and g'(R) > 0. If x and y — oo
in such a way that (x, y) € G and x/y = g'(£), then

Cey™Vexp(—yr(£)) ifx/y > g'(R),
C* exp(—Rx) ifx/y < g'(R),

C* exp(—Rx) ifx/y > g'(R),
Cey ?exp(—yr(§)) ifx/y<g'(R).

Here r(§) = —g(£§) + £8'(§) > 0 for £ > 0.

(2.26) P(T(x) <y) ~ {

(2.27) P(y < T(x) < o) ~ {

In this case there are simple explicit expressions for the constants when U is
positive. Namely, C* = —g'(0)/g'(R) [see Feller (1971), Chapter XI, for
example] and if G = R? and if there is a & < ¢ satisfying 8(¢) = g(§), then
[Arfwedson (1955)]

__ g
|6€'1y2mg" (¢)

There is a similar expression for the constant when U is discrete.
Let

(2.29) 5*(£) = sup (8¢ ~ &(£)).

(2.28) Cit =

Then s*(t) is convex, s*(g'(¢)) = r(¢) and s*(¢) > Rt for all ¢ with equality
only if ¢ = g'(R). Therefore, yr(£) = ys*(x/y) > xR with equality only if
x/y = g'(R).

The corollary can be modified to hold for the more general risk reserve process
where the Poisson process is replaced by a renewal process, i.e., when 7, 7,,...
are independent and positive random variables with a common distribution.
Write ¢ for the inverse of the monotonic function n - Ee™". The corollary holds
for this process as well, provided we replace g by g(£) = —ct — Y(1/w($)) and
add the restriction that 1/w(£) belongs to the interior of the domain of .

3. Proofs. Let N, N,,... stand for the successive strict ascending ladder
indices, i.e., N}, = o0 if N, ; = oo and otherwise N, is the first index n > N,_,
for which S, > Sy, , and N, = oo if such an index does not exist. Here Ny, =0.

Define for k> 1, X, = Sy, — Sy,_, and Y, = Ty, — Ty, , if N, <o and let

S,, T, stand for the corresponding partial sums. Then (X,,Y,), k= 1,..., n, are
independent and identically distributed, given N, < 0.
Write N for N, and L for the possibly defective distribution of (Sn> T,

(3.1) L(dx, dy) = prob(N < o0, Sy € dx, Ty € dy),
and let E, stand for the event
(3.2) E,={N,=N(x) <w,Sy >x+a,Ty €y+B).
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Then E,, E,,... are disjoint sets whose union equals

(3.3) {N(x) < 0, Syxy > % + @, Ty €y + B},
and furthermore,

(3.4) E,={5,_,<x8,>x+a,T,€y+B, N, < }.
Therefore

(3.5) prob(E,) = /f L((x — s + a,), y — t + B)L(""V'(ds, dt)

for x > 0. If we define f(x,y)=L(x+ a,o), y+ B) when x>0 and
u(x, y) = f(x, ¥) = 0 when x < 0, we therefore conclude

(3.6) u(x, y) = ﬁOLn‘* f(x. 7)

for all real x and y. Here L°" is the Dirac measure concentrated at zero.

Write ug(x, y) and fg(x, y) instead of u(x, y) and f(x, y) in order to show
the dependence on B. Also write u,(x) = ug(x, y), fy(x) = fr(x, y), and
L (dx) = L(dx,R). We shall use the following identities which we collect in a
lemma.

LEMMA 3.1. The ruin probabilities satisfy

(37w y) - iL oY), w(x) = iL (x),
(3'8) ul(x) = uB(x’ y) + uB”(x’ y)

for all x, y and B.
Let { = (£, m) and z = (x, y). Define

(39) ()= [exp(¢-2)L(de),  Ly(dz) = exp(§ - z)L(dz)/A()
and put
(3.10) Q (¢) = E(Ty — SyETn/ESy)’

whenever [|z|2 exp({ - 2)L(dz) < co. Note that the condition dim G = 2 implies
that QL(¢) > 0.

PROPOSITION 3.2. Assume that dim G = 2, that A is finite in neighbourhoods
of the points { = (&, m) and (0,m) and that A({) = 1. Let z € G tend to infinity
in such a way that z/|z| = E(Sy, Tyn)/|E¢(Sx, Ty)|-

(@) If [ze™"" dt < oo, then Cy(a, B) < o0, @X({) > 0 and

(3.11) (27Q™({)x/E,Sy)" "t *u(z) » Ci(a, B).
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(b) If [gee™ ™ dt < oo and if there is a §, = (x,0) with A\({,) = 1 and E,Sy <
o, then Cy(a) < oo and

(3.12) eu(z) > Cy(a).

It will be seen in the proof that the assumption that A is finite in neighbour-
hoods of the above points is unnecessarily strong, but it will suffice for our
purposes, because this is what we get from Lemma 3.3.

Note that E,Sy > 0 for all 8, and hence that z lies in the half-plane x > 0.

PRrOOF OF PROPOSITION 3.2. It follows from Theorem 1.4 of Hoglund (1988)
that

(3.13) E;SN(277QL(§)x/E§SN)1/2e§‘2 i L™ x f(2) - feg'”f(u)o(du)
n=0

if [lul?%f“L(du) < o and if (1 + |z|2)ef?|f(2)| is directly Riemann integrable
with respect to o.
Let z = (x, y) and u = (s, t). We have

(3.14) fef~2f(z)o(dz)= Lzoe“o(dz)fs ft_yEBL(ds,dt).

—x>a

If we make the substitution 2 » u — z, u — u and use the fact that o(u — dz) =
o(dz) for u € G we see that this integral equals

(3.15) C;(a, B)E,Sy.

An interchange of the order of integration and the same substitution as above
show that

J@+ 12P2)e8 £(2) |o( dz)

(3.16) < fef’”L(du) j‘f (1 + Ju — 2[?)e~%0(dz).

0<x<s
yEB

If B has a nonempty interior, then the inner integral is dominated by a constant
times

JI @+ P+ jz2)e = de

0<x<s
YEB

(3.17)
< (1+ @)1 +e®) fy 1+ e dy

if { # 0 and if £ = 0, then the factor (1 + e~**) has to be replaced by s. The case
when B is a one-point set can be treated similarly.
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The function (1 + |z|?)e¥?f(2) is thus integrable and it is directly Riemann
integrable because when B is an interval, f(x, y) is a difference of two functions
that are monotonic in each of the variables x and y.

We have thus shown (a).

Assume that [ge " dt < o0. We can then apply the just proved approxima-
tion to ug.(z). By one-dimensional renewal theory [see Feller (1971), page 349]

(3.18) eb*u (x) = Cy(a).

The remainder of the proposition now follows from (3.8). O

LEMMA 3.3. Assume that ¢ is finite in a neighbourhood of { = (£, 1),
¢({)=1and E X > 0.

(a) If ¢ is finite in a neighbourhood of the point (a, n), then also A is finite in
a neighbourhood of (a, ).

(b) A(§) =1, E¢N < o0, E(Sy, Ty) = E{NEZ and QRUE) = E.NQ(3).

(c) E;N = e* © and if $(0,1) < oo, then

(1-¢(0,7))e= @ if ¢(a,n) <1 for some a <0,

319) 1-A(0,7)=1_" _.
(3.19) (0,) e 2 0m if o(a,m) <1 for some a > 0.

Note that the second identity in (b) (Walds equation) implies that E.(Sy, Ty)
and E;Z have the same direction. It is easy to verify directly that the two
expressions to the right in (c) are identical if ¢(0, n) < 1.

Proor. Put H (dz)= | E [F(dz,) - - -+ - F(dz,) where
E={(z,....,2,); %+ - +x,<0,1<k<n-1,
X+ - tx, €dx, y+ - +y, €dy)
and define
ME) = T [[ exp(s - 2)Hy(d2),
1 x>0

(3.20) .
() =1+ Xr [[ exp(s - 2)Hy(dz).

x<0

Then v,(¢) = E.N when ¢(¢) = 1 and A(8) = A(6) for all 6.
Let 8 = (a, B). Then

G2) w0 =1+ 3 [[e PR (dnd) s L o(as)’
n=0

n=1x<0

if &' < a and hence v,(8) < oo if ¢(a’, 8) < 1 for some o’ < a.
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Let ¢({) = 1. Then A(#)= E[exp((a — £)Sy + (B — 1)Ty)] and hence
A(8) < oo if and only if

(3.22) J[etemsr@-mp (S > 5, Ty € di) ds < oo,
s§>0
provided a # ¢, which we assume.
If N=n, Sy>sand Ty€Il,then N>n—-1, X,>sand T,, + Y, € L
Therefore

P(N=n,Sy>s,Tyel)

(3.23)
< fP;(N> n-1,T, ,€dt)P(X>s,Yel-t)

since the event (N > n — 1} and the variable 7,,_, only depend on Z,,..., Z,_,
and therefore are independent of Z,. Summing over n and integrating we

therefore see that A\() < oo if

(3.24) J[ etemesr =P (X > 5, Y € dt) ds vi(£, B) < 0.
§>0

As we have seen this is the case if ¢(a, B) < 0 and ¢(¢’, B) < 1 for some ¢’ < £.
The latter is the case when B is sufficiently close to n since ¢(£, 1) =1 and
d,9(§,m) = E; , X > 0. This proves (a).

The last identity in (b) is essentially the identity (6.10) of von Bahr (1974).
The remainder of (b) and (c) are either well known or obvious modifications of
the argument in Chapter XVIII in Feller (1971) or von Bahr (1974). O

PrOOF OF (2.13). The identity
(325)  C(0) =1(¢)(1 = A(0,n))/(£ESy) if¢+0, =1if¢=0

follows from an interchange of the order of integration and the identity

(3.26) f e ¥o(dx) = I(¢§)(1 —e™*)/¢ if£+0, =sif £ =0.
§=>x>0

The identities (2.13) now follow from Lemma 3.3. O
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