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TIME-AVERAGE CONTROL OF MARTINGALE PROBLEMS:
EXISTENCE OF A STATIONARY SOLUTION!

BY RicHARD H. STOCKBRIDGE
University of Wisconsin-Madison

This paper studies the average cost for controlled systems via the martin-
gale problem for their generator. The stationary distributions for these
processes on the product of the state and control spaces are characterized in
terms of integration of the generator and existence of a stationary solution is
established. This gives existence of a stationary control.

1. Introduction. Optimal control problems consist of two parts: the dynam-
ics under which the system operates and the decision criterion by which the
control is chosen. Formulation of the dynamics of an (uncontrolled) system as a
solution of a martingale problem was initiated by Stroock and Varadhan (1969,
1979) for diffusion processes. Kushner (1978) and Fleming (1984), to name only
two, formulated controlled diffusions as a martingale problem in which the
diffusion and drift coefficients were parametrized by the control. The object of
primary interest was the diffusion in R% Interested in the control of queues,
Hajek (1982) studied two interacting service stations using a martingale problem
formulation. Kurtz (1987) considered an abstract controlled martingale problem
which included these previous models as special cases. In this approach, the
control entered the generator as an independent variable. Kurtz exploited this
formulation to give a general existence theorem for optimal solutions to problems
in which the decision criteria are the total cost over a finite time horizon and a
discounted cost over an infinite time horizon. The present work uses the
formulation of the controlled martingale problem given by Kurtz to study the
long-run average cost for processes given as solutions. In this formulation, all
nonanticipating controls are allowed; that is, we do not restrict attention to
Markov controls.

For clarity of exposition, this work is presented in two papers. This paper is
concerned with the existence of stationary solutions to controlled martingale
problems. The companion paper [Stockbridge (1990)] reformulates the control
problem as a linear programming problem and shows existence of an optimal
solution.

Existence of stationary solutions to (uncontrolled) martingale problems has
frequently assumed the generator generates a strongly continuous contraction
semigroup and utilized this structure in the construction of the stationary
solution. Echeverria (1982) established existence of a stationary solution under
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more relaxed conditions on the generator. The reader is referred to Ethier and
Kurtz (1986), Chapter 4, Section 9 for discussion of stationary solutions to
martingale problems.

This paper extends the approach of Echeverria to controlled martingale
problems. Section 2 defines the control problem under consideration. Section 3
provides some motivation for the interest in stationary solutions and, in the
attempt to be as self-contained as possible, gives the statements of theo-
rems (and references) that will be used later in this paper. Section 4 extends
Exheverria’s theorem to establish the existence of stationary solutions to the
controlled martingale problem.

2. Formulation of the model. C{( (E) denotes the space of continuous func-
tions on E which vanish at infinity. C(E X U) denotes the space of bounded,
continuous functions on E X U and || - || denotes the supremum norm on the
appropriate space.

Dynamics. Let the state space E and the control space U be locally compact
separable metric spaces and E4 = E U {A} the one-point compactification of E.
Let A: 9(A) > C(E x U), 2(A) c C(E), satisfy:

(i) 2(A) is dense in C(E). X
(ii) For each f € 2(A) and u € U, Af(-,u) € C(E).
(iii) For each f € 9(A) and compact K c U,

lim sup Af(x,u) =0.
=8 yeK
(iv) Foreach u € U, A, f = Af(-, u) satisfies the positive maximum principle
[i.e., if f(x) = sup, f(z) > 0, then A, f(x) < 0].

2.1 DEFINITION. An E X U-valued process (X(-), u(+)) is a solution of the
controlled martingale problem for A if there exists a filtration {%,} such that:

() (X(), u(-)) is {F,)-progressive.
(b) Forevery f € 2(A), f(X(t)) — [{Af(X(s), u(s)) ds is an {Z,}-martingale.

We will need to specify the initial distribution of the state. Thus for » € #(E),
(X(+), u(+)) is a solution of the controlled martingale problem for (A, ») if, in
addition to the above, X(0) has distribution ».

2.2 REMARK. Conditions (i)—(iv) on A ensure the existence of solutions of
the controlled martingale problem if we set u(:) = u for some fixed u € U and
allow values in E* [Ethier and Kurtz (1986), Chapter 4, Theorem 5.4]; however,
to ensure the existence of stationary solutions in this more general setting we
need to allow relaxed controls.

2.3 DEFINITION. An E X #(U )-valued process (X(-), A.) is a relaxed solu-
tion of the controlled martingale problem for A if there exists a filtration {%#,}
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such that:

(a) (X(-), A)is {£,}-progressive.
(b) For every f e 2(A), f(X(t)) — [{fyAf(X(s), w)A(du)ds is an (F)-
martingale.

Similarly (X(-), A.) is a relaxed solution of the controlled martingale problem
for (A, »), v € #(E), if the above holds and X(0) has distribution ».

Decision criterion. Let ¢ E X U - R be lower-semicontinuous, bounded
below and satisfy c(x, u) - o as x = A. Define the long-run average cost to be

limsup¢™'E [ft/ c(X(s), u)A (du)ds|,
t— o0 00U

where (X(-), A)is an E X (U )-valued process or (X(-), A.) = ((X(*), 8;,(.)))
if (X(+), u(+))is an E X U-valued process.

The control problem is to minimize the long-run average cost subject to the
condition that (X(-), A be a relaxed solution of the controlled martingale
problem for A.

3. Preliminaries. It is natural in studying the long-run average cost for a
system to take particular interest in the stationary processes for the system. One
reason is that the cost is easily determined from knowledge of the one-dimen-
sional distribution. Suppose (X(-), A.) is a stationary solution to the controlled
martingale problem for A satisfying E[xr(X(0)A(Iy)] = p(I; X Iy) for all
I, € #(E) and T, € B(U). [Note p € #(E X U).] Then

limsupt”E[fOthc(X(s), u)A (du)ds| = j;;xuc(x, u)p(dx X du).

t— o0

Furthermore since for every f € 2(A),
(3.1) F(X(0) = ['[ AF(X(s), u)A(du) ds

is an {%,}-martingale, it immediately follows upon taking expectations that:
(v) For every f € 2(A), [Af(x, u)u(dx X du) = 0.

The goal of this paper is to show that, under assumptions (i)-(iv) on the
generator A, condition (v) on the distribution p is sufficient to characterize p as
a stationary distribution for the system and that there exists a stationary
solution (X(-), A.) corresponding to p. The general outline of the proof is to
approximate the generator A by its Yosida approximations A, and to determine
a transition function 7 for a stationary Markov chain on E X U having initial
distribution p. We then change from discrete time to continuous time by
composition with a Poisson process (preserving the stationarity) and obtain a
stationary solution to the controlled martingale problem for A, (each n). The
stationary solution to the (original) controlled martingale problem for A is
obtained by passing to the weak limit as n — 0.
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The proof of the existence of the transition function % heavily relies upon the
Hahn-Banach theorem and the Riesz representation theorem which we now
state without proof. Proofs can be found in Rudin (1974).

3.1 THEOREM (Hahn-Banach). If M is a subspace of a normed linear space
X and if f is a bounded linear functional on M, then f can be extended to a
bounded linear functional F on X so that ||F|| = ||f]

3.2 THEOREM (Riesz representation). To each bounded linear functional ®
on C(X), where X is a locally compact Hausdorff space, there corresponds a
unique regular Borel measure p. such that ®(f) = [yxfdu, f € C(X).

The existence of % also depends upon a technical lemma and the existence of a
regular conditional distribution which is given by Morando’s theorem. These are
adaptations to the control setting of Ethier and Kurtz (1986), Chapter 4, Lemma
9.16 and Appendix 8, respectively. First we give the statements from Ethier and
Kurtz (Lemma 3.3 and Theorem 3.4) without proof and then adapt them for the
present application (Lemma 3.5 and Theorem 3.6).

3.3 LEMMA. Let A: 9(A) —» C(E), 9(A) c C(E). Suppose for each v €
P(E) that the martingale problem for (A, v) has a solution with sample paths
in Dg[0, ). Suppose that ¢ is continuously differentiable and convex on
G CR™, that (f,81),-s(fms 8n) € G(A), (f1,.--» [n): E—> G and that
(p(f1s--+5 f)s B) € G(A), where G(A) denotes the graph of A. Then

h2ve(f,...ofn) (&1 s &m)-

3.4 THEOREM (Morando). Let (Y, %) be a measurable space and let Z be a
complete, separable metric space. Let v be a measure on Y X Z such that:
0 <»(Y X Z) < o and define p = v(- X Z). Then there exists n: Y X B(Z) -
[0, o) such that for each y € Y, n(y,-) is a measure on %(Z), for each
B € #(Z), (-, B) is % measurable and

v(C) = [[xoly, 2)n(y, d2)u(dy).

35 LEMMA. Let A: C(E) - C(E x U) and for each ue€ U let A,f =
Af(-, u). Suppose for each u € U and v € #(E), the martingale problem for
(A,,v) has a solution with sample paths in Dg[0, o). Suppose that ¢ is
continuously differentiable and convex on G C R™, that (fi, &1)s--+s(fms &n) €
G(A), (fi,.--sfn): E— G and that (¢(f,..., f,), h) € G(A). Then h >
TO(Frves Fn) - (Brreees B

Proor. This is an immediate application of Lemma 3.3 to the operator A ,. O

3.6 THEOREM. Let (R, #, P) be a probability space. Let A be a random
measure on U X [0,0) such that for all w, A(UXT)=m(T) for all T €



194 R. H. STOCKBRIDGE

A([0, ), where m denotes Lebesgue measure. Then there exists 7. B(U) X
[0, 00) X © — [0,1] such that:

(a) "l(, S, O)) EQ”(U)VS,w.
(b) For each B € #(U), 7(B, -, ) is #([0, 00)) X Fmeasurable.
(© AC) = [[xc(u, s)n(du, s)ds a.s. ¥ C € B(U) X ([0, 0)).

Proor. For T, € B(U), T, € g&([o ©)) and T, € %, define A by
A(T, x T, x Ty) = E{xr ,Xrl(u)sz(s)e °A(du X ds)

and extend A to a measure on U X [0, ) X Q. Note AU x [0,00) X Q) = 1.

We apply Theorem 3.4 to A, where Y = [0,0) X € and the Y-marginal p
satisfies du = e ° ds X dP, to get the existence of 7. This n fulfills the require-
ments. O

To pass to the weak limit, we require the following two theorems.[Ethier and
Kurtz (1986), Chapter 3, Theorems 9.1 and 9.4] in order to establish the relative
compactness of the stationary solutions of the controlled martingale problem for
the Yosida approximations.

3.7 THEOREM. Let (E,r) be complete and separable and let {X,} be a
family of processes with sample paths in Dg[0, o). Suppose that for every n > 0
and T > 0 there exists a compact set T,  C E for which inf, P{X(t) € T, 1 for
0<t<T}=1-m. Let H be a dense subset of C(E) in the topology of uniform
convergence on compact sets. Then {X,} is relatively compact if and only if
{fe°X,} is relatively compact (as a family of processes with sample paths in
Dg[0, 0)) for each f € H.

The next theorem addresses the problem of verifying the relative compact-
ness of { foX,) for fixed f € C(E). In order to state the theorem, a little
notation is necessary.

For each a, let X, be a process with sample paths in Dy[0, c0) defined on a
probability space (£,, # ¢, P,) and adapted to a filtration {%,*}. Let £, be the
Banach space of real-valued {%,%}-progressive processes with norm |Y| =
sup E[|Y(¢)[] < 0. Let

=0
= {(Y, Z)eL XPL:Y(t) - ftZ(s) ds is an {.%“}-martingale}.
0
3.8 THEOREM. Let (E, r) be arbitrary and let {X,} be a family of processes

defined as above. Let C, be a subalgebra of C(E) and let D be the collection of
f € C(E) such that for every e > 0 and T > 0 there exists Y,Z) <€A, with

(3.2) supE[ sup IY,,(t)—f(Xa(t))l]<e
a te[0, T]NQ
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and
(3.3) SupE[|IZ,ll, r] < o forsomep € (1, c0].

(1Al = LI 1AB)P dt]VP if p < 00; ||Plle, 7 = essSupy <, <pR(D)) If C, s
contained in the closure of D (in the sup norm), then {fe° X,} is relatively
compact for each f € C,; more generally, {(fi,..., fz)° X,} is relatively compact
in Dg[0, 00) for allf,,..., f, € C,;; 1 <k < co.

4. Existence of stationary solutions. We now give the statement and
proof of the extension of Echeverria’s theorem to the control setting (Theorem
4.1). Recall it is assumed Af is bounded for each f € 9(A), but this condition
can be relaxed. We conclude this section by relaxing the boundedness condition
(Theorem 4.7).

4.1 THEOREM. Let E and U be locally compact separable metric spaces. Let
A: 9(A) —» C(E x U), 2(A) c C(E) satisfy conditions (i)~(iv) and D(A) is
an algebra. Let p € P(E X U) satisfy condition (v). Then there exists a station-
ary relaxed solution (X(+), A) to the controlled martingale problem for A with

E[xr(X(0))Ay(Ty)] = p(Ty x Ty) VT, €Z(E), T, € 2(U).

ProoF. Without loss of generality we may assume E is compact and (1,0) €
G(A). If not, let E® be the one-point compactification of E. Define A*:
C(E%) —» C(E x U) by (A*f)|z = A(f — f(A)|g) and A%f(A, u) = 0 for those
f € C(E®) such that f— f(A) € 9(A). Extend p to EA X U by setting
w({A} X U) = 0. Then (A®, p) satisfies the hypotheses of the theorem.

For n=1,2,3,..., define A,g =n[(I - n""A)"' - 1I]g for g€
R(I — n~'A). Here 2(-) denotes the range of the operator. Note that for all
fe 2(A)and g = (I — n"'A)f wehave [A,gdu = [Afdp = 0. The existence of
a stationary solution to the martingale problem for the Yosida approximation
A, is given by the next lemma.

4.2 LEMMA. There exists a stationary solution (X(-), u(+)) of the controlled
martingale problem for A,,.

ProoF. Let M c C(E X E X U) be the linear subspace of functions of the
form

Fx, ) = ¥ h(g(0n )+ 1(3,w),

where h,,..., h, € C(E), f€C(EXU) and g,,..., &, € Z(I — n"'A). De-
fine the linear functional ¥ on M by

vr= [ ﬁlhi(xxz — ) g (e x du) + [F(y, w)n(dy X du).

We will show that |¥F| < || F|| so that we can apply Theorem 3.1 to extend ¥
to C(E X E x U) with ||¥|| < 1. In addition once |¥F| < ||F| is shown to be
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true, since ¥1 = 1, we have for F' > 0,
|F|| - YF = ¥(|F|| - F) <||[IF| - F|| < ||F|

so that ¥F > 0. Thus we will be able to apply Theorem 3.2.

Let fi, for..o fn € D(A)and let a), = (I — n7A)f,ll, k= 1,..., m. Let ¢ be
a polynomial on R™ which is convex on 1 ;[ —«a;, «;]. Since 2(A) is an algebra,
®(f1s--+» [m) € 2(A). By Lemma 3.5, we have

A‘P(fl’“" fm) = V(p(fla“'a fm) : (Afl""’Afm)'
Thus

o((I-n"A)f,...,(I-n""A)f,)
= (p(fl"“a fm) - n‘Ith(fl,..., fm) ' (Afl""’Afm)

> Q(fryeees f) = A0(fryeers f)-
Integrating this inequality and changing notation yields

41) [o(gn-8n)duz [o((I-n"4) "gy,....(1- n7'4) 'g,) dp

for g,,..., &, € Z(I — n~'A). Since all convex functions on R™ can be approxi-
mated uniformly on any compact set K € R™ by a polynomial that is convex on
K, (4.1) holds for all ¢ convex on R™.

Fix Fe M, as F(x, y,u) = L h(x)8:(y, u) + f(y, u). Define p: R™ > R
by ¢(ry,..., r,) = sup, X2 h,(x)r; and note that ¢ is convex. We then have

¥ = [ X R0 =) (e ) + 1wl x )
< [o((I-n714) "gy,.... (1 - n714) g, )(»)n(dy x du)
+ff(y, u)p(dy X du)
< [{o(&1- s 8)(3,8) + F(y,u) }u(dy X du)

= f{sup f hi(x)g(y,u) + f(y, u)}u(dy X du)

x i=1
< |IF].
Also, —VF = ¥(—F) <| — F|| = ||F||, so |¥F| < || F|.
By Theorem 3.1 there exists an extension of ¥ to a bounded linear functional

on C(E X E X U) and by Theorem 3.2 there exists a » € Z(E X E X U) such
that:

\IfF=dev forall Fe C(E x E x U).
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Considering the case in which F(x, y, u) = f(y, u) with f € C(E X U) we have

JH(3, wy(dx x dy x du) = [{(y, u)p(dy x du),

sov(E X - X -)y=p(-X-). _
Considering F(x, y, u) = h(x)g(y, u) where h € C(E)and g € (I — n"'A),
we have

/h(x)g(y, w)r(dx X dy X du) = /h(x)(z - %A) g(x)p(dx X du).

Let p () = u(- X U). By Theorem 3.4, there exists i: E X #(E X U) - [0,1]
such that:

(a) For each x € E, fi(x,: ) € P(E X U).
(b) For each T € 4(E x U), #(-, ') is #(E)-measurable.
(©) ¥(G) = [[xc(x, y,w)fi(x, dy X du)p(dx) V G € B(E X E X U).

Thus

[ [, wite, b x ) () = [R(x)(T = n70) gl o)
for all » € C(E) and so for each g € Z(I — n™'A),

[e(yw)i(x, dy x du) = (- n"14) 'g(x) ae.p,.

Let (X, uo), (X, u)),(X,, uy),... be a Markov chain on E X U having
initial distribution p and transition function 4. Then {(X,, u,)} is stationary.
Also, it is easy to verify that for each g € Z(I — n™'A),

k-1
(X, uy) — X n A 8(X,u,)
i=0
is an {%,}-martingale where %, = o(( X,, pto), ..., (X, up)).

Let V (¢) be a Poisson process with parameter n independent of {(X,, u,)}
and deﬁne (Xn(')’ un()) = (XVn(-)’ an(~)) and ‘%n = 0((Xn(s), un(s)): O <
s < t). Then for each g€ Z(I — n"'A) we have g(X, (%), u,(t)) —

fA, 8(X,(8), u,(s))ds is an {&%,"})-martingale. In addition, {(X,(-), u,(-))} is
stationary and is thus a stationary solution of the martingale problem for
(A, p).0

PROOF OF THEOREM 4.1 (continued). By Lemma 4.2, there exists a station-
ary solution (X, (), u,(-)) of the controlled martingale problem for A, (each n).
By Theorems 3.7 and 3.8, the state processes { X,(-))} are relatively compact and
therefore for each subsequence of {X,(:)}, there exists a weak limit. The
particular subsequence we use is determined in passing to a weak limit for the
control processes. The next lemma establishes the existence of a relaxed control
on U X [0, c0) which is a weak limit, for every ¢ > 0, of the occupation measures
for the control on U X [0, ¢].
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4.3 LEMMA. Let v € #(U) and {u,(-)} be a sequence of stationary control
processes satisfying E[x g(u,(t))] = v(B) for all B € #(U). Let

A%(BX C) = /(;waxc(un(s), s)ds VBe®s(U),Ce3(0,x))

and define the sequence of (random) occupation measures on U X [0, 00) by
extending A* to all of #(U X [0, 0)). Then there exists a relaxed control process
A - such that A¥ = A* on bounded time intervals, where

A*(C) = f/xc(u,s)As(du)ds vCeB(U) x B([0,)).

Proor. We begin by normalizing in ¢. For n = 1,2,3,... define
AR(B X €)=t [Xpucl(u,(s),8)ds VB eBU),CeB([0,¢])
0

and extend A* to a measure on U X [0, ¢]. For each n,
E[A}(B X C)] = »(B)m(C)/t

by stationarity. Given 8 > 0, select a compact set K ¢ U with »(K) > 1 — §.
Then for each n, P{A%(K° X [0, t]) > a} < §/a.

This estimate is enough to show tightness of the distributions of {A*} on the
space of probability measures on U X [0, £]. Therefore the distributions of {A*}
are relatively compact and there is some subsequence which converges weakly to
a limit A*. It follows that

E[A*(Bx C)] =»(B)m(C)/t VBe®(U),Ce%(0,t]).

This result remains valid for A%(-) = [7x.(UJs), s) ds without normalizing
in ¢ and so the existence of a random measure A* on U X [0, o0), which is a weak
limit of the occupation measures on every bounded time interval, follows by a
diagonal argument. In addition,

E[A*(Bx C)] =v(B)m(C) VBeg(U),Ce%([0,0])).
By Theorem 3.6, A* can be written as

A¥(C) = f/XC(u, s)A(du)ds VCeBU)xB([0,0])).

The process A. is the candidate for the relaxed control. O

ProOOF oF THEOREM 4.1 (continued). By Lemma 4.3, there exists a relaxed
control which is the weak limit of the occupation measures of the control
processes {u,(-)}. By considering a further subsequence to that obtained from
the diagonal argument (if necessary), let X(-) be the corresponding weak limit of
the state processes. Note that X(-) is stationary since each X,(-) is stationary.
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We now proceed to show that (X(:), A) is a solution of the controlled
martingale problem for A. This will be true provided that for all f € 2(A),

(4.2) FX(@) = [ Af(X(s),u)A*(du X ds)
UXxI[0, t]
is a martingale with respect to some filtration; in fact, the filtration is

FXA o(X(s),fs

s—

Ardr:OSb‘SSSt).
8

By a monotone class argument, (4.2) is a martingale if and only if for all
f € 2(4A),

EHuxw»—ﬂxw»—/

Af(X(s), u)A*(du X ds))
Ux[a, b]

m
X ]_[f
i=17Ux[t-8,,t]

B X(8), u)A*(du X ds)] —0

whenever 0 < a < b, t,...,t,€[0,a],0<§;<t;, i=1,...,m, and h,,...,
h, € C(E x U).

Let D = {t: P{X(t) = X(t— )} =1} and first fix ¢,,...,¢,,a, b € D and fix
fe2(A)and hy,..., h, € C(E). To simplify notation, let

H(X, A¥) = (f(X(b)) - f(X(a)) - f b]Af(X(S), u) A*(du X dS))

Uxl[a,

m
X 1‘[/ h,(X(2), u)A*(du X ds)
i=1YUX[t,—6;, t;]

and H,(X,, A%) be the corresponding expression with X,, A%, A, and f, replac-
ing X, A*, A and f, respectively [recall f, = (I — n"'AW)f]. We will show

E[H(X,A)] = lim E[H,(X,, A})] = 0.

First note that for each n,

H(X,, A%) = {f,,<x,,<tm+1>, tn(te)) = F( K1), (t)
- [T A ARS), wi() ds)

X IT [ hX(8), (o)) ds

by the definition of A* and so E[H,(X,, A%)] = 0 since (X,(-), u,(*)) is a
solution of the controlled martingale problem for A,. Since Af is bounded,
A* = A* on U X[0,a] and X, = X implies (X, (¢)),..., X, (¢,), X, (a),
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X, (b)) = (X(¢),..., X(t,), X(a), X(b)), we have for ¢t = a or b,

B[0TI [ ;)0 x(de x )
- 8| ix)[1 fmt_ a0, )" ()|

as n = oo. Therefore, we only need to consider the integral term.
Observe that A, f, = n[(I — n7!A)"* — I)(I — n™'A)f = Af and so we need
to establish

n—oo

lim E[(fma, b]Af(X,,(s), u)A*(du X ds))

<1 [ B X,(8), w)A2 (duxds)]
=17Ux[¢,-8,, 1]

=E[

This follows from the definition of weak convergence and the fact that F defined
by

fUX[a, b]Af(X(s), u)A*(du X ds))

X ﬁf h(X(2,), u)A*(du X ds)].
i=1YUX[t,-8,,¢]

F(x,\) = / Af(x(s), u)\(du X ds)
UX[a, b]

is a bounded, continuous functional on D[0, ) X #. # denotes the space of
measures on U X [0, c0) having Lebesgue measure as its time marginal.

The only part which still needs to be checked is the stationarity of A, We
have that u,(-) is stationary for each n and so defining A* € Z(U) by A" =
84,y we have A" is stationary. Furthermore for § >0, [’ ;A%ds will be
stationary in ¢ for ¢t > 8. But [! ;A% ds = A* restricted to U X [¢ — 8, ¢] and
thus converges weakly as n —» oo to A* restrlcted to U X [t — §, t]. Thus for
8 > 0, A* restricted to U X [t — 8, ¢] is stationary in ¢ (for ¢ > 8) being a limit
of stationary processes. The next lemma shows that the relaxed control A. can
be taken to be stationary, which concludes the proof of Theorem 4.1. O

44 LEMMA. Let A* be a random measure on U X [0,0) such that its
restriction to U X [t — §, t] is stationary in t for t > §. Then there exists a
stationary relaxed control process A . which satisfies

(4.3) A*(C) = [fXC(u,s)As(du)ds vCe (U)X 2(]0,x)).
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Proor. By Theorem 3.6, there exists a relaxed control satisfying (4.3). We
show that there is a modification of A. which is stationary.

Let {u;} be a countable dense subset of U and let {B,} be an enumeration of
the balls {B(u;,1/j7): i, J=1,2,3,...}. For each B,, define the stochastic
process A(B,) by

A,(B,) = limsup2’"ft A(B,) ds.
t—2°m

m— oo

Since for each k and w, A,(B,) = A/(B,) a.e. (ds), we have

0= E[[“’x{]\,(Bk) # A(B,) for some k) d¢
0

~ ["P{R(B,) # A(B,) for some k) dt,
0

which implies that for a.e. ¢, P{A(B,) = A(B,) V k} = 1. Therefore, for a.e. t,
A, extends to a measure as. and, in fact, AL-) = A(-). By the definition,
(AAB,): k=1,2,3,...} is stationary which implies that A, extends to a
measure a.s. for every t. Finally observe that

A*(C) = f/xC(u,s)J\s(du)ds v C e B(u) x ([0, 0)). O

As mentioned at the beginning of this section, the requirement that Af be
bounded can be relaxed. In order to relax this assumption, we require an
extension of Theorem 3.8 to demonstrate the compactness of the state processes.
The notation is the same as for Theorem 3.8 and a little new notation is needed.

Let & denote the set of all real-valued convex functions ® defined on R*
satisfying ®(0) = 0, ® is nondecreasing and ®(¢)/t - « as t - . Refer to the
Appendix for the definition of, and general results pertaining to, || - ||¢ 7

4.5 THEOREM. Let (E, r) be arbitrary and let { X} be a family of processes.
Let C, be a subalgebra of C(E) and let D be the collection of f € C(E) such that
for every ¢ > 0 and T > 0 there exist (Y,, Z,) € A , with

(4.4) supE| sup |Y,(¢) — f(X,(2))l| <e
« lte[o,TIna

and

(4.5) SUupE[||IZ,Jl¢. 7] < 00 forsome ® € &.

If C, is contained in the closure of D (in the sup norm), then {fo°X,} is
relatively compact for each f € C,; more generally, {(f,,..., fz)° X,} is rela-
tively compact in Dgi[0, ) for all f,,..., f, € C,,; 1 < k < oo0.

4.6 REMARK. Condition (4.5) will be satisfied if and only if {Z(¢): 0 < ¢t < T,
all o} is uniformly integrable [Ethier and Kurtz (1986), Appendix, Proposition
2.2].
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ProoF oF THEOREM 4.5. We must modify the proof of Theorem 3.8 only
slightly. Using the generalization of Holder’s inequality, for 0 < r < T,

r+é
[ Mh(s)1ds < 20Blle, raillXcr,replle, 700

r

and observe that
) T+1
IIX(r, r+8)||‘Il,T+1 = lnf{t > 0: ./(.) ‘I’(X(r, r+8)(s)/t) ds < 1}
=inf{¢ > 0: §¥(1/¢) < 1}

= 1/97Y(1/8).

Thus as 8 = 0, [[X, ,+slle,7+1 = 0. Replacing |||, 7+, in the proof by
Il llg, 7+, yields the result. O

We now extend Theorem 4.1.

4.7 THEOREM . Let E and U be locally compact, separable metric spaces.
Let A: 9(A) » C(E X U), 2(A) c C(E) satisfy conditions (i) and (iv) and
D(A) is an algebra and let u satisfy condition (v). Suppose ¢ € C(U) is strictly
positive and satisfies:

(8) [ dp < o
(b) For each f € 9(A), 3 constants a;, b; > 0 such that

|Af(x,u)| <a;+ b -y(u) Vax,u.

Then there exists a stationary relaxed solution (X(-), A.)) to the controlled
martingale problem for A with

E[xr(X(0))Ay(Tp)] =p(T; xT,) VT, € (E), T, € (V).

Proor. Without loss of generality, we can assume ¢ is bounded away from
0. Otherwise, replace ¢ by ¢ + 1.

For m =1,2,3,..., let y,, =27y vV 2™) and k,, = [{,, du. The fact that
k,, < oo follows from (a). Define A,, on 2(A) with images in C(E X U) by
A, f(x, u) = Af(x, u)/¥,(u) and define p, € P(E X U) by p(T) =
k. Yr¥,, du. The boundedness of A, f is due to (b). For each m, (A,, u, m)
satisfies the conditions of Theorem 4.1 and therefore there is a stationary relaxed
solution (X ™(-), A™) of the controlled martingale problem for (4,,, ¢,,). We will
obtain a stationary relaxed solution to the controlled martingale problem for
(A, p) as a weak limit of {(X™(-), A™)}.

Compactness of {A7} is established in a similar manner to that in the
proof of Theorem 4.1. This requires two observations. First, p, = p since
Y/ /R, <¢+1 for each m and ¢,/k,, —» 1 pointwise as m — co. Second,
E[ [{A?(B)ds] = tu,(E X B). Therefore there exists a relaxed control A. such
that [fA?(-)ds = [{A(-)ds for all t > 0. The stationarity of A. follows as in
Theorem 4.1.
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To establish compactness of {X™} we apply Theorems 3.7 and 4.5. We check
the conditions of Theorem 4.5. For fixed f € 2(A), set Y*"=fo X™ and
Z™() = [yA, f(X™(+), u)A(du). We only need to verify (3.3) since (3.2) is
trivially satisfied.

By (a), there exists ® € & such that [® o dpu < oo [Ethier and Kurtz (1986),
Appendix, Proposition 2.2]. Then for each m,

)

||

< B[ [7[ 0140 1(X(0), u)) N7 (a)

J At (X7(2), ) Ni(du)

= T[(|Anf ) din
= T [O(IAF /¥ ) ¥ i

< T[O(|Af )/ ¥m di < T [®(a; + by) du < oo.

The first inequality involves Jensen’s inequality and the second follows from the
convexity of ®. Since ||Z,]l¢, 7 < [{O(IZ,(t)]) dt + 1, (3.3) is satisfied and {X ™} is
relatively compact.

Let (X(-), A.) be a weak limit of (X™(-), A™) and without loss of generality
assume the entire sequence converges. We now show that (X(-), A.) is a solution
of the controlled martingale problem for A. The stationarity follows directly
from the stationarity of (X™(-), A7?).

Again, by a monotone class argument, for each fe& 2(A), f(X(¢t)) —
J&uAF(X(s), u) A (du)ds is an {#X 2}-martingale if and only if

B[ ) ~ (@) = [ [ ArX(0), )4 ()

(4.6) "
tl
<T1[" | hi(X(m,u)As(du)ds] ~ o
i=17t,-8U
whenever 0 <a <b, ¢,...,t,€[0,a], 0<§;<t, i=1,...,n, and h,,...,
h, € C(E X U).

Fix fe 2(A). Let D= {t=0: P{X(¢t)=X(t—)} =1} and fix a,b,¢,
ceus by 84,...,8, € D. Let H(X, A) denote the LHS of (4.6) and let H,,(X™, A™)
denote the same expression with A, X and A replaced by A,,, X™ and A™,
respectively. We will show

H(X,A)= lim H, (X™ A™)
m— o0
and hence equals 0 since (X™(-), A) is a solution of the controlled martingale

problem for A,,. As in Theorem 4.1, we only need to consider the integral parts
of H(X, A) and H, (X™, A™).
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To simplify notation, for any function F, define

1(F) = B| [* FCE(0),0) ) )

SN LIESBRAICEREY
and
I(F) = E[LbeF(X(s), u)A,(du) dsﬁ]ﬁllftt’_sfvhi(X(ti), u)A,(du) ds].

First note that conditions (a) and (b) imply that there exists g; € C(E x U),
J=123... with g; > Af in LY(dp). It follows that I (g,) = I,(Af) uni-
formly in m as j — co. Similarly, as j — o, I(g,) = I(Af). Finally, for each
&, 1.(g;) = I(g;) as m — co. Therefore (4.6) holds for a, b, ¢,,...,¢,,8,,...,
8, € D and hence (4.6) holds for all0 < a < b, ¢,...,t,€[0,a],0 <4, < ¢, by
the right continuity of X. Therefore (X(:), A.) is a solution of the controlled
martingale problem for A. O

APPENDIX

Let ® be a nonnegative convex function on [0, c0) with ®(0) = 0. Define L4(R)
to be the space of equivalence classes of functions f on R such that

fR‘D(If(t)I/S) dt < o

for some s > 0. Define the Luxemburg norm || - ||, on L4(R) by

1llo = inf{s >0: [@(1/()/s) de < 1}

and note that L(R) is a Banach space under || - ||o. Lg(R) is an Orlicz space.

We now introduce the conjugate of ® in the sense of Young. Let ¢ = ®’ and
define the inverse ¢ of ¢ by y(¢) = inf{s > 0: ¢(s) > ¢}. Then the conjugate of
® is defined to be

¥(t) = foﬂp(s)ds.

Note that ¥ is a nonnegative convex function on [0, o) with ¥(0) = 0 and so the
norm || - ||¢ can be defined as above.
We state the following inequalities without proof [see Weiss (1956)].
1. Young’s inequality: ab < ®(a) + ¥(b).
2. Holder’s inequality [|f(£)g(t)|d < 21 f llsllglls-

3. I1fle < [®UFHDdE+ 1.



SOLUTIONS FOR CONTROLLED MARTINGALE PROBLEMS 205

For T > 0, we can define the norm || - || 1 by

. T
117 = int{s > 0: ["0(17(0)/s) dt < 1}
and note that each of these inequalities remains valid using the norm || - ||, 7.
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