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SAMPLE BOUNDEDNESS OF STOCHASTIC PROCESSES
UNDER INCREMENT CONDITIONS!

By MICHEL TALAGRAND
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Let (T, d) be a compact metric space of diameter D, and || - || be an
Orlicz norm. When is it true that all (separable) processes (X,),cr that
satisfy the increment condition || X, — X,||, < d(¢, s) for all s,¢ in T are
sample bounded? We give optimal necessary conditions and optimal sufficient
conditions in terms of the existence of a probability measure m on T that
satisfies an integral condition [P f(e, m(B(x, ¢))) de < K for each x in T,
where f is a function suitably related to ®. When T is a compact group and
d is translation invariant, we are able to compute the necessary and sufficient
condition in several cases.
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1. Introduction. Consider a metric space (T, d). A stochastic process
(X));er is a collection of random variables (r.v.) indexed by T defined on a
probability space (£, =, P). A rather important problem can be stated, some-
what imprecisely, as follows. Suppose that we have some control on the incre-
ments X, — X, that is, we have some smallness property of these r.v.’s depend-
ing on d(¢, u). What can we say about the regularity of the trajectories of the
process? This has of course received considerable attention. The fundamental
results of Kolmogorov are still much used. Along the same line as Kolmogorov’s
conditions is the following optimal result, due to Ibragimov [7], Klass and Hahn
[8] and Kéno [9]. If T = [0, 1], and the distance d is given by d(¢, u) = 5(|t — u|)
for some increasing concave function 7, then we have Theorem 1.1.

THEOREM 1.1. Let p > 1. All processes satisfying || X, — X, < d(t, u) are
sample bounded if and only if the integral [} n(e)/e'*Y/Pde is finite.

While this is an important result, its true nature is obscured by the use of the
special properties of the index set. Much understanding has been gained by
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2 M. TALAGRAND

looking at the problem in an abstract way. An important tool has been the use of
the covering numbers N(e) = N(e, T, d) of T, that is, the smallest number of
open balls of radius ¢ needed to cover T. Consider now a Young function ®, that
is, a positive, symmetric, convex function with ®(0) = 0. For a random variable
X, we define its Orlicz norm || X||, by

- sp-ossfof ]

(if no such A exists, || X||, = o). The corresponding space L, is the set of r.v.’s
X for which || X||4 < oo. Consider the increment condition

(*) ViueT, |IX,-X,lo<d(tu)
or, equivalently,
Xt_ Xu
Vt,ueT, E@(m)sl.

We denote by D = D(T) the diameter of T. We then have thé following
important result.

THEOREM 1.2. For any process satisfying (*), we have

E( Sup (X, - Xu)) < K ["0Y(N(¢)) de.
t,ueT 0

Moreover, if the right-hand side is finite, (X,),cr has a version that is sample

continuous.

By Sup, ,c7(X; — X,) we mean throughout the paper the essential supre-
mum of the (in general uncountable) collection of r.v. X, — X,. This quantity is
natural to introduce; since we have only information on the increments X, — X,
we know nothing about the variables X, themselves. We could also use the
quantity Sup, . (X, — X, ) for a fixed ¢, in T. In the sub-Gaussian case [®(x) =
expx?) — 1], Theorem 1.2 is due to Dudley [3], and plays an important role in
the development of the theory of Gaussian processes. The general case is more
delicate, and was obtained (with minor differences) independently by Kéno [10]
and Pisier [12, 13]. Theorem 1.2 has been generalized by Fernique [5] and Weber
[15], who replaced condition (*) by more subtle conditions on the tails of
X, — X, this is definitely more appropriate in some situations (e.g., the study of
p-stable processes). Their conditions however are also based on the covering
numbers N(e, T, d). Unfortunately, covering numbers are not a very precise way
to describe a metric space; in particular, they give too much importance to the
parts of the space that are sparse. So, while Theorem 1.2 is fairly sharp, the
finiteness of the integral [ ® ~(N(e)) de is by no means necessary to ensure a
good behavior of the processes satisfying (*). (The typical situation where this
condition is too strong is when T consists of a converging sequence and its limit.)
The purpose of this paper is to investigate the use of a more precise tool, the



SAMPLE BOUNDEDNESS 3

existence of special probability measures on T that are called majorizing mea-
sures. Typically in this paper we call a probability m a majorizing measure if it
satisfies a condition of the type

Sup fODf(e, m(B(x, ¢))) de < w0

for some function f:R*2? - R*, where B(x, ¢) is the open ball of center x and
radius e. The strength of this condition is determined by the rate of growth of
the function f(e, t) at 0. The point of this approach is that the global integral
condition [ ® ~(N(e)) de is replaced by a family of local integral conditions,
reflecting the local variations of the structure of T. Majorizing measures have
brought a complete understanding of sample continuity of general Gaussian
processes. We refer the reader to the introduction of [14] for more history. The
present paper will try to demonstrate that the use of majorizing measures allows
definite progress in the study of more general processes. It is based on very few
and (originally at least) simple ideas. In order not to obscure them, we have
chosen not to consider the more subtle increment conditions as in [5] and [15],
but to consider only condition (*), which already has a significant degree of
generality.

The central problem we study is as follows: For which metric spaces (T, d)
and which Young functions @ is it true that all processes satisfying (*)
also satisfy Sup, (X, — X,) < o as.? (Some attention will also be paid to
sample continuity, but the results are less complete there.) As we will see,
this implies the existence of a constant A, independent of the process, for which
E Sup, (X, — X,) < A. The smallest such constant will be denoted by S =
S(T, d, ®).

In Section 2, we relate S(T, d, ®) to certain (finitely additive) measures on
T X T. Since we are interested in understanding S(T, d, ®) in terms of the
geometry of T, but not of T X T, the characterizations there are not satisfac-
tory. They are however the foundations for much of the rest of the work. The
main step here is due to P. Assouad. I am most indebted to G. Pisier, from whom
I learned it, since this made this paper possible.

In Section 3, we investigate the consequences of the hypothesis S =
S(T, d, ®) < o on the structure of T. Denote by ¢ the derivative of ®. The
norm | - ||, depends only, within equivalence, on the behavior of ® at oo; so
there is no essential loss of generality to assume that ¢ is strictly increasing
(which avoids some inessential technicalities). We set ¢ = ¢~ !. We assume from
now on (7, d) compact (we will see that this does not decrease the generality).
The following result shows how majorizing measures come naturally into the
problem.

THEOREM 1.3. There exists a probability measure m on T such that

(1.1) vxeT, f()%(m)desw.
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We should mention at this point that no efforts are made to find sharp
numerical constants.

Let us say that a metric space (T, d) is ultrametric if the following condition
holds:

Vs,t,ueT, d(s,u)<max(d(s,t),d(t, u)).

In an ultrametric space, two balls of the same radius are either disjoint or
identical; this makes the structure of these spaces rather simple. Ultrametric
spaces play a natural role in the study of Gaussian processes [14], and will also
be important here. When (T, d) is ultrametric, we can reinforce Theorem 1.3.

THEOREM 14. If (T, d) is ultrametric compact, there exists a probability
measure m on T such that

(1.2) VxeT, )dssSS.

R

One can show that (1.2) is always stronger than (1.1), but in general it is strictly
stronger, e.g., if ®(x) = |x|?, p > L.

In Section 4, we investigate the converse problem. Given a probability mea-
sure m on T, is it true that

D__, 1
S(T,d,®) < Kiq;fo ® ( (B ) ) de

We prove that this is the case provided ® satisfies a growth condition that
essentially means that it grows faster than |x|P for some p > 1; but the proof is
unexpectedly hard. We show that this result is a natural generalization of the
Pisier—-Kono Theorem 1.2. In the case where ® increases fast enough at
(essentially faster than x*!°6!°¢* for some a > 0), we show that the convergence
of the integral in (1.1) and (1.2) are equivalent, so our results provide a complete
understanding of the condition S(7, d, ®) < c in that case.

As already mentioned, the basic superiority of majorizing measures over
covering numbers lies in their ability to take into account the lack of homogene-
ity of the index space. However, in order to fully justify the theory, it is wise to
show that the underlying ideas also bring clarification in the more classical case
where homogeneity is not an issue. A typical case is when T is a compact group
(or a compact subset of a nonempty interior of a locally compact group), and d is
translation invariant. In that case, all the points of T play the same role, and
majorizing measure conditions are equivalent to integral conditions on the
covering numbers. In Section 5, we investigate three specific examples. We first
deal with the cube [0,1]% provided with the usual distance. We show that
S(T, d, ) < « is equivalent to the condition of Theorem 1.3, so in that case
Theorem 1.3 is optimal. Next, we investigate the case of T = [0,1], provided
with a distance as in Theorem 1.1, and we show how to compute S(T, d, ®) for
any Orlicz function @, thus generalizing Theorem 1.1. Finally, we investigate a
genuinely complex case, where ®(x) = |x|?, and where T' = U? X H, where U9 is
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the g-dimensional torus, H is ultrametric and T is provided with the product
distance. The appropriate integral condition there lies strictly between those of
Theorems 1.3 and 1.4. There is no doubt that the exact conditions could be found
in many more situations but the energy of the author was exhausted long before
the power of the method.

Marcus and Pisier [11] and Weber [16] have investigated when stochastic
processes satisfying condition (*) have their sample paths in exponential-type
Orlicz spaces pertaining to measures on 7. Our methods allow us to settle this
problem; this is the object of Section 6.

2. Preliminaries; conditions on 7' X T. Our first task is to spell out what
we will need concerning Young functions. It is not more difficult (and often much
clearer) to work with general Young functions than with specific choices; but the
reader who still refuses to use them can set ®(¢) = t?/p, ¥(¢) = t9/q (p > 1,
1/p +1/q = 1) and &(t) = t~/Pq~'/9 throughout the paper. Most of our re-
sults are not any easier in that special case. ‘

Consider ¢:R*— R™* such that ¢(0) = 0, ¢ is strictly increasing continuous;
denote ¢ = ¢~ 1 Set, for x > 0, ®(x) = [Fo(¢)dt, ¥(x) = [F ¢(¢)dt. Then
and ¥ are called conjugate Young functions. The following obvious inequalities
are very useful:

(2.1) O(x) <xo(x), Y¥(x)<axy(x).
For u, v > 0, we have Young’s inequality [17],
(2.2) u < ®(u) + ¥(v).
It will be most useful when written as

u a
(2.3) u< b@(;) ; b\I'(Z),

for u > 0, a, b > 0. We extend @ to R by ®(x) = ®(|x|).

In Theorem 1.4, we have met the function ® ~!(1/x). For technical reasons, it
is not convenient to work with this function (in particular, it need not be convex)
so we introduce for x > 0 the function &(x) = 1/(x¥~!(1/x)). The next lemma
relates £ and @ (1 /x).

LEMMA 2.1. For x > 0, we have 1@ '(1/x) < £(x) < ®7'(1/x).

Proor. Using (2.1), we have, for ¢ > 0,

o ) < (12 < Hy(y(0) - o

Letting t = ¥~ 1(1/x) yields ®(&(x)) < 1/x, s0 £(x) < ® (1 /x). Using (2.2), we
have

2¥(¢t)

2¥(t) = t< cI)( ) + ¥(¢t)
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so Y(t) < ®2¥(t)/t). Setting t = ¥ Y 1/x) yields 1/x < ®(2&(x)), ie,
107 (1/x) < ¢(x). O

LemmMmaA 2.2. (a) x®(1/x) is convex decreasing.
(b) x®~Y(1/x) is concave increasing.
(c) &(x) is convex decreasing.

Proor. (a) Let f(x)=x®(1/x), so f'(x) = D®(1/x) — 1/x)¢p(1/x) is less
than or equal to 0 by (2.1). To show that f’ increases, it suffices to show that
h(t) = ®(t) — té(t) decreases; but for u > t, we have, since ®(u) < ®(¢) +
(u = t)(u),

h(u) < ®(t) + (u - t)p(u) — up(u) = ©(¢) — t¢(u) < h(2).

(b) Let f(x) = x@7X(1/x), s0 f'(x) = @7'(1/x) — (1/x)[1/$(P~(1/x))]. Set
h(t) =t —[®(t)/d(t)], so f'(x)=h(®P ¥(1/x)) and A(t) >0 by (2.1). Since
x — ® (1 /x) decreases, to show that f’ decreases, it is enough to show that A
increases; but for u > ¢, we have )

o(2) (u—t)op(u) + (¢)
h(t)St_W=u— ¢(u) sh(u).
(¢) By (b), f(x)=x¥"Y(1/x) is concave increasing, so &(x)=1/f(x) is
decreasing and £'(x) = —[f'(x)/f %(x)] is increasing since f’ > 0 decreases and

f(x) increases. O

We should mention that our definition of ® (always finite) excludes the case
where || - || is the supremum norm || - ||, but this case is completely uninterest-
ing since S(T\, d, || - ||,) < o if and only if T has a finite diameter.

We denote by A the diagonal of T' X T; and by G the space of continuous
bounded functions on T X T \ A, provided with the supremum norm. The main
result of this section is as follows.

THEOREM 2.3. Let (T,d) be a metric space (we do not assume T to be
compact). Then the following are equivalent:

(a) For any process (X,),cr that satisfies (*), we have P(Sup, (X, — X,) <
o) > 0.

(b) For each € > 0, there is A > 0, such that for each process (X,),;r that
satisfies (*), we have P(Sup, (X, — X,) 2 A) <e.

(c) There exists a constant S such that for each process (X,), 1 that satisfies
(*), we have E(Sup, (X, — X,)) <S.

(d) There exists a constant M, a positive linear functional § on G, with
0(1) = 1, such that for any Lipschitz function f on T we have

(2.4) 0(¢(M)) <1= Sup (f(¢) - f(u)) < M.

d(t’ lt) t,ueT
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Moreover, these conditions imply that T is totally bounded, and if S, M are
chosen minimal, we have M < S < 2M.

We note that in (d), we assume f Lipschitz in order to ensure that the
function ([ f(¢) — f(u)]/d(¢, u)) that is defined on T X T \ A belongs to G;
the Lipschitz constant of f, which can be arbitrarily large, is irrelevant.

The main contribution to Theorem 2.3 is due to Assouad [1] (after much work
by others); the rest is essentially routine (see, e.g., [5], Theorem 5.2).

Proor. (a) = (b). Assume that (b) fails. Then for some & > 0, and for each
n > 0, there is a process (X, ,),cr that satisfies (*) and for which

P( Sup (X, X,,,) 2 22n+1) > e

Let us fix v in T. We can replace the processes (X, ) by (X, , — X, )ieTs SO

there is no loss of generality to assume X, n=0. The two processes X, and
X, , still satisfy (), while )
X~ Xy n <X, + X, .

So for each n, by choosing either X, or X, we can find a process (Y, ,), with
Y, ,>0and Y = 0 that satisfies (*) and for which

t,n =
(2.5) P( Sup Y, , > 22") > ¢/2.
t
We can assume that the processes (Y, ), are independent. For each ¢, set

Y,=%,..:27"Y, ,. [Since ||Y, ,lls < d(t,v), the series converges in L,.] The
convexity of ® shows that Y, satisfies (*), since

El® z"71212_nYt,n_Z"Ilzl2_nyvu,n E 22 P Y _Yu,n 1
d(t, 2) = atu) || =t

n>1

By independence and (2.5), we have
P(Sup Sup 27", , = 2") =1

so P(Sup,Y, = ) = 1since Y, , > 0. Since Y, = 0, we have shown that (a) fails.

t,n =

(b) = (d) Let M be large enough that for any process that satisfies (*), we
have

(2.6) P( SupX,— X, > M) <1
t,u

Consider the subset % of G that consists of functions of the type
2 o @([ fi(8) — fi(u)] /d(¢, u)),
iel
where [ is finite, a; >0, ¥;.;a, =1, f; is a Lipschitz function on T and

Sup, ,r(fi(t) — f; (u)) > M. We show that any function of ¥ takes values
greater than 1. Indeed, if we provide the set I with the probability P given by
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P({i}) = a;, we can define a process (X,),cr on this probability space by
X,(i) = f(¢). We have P(Sup, (X, — X,) > M) = 1, so by the choice of M, the
process must fail condition (*); so, for some ¢, u in T, we have

Za@(fi(t) _fi(u)) X, - X

iel d(t’ u) - Eq)( d(t’ u)u) i 1’

which proves the claim.

By definition, % is convex. Denote by %’ the set of functions g in G such that
g < 1. Then ¥’ is open convex, and we have shown that N ¢’ = @. It follows
from the geometric form of the Hahn-Banach theorem that there is a linear
functional 6 on G and a € R such that 6(g) < a for g € ¢’ and 0(g) > a for
g € %. Since %’ contains 0, we have a > 0. Since §(Ag) < a whenever g < 0,
A > 0 we have 0(g) < 0, so 0 is positive. Also 6(1) < a; replacing 6 by 6,/6(1), we
can assume that (1) = 1, and that we have 6(g) > 1 whenever g € €. If f isa
Lipschitz function on T, such that Sup, (f(¢) — f(u)) > M, by definition ¥
contains ®([ f(¢) — f(u)]/d(¢, u)), so (P f(¢t) — f(uw)]/d(¢, u))) = 1.1t follows
that

f(t) — f(u)
0|0 —— 1 - M.
( ( a(t,u) <l= S;lf(f(t) f(u)) <
If we replace f by Af for A < 1 and let A go to 1, we get (2.4).

(d) = (c). We are going to show that whenever a process satisfies (*), we have

ESup(X,— X,) <2M.
tu

We first suppose that the basic probability space (2, =, P) is such that = is
finite. For simplicity of the notation, we identify points in each atom of =, so we
can assume that Q is finite, and that P({w}) > 0 for each w in Q. Consider a
process (X,), . defined on Q that satisfies (). For w in Q, ¢, u in T, ¢t # u, we
set

X(w) - X, (@)
8.(t,u) =2 T attw )
Condition (*) means that for each ¢ # u, we have
(2.7) ¥ P({w))eu(tu) < 1.
weQ

In particular, for each w, we have

1X,(0) = X(o)] < d(t,u)®~H(1/P({w})),

so t > X,(w) is Lipschitz and hence g, belongs to G. Since § > 0, 6(1) = 1, we
get from (2.7) that

(28) T P((e))0(e.) = o LP({})e.) < 1.

we Q
For w in @, set a, = max(l, 6(g,)). The convexity of ® shows that for any
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t + u, we have

)

Xi(w) - X (0))  g.(t u)
(I)( a,d(t, u) )S a

w

SO

X, (0) - X, (w)
”(“’(—dur)) <!

and (2.4) implies that
Sup (X,(v) — X,(«)) < Ma,,
t,u

It follows from (2.8) that
ESup(X,(w) — X,(0)) <M Y P({w}))a, <2M.
t,u

weQ

We now turn to the general case. It is enough to show that for any countable
subset D of T, we have

(2.9) E Sup (X,—- X,) <2M.
t,ueD

Since D is countable, we can assume the o-field = to be countably generated, so
there exists an increasing sequence =, of finite o-fields whose union generates 3.
Denote by X/ the conditional expectation E(X,|Z,). Since ® is convex, and
since E®((X, — X,)/d(t, u)) < 1 for each t, u, Jensen’s inequality shows that
EQ((X; — X)/d(t, u)) < 1, so the processes X/* satisfy condition (*). Since =,
is finite, we have seen that E Sup, , (X — X7) < 2M. So (2.9) follows from
the fact that X — X, P-as.

Since (c) = (b) trivially, we have proved the equivalence of (a)—(d). To prove
that one can take M < S, it is enough to note that (2.6) holds whenever M > S,
and to use a compactness argument. It remains to prove that T is totally
bounded, and we actually prove the fact, due to Pisier [12], that the covering
numbers N(e) of T satisfy N(2¢) < ®(2S/¢), where S is as in (d). Let ¢,,...,¢
be points of T' such that d(¢,, t;) > efori <, Let 8’> 8. For i < n, define

fi(t) = S'max(0,1 — 2d(¢, ¢;) /¢),

so f, is Lipschitz of Lipschitz constant less than or equal to 2S’/e. Take
@ ={1,..., n}, with the uniform probability. Define X,(i) = f,(¢). Since for
¢ # u, there are at most two indexes i < n such that f,(¢) # 0 or f,(u) # 0, we
have

n

E(I)(Xt_Xu) 2 (28').

_Q JR—
d(t,u) =

“n €
On the other hand, E Sup(X, — X,) = S’ > S, so condition (*) must fail, and
this implies n < 20(28’ /¢); this finishes the proof. O
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A process (X,),cr that satisfies (*) is a 1-Lipschitz map from T to L4. This
map has a unique extension to the completion 7' of 7. When S(T, d, ®) < oo,
Theorem 2.4 shows that 7 is compact, and it is clear that S(7', d, ®) = S(T, d, ),
so there is actually no loss of generality to assume that (T, d) is compact. We
make this hypothesis throughout the rest of the paper; it often allows simpler
statements.

For application to questions of sample continuity, we note the following
statement. Its proof is similar to the proof of the equivalence of (c) and (d) in
Theorem 2.3, and therefore is left to the reader.

THEOREM 24. Let 8§ > 0. The following are equivalent.

(a) There exists a constant S; such that for each process satisfying (*), we
have

E Sup (X,-X,) <S;.
d(t,u)<8

(b) There exists a constant My and a positive linear functional 6 on G such
that for each Lipschitz function f on T, we have

G(Q(M))sl= Sup (f(¢) — f(u)) < M;,.

d(t’ u) d(t,u)<8
Moreover, the best possible choices of Sy and M are related by My < S; < 2 M.

PROPOSITION 2.5. Assume that there is a probability v on T X T such that
for any Lipschitz function f on T, we have

o M dv(t,u) <1= Sup(f(¢)—f(u)) <M.
TXTNA d(t,u) tu
Then S(T, d, ®) < 2M.

Proor. Consider the function 6 on G given by

2.10 0 = dv
(2.10) @=f[ &
and use Theorem 2.4. O

It is a natural question whether the linear functional # of Theorem 2.3 can be
induced by a measure on T X T as in (2.10). The question does not seem to be of
great importance in the present perspective, although it might be related to more
important open problems that we will mention later. It is a mere exercise to see
that a linear functional 8 on G is given by (2.10) for some probability » on T X T
if and only if there exists a function A from R* to R*, with lim,_, , A(¢) = oo,
such that 6(g) < 1 whenever g(¢, u) < h(d(t, u)). Once this is noted, one can
prove as in Theorem 2.3 the following.
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PROPOSITION 2.6. The following are equivalent.

(a) There is a probability measure v on T X T, and K > 0 such that for any
Lipschitz function f on T, we have

ffTXT\Ad)( f(;)(;:‘()u) ) dv(t,u) <1= Stup(f(t) - f(u)) < K.

(b) There is a function h from R* to R* with lim,_, , h(t) = o, and L > 0,
such that for any process (X,),cr that satisfies

viueT Eo| 2| a4
’ue ’ d(t,u) < ( (t’u))’

we have E Sup(X, — X,) < L.

(It is also possible, as in Theorem 2.4, to give other equivalent conditions.)
When lim, _,  [®(x)/x] = o0, we do not have any example where S(T, d, ®) <
0, but where the conditions of Proposition 2.6 fail. When ®(x) = |x|, a simple
but still instructive example is given by T = [0, 1], with the usual distance. Then
if (X,); <o, satisfies (*), for each sequence 0 < uy < u; < -++ ,u, < 1 we have

E( Z IXui - Xui_l I) < E |ui - ui—ll <1,

l<i<n l<i<n

so if (X,) is separable, the expected total variation of the trajectories is less than
or equal to 1, and, in particular, S([0,1],d,| - |) < 1.

For v in [0,1], & > 0, consider the function ff given by f(#) = max(0,1 —
|t — v|/e). We have |f(¢) — f(u)| < |t — u|/e for any t,u,0 < 1if [t —v| <
or |u — v| < ¢ and 0 otherwise. It is a simple exercise to show that for any A > 0
and any probability » on T X T, one can find ¢ > 0, v in [0, 1] with

‘/‘/;‘XT\DA

while Sup, (Af5(t) — Aff(u)) = A; so the conditions of Proposition 2.6 do not
hold.

An interesting feature of Theorem 2.3 is the automatic integrability of
Sup, (X, — X,). It is a natural question to ask whether one can say more. The
following proposition covers a number of cases.

fo(¢) — f5(u)
—d(t,T)_—‘ dV(t, u) <1,

PROPOSITION 2.7. Assume that there is Orlicz function T and 0 < a such
that

(2.11) a>®7(4), b=1= d(ab)> ad(a)l(d).

Then the conditions of Theorem 2.3 imply that for any process that satisfies (*),
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we have

| sup (%, - x.)
t,u

< KM/a,
r
where K depends on T only, and M is as in Theorem 2.3 and 2.4.

PrOOF. As in the proof of Theorem 2.3, (a) = (b), it is enough to assume Q
finite. For each w, we define A(w) as the infimum of the A > 0 for which
0 P([ X (w) — X (w)]/Ad(t, u))) < 1. So, if A(w) # 0, we have

X(w) - X, (0
- fof Hebxter))
Define
A, = {(t,u);1X(@) - X (@) = @7Y(}) d(t, )},
B,=TxT\(AUA,).

If h(w) = 1, we have, from (2.11),

X(0) = X,(0) | [1X0) = X,(0)

‘I’( a(t, u) ) = ‘I’( h(o)d(t, u) ”(“’))

Xt(w) - Xu(w)
(W)r(h("’))h!t,u).

> ad

Since P([X(w) — X (w)]/h(w)d(t, u))lg(t, u) < 3, from (2.12) we have
(P([X(w) — X, (@)]/d(¢, u)l, (2 u)) = 3. It follows that

H(w) — X, (0
e = o[ B~ 5

If A(w) < 1, we have I'(h(w)) < T'(1); so we have

ET(h(w)) < T(1) + %0 Y P({w))®

we

(Xt(w) - Xu(w)))
d(t, u) '

So

[1+ ()]

Q|

ET(h(w)) <T(1) + % <

and, in particular, ||A(w)||r < (2/a)[1 + T'(1)]. Since by condition (d) of Theorem
2.3 we have Sup, (X,(w) — X, (w)) < Mh(w), the proof is complete. O

Proposition 2.7 applies in particular to the case where ®(x) = x?, p > 1; we
have taken care in the statement of (2.11) to eliminate the values of a, b near 0
since it is the behavior of @, I' at oo that really matters. The following example
shows that in general one does not have ||Sup(X, — X,)|lo < .
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PROPOSITION 2.8. Let ®(x) =xlog(x + 1). Let T:R*—> R* be such that
lim, _,  ['(x)/x = co. Then there exists a space (T, d) that satisfies the condi-
tions of Theorem 2.3, and a process (X,),cr that satisfies (*), but for which
Er(supt, u(Xt - Xu)) = 0

Proor. The hypothesis on T' shows that there is a sequence (n;);, such
that 327'n,/i < oo but ZT'(2")2"%n,/i = co. We can obviously assume n; > 2//2,
Weset T =U,_;_, T;, where T, = {oo} and card T; = n, if i < co. For ¢ in T,
uin T;, u + t, we set d( t,u) = max(2 ,277). It follows e.g., from Theorem 1 2
(or the generalizations we will give later on) that S(T, d,®) < . For i > 1,
consider disjoint sets (A, ;),er, in @, with P(A, ;) = 272~ 1/(3i log2). For i # j,
we can assume 1ndependence of the sequences (A, Jeer, and (A, )teTj . For
t € T}, define X, = 2‘1A »soeasily || X||p < 27" % Define X = 0. The definition
of d shows that (X,) satisfies (*). But Sup,. 7, X, = 2on A; = =Uer 4, and
P(A;) =27%7'n,/3ilog2. Since the sets A, are 1ndependent and since
3T(2Y)P(A;) = oo, we have

Er( s:’uf(x, - X,,)) > Er( Sup X,) - . | 0

We say that @ satisfies the A, condition if for some constant C, and all x > 1,
we have ®(2x) < C®(x). The following relates the conditions of sample bound-
edness and sample continuity. We send the reader, e.g., to [5] for the notion of
the separable process.

THEOREM 2.9. Assume that lim,_,  ®(x)/x = co. Then the following are
equivalent.

(a) @ satisfies the A, condition.
(b) For each compact space (T, d) that satisfies S(T, d, ®) < o0, each sepa-
rable process (X,),cr that satisfies (*) is sample continuous.

PrOOF. (b) = (a). Assume that @ fails the A, condition. Then there is an
increasing sequence (a;);,, with ®(2a;) > 2'*1(<I>(a,) + 1). Denote by n; the
integer part of 27'®(2a;), so n; > 2®(a;). We set T = Usci<o T}, where T
{0} and card T; = n; if i < o0. For tinT, ueT, u+t, we set d(t, u)—
max(a; ', a;'!) (where a;! = 0). We note that (T, d) is ultrametric. Define the
probablhty m on T by m({oo}) 3, m({t}) = 27%/n, if t € T,. We note that

a;'®"Y(2'n;) < 2, so if we apply Theorem 4.2 (to be proved later), we see that
S(T d,®) < 0. For each i > 2, denote by (A o)¢er, @ partition of @ in sets of
probability 1/n;. Define X, = 0, and X, =1 A, if ¢ € T,. It is straightforward to
see that this process satlsﬁes (*), since 2(I)(a ) < n; But for each w, t > X,(w)is
not continuous at oo, because it takes the value 1 in each set 7}. This completes
the proof.

(a) = (b). Pisier [12] noted that (b) holds for ® = | - |?, p > 1. His proof relies
on the fact that p-summing operators are p-radonifying. Our argument is of the
same nature (and could be used to prove an abstract theorem), but an important
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difference is that L, need not be reflexive. There seems no way in the proof to
avoid the use of more sophisticated tools than in the rest of the paper, but we
have tried to give the most elementary proof possible. We will need the following
facts, true for any conjugate Young functions ®,¥ [we still assume that
lim, ,  ®(x)/x = c0]. O

LeEMMA 2.10. (a) For any probability space (2, 2, n), Ly = Ly(p) is isomor-
phic to a dual space (actually to the dual of the closure of L* in Ly).
(b) If ® satisfies the A, condition, L™ is dense in Lg.

LeEmMA 2.11.  If @ satisfies the A, condition, Ly(p) has the Radon—Nikodym
property (R.N.P.) [2].

Proor. Denote by A the unit ball of L, so A is o(L,, L,) compact, and
o6(Lgy, Ly) compact. By Lemma 2.10, the span of A is dense in Ly, so Ly is
weakly compactly generated. Since it is isomorphic to a dual space, the result
follows from [2]. )

Since we assume S(T', d, ®) < oo, consider the functional 6 on the space G of
continuous bounded functions on 7' X T \ A given by Theorem 2.3. For g in G,
define ||g||o = Inf{A > 0; 6(®(g/A)) < 1}. Denote by L4(6) the completion of G
with respect to || - ||. The basic fact is that L4(8) has the R.N.P. To see it, one
can introduce the Stone—Cech compactification K of T X T \ A, so C(K) can
be identified with G and 6 can be identified with a Radon probability 6’ on K;
and L4(8) is isometric to Lg(8’), so the result follows from Lemma 2.11.

We fix a process (X,),cr that satisfies (*), with basic probability space
(2, 2, P). We denote by Lip(7T') the space of Lipschitz functions on T, provided
with the seminorm || f|, = Sup,.,|[ f(?) — f(u)]/d(t, u)|. We can define a
vector measure m, valued in Lip(T") by m(A) = [, X,dP for A in =. [We have
m,(A) € Lip by condition (*).] We consider the operator U from Lip(T') to G
given by U(f )¢, u) =[f(t) — f(w)]/d(¢, u), so ||U| < 1. We denote by j the
canonical injection from G to L(8). We denote by Z the closure of the range of
JoU in Lg(8). Consider the vector measure m given by m(A) = joU(m,(A))
for A in 3. It is valued in Z. Consider now a finite partition (A;),_, of Q.
For t+ u, we have E(®(X,— X,)/d(t,u))) <1, so by convexity of @,
we have

L P(A)®(E(1,(X, - X,)/d(t,u)P(4))) < 1,

ie, X;., P(A)®U(m(A))t, u)/P(A;)) < 1. As in the proof of Theorem 2.3,
(d) = (c), we see that this implies X;_, P(A,;)|lm(4,)/P(A)|e < 2, so
Y <nllm(A))|l < 2. We have shown that m has bounded variation; the definition
of the Radon-Nikodym property implies that there is a measurable map A, from
Q to Z such that [ ||A,||¢ dP < o0 and [, A, dP = m(A) for A in =.

We fix a point s in T, and we consider the operator V from G to C(T') given
by V(f)(t) = d(s, t)f(t, s) for t # s and V(f )(s) = 0. The basic property of 6 is
that for f in Lip(T'), we have |V(U(f))||, <1 whenever 8(®U(f))) <1, so
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IVeU(f )l < IU(f)llg- It follows that V can be extended by a norm one
operator V from Z to C(T'). Weset h = Vo h,, so for each w, h(w) € C(T). Also
for each A in Z, Vom(A) = [4hdP, so for each t in T, Vom(A)¢t) =
Ja M(@)(¢) dP(w). By definition of m, we have Vo m(A)(¢) = [,(X, — X,)dP. It
follows that X,(w) — X (w) = A(w)(¢) w a.s. The exceptional set might depend
on #; but it does not if the process (X,) is separable, so ¢ - X,(w) is continuous
for almost each w. This concludes the proof. O

3. Necessary conditions. We first prove Theorem 1.3. So we assume S =
S(T, d, ®) < o0, and we want to produce a measure m on T that satisfies (1.1).
Condition (d) of Theorem 2.3 gives us a functional § on G that we can consider
as a finitely additive measure on T' X T \ A. The obvious approach is to try to
construct m from 6. The most obvious choice for m is the average of the
“marginals” of 6. It is almost surprising that such a straightforward approach
works perfectly.

Given a continuous function 4 on T, define h,, h, € G by the formula
h\(t, u) = h(t), hyt, u) = h(u). There are unique probability m,, m, on T such
that 6(h,) = [h(t)dm,, O(h,) = [h(t)dm,, because h — 6(h,) [resp. h —
0(h,)] defines a positive linear functional on C(T') (we remind the reader that T
is now assumed to be compact). We set m = (m, + m,)/2. The following lemma
spells out the relationship between 6 and m that we will use.

LEmMMA 3.1. Let (A)),.;., be a decreasing sequence of closed subsets of T.
Let (d;), <i<n+1 be positive numbers. Consider a function g € G, g > 0, such
that g < d, ., and g(t, u) < d; whenever t,u & A,. Then

o) <2(d + T diom(4).

i<n

Proor. For 1 <i<n, consider a continuous function f,>0 on T with
fi = 1, . Define g;(¢, u) = f(t) + fy(u), so

0(g.(t,u)) = [f,dm, + [f,dm, =2 [f,dm.

We have g <d, +X,_,.,d;,,8;, 50 0(8) <2(d, + X, _;.,di., [f; dm). Tak-
ing the infimum over the choices of f; yields the result. O

We now prove (1.1). We fix x in T; we denote by s the smallest integer for
which 27° < D = D(T). For n > s, we set a, =2""/m(B(x,2™")). By induc-
tion over /, we define n(1) = s, and

n(l) =inf{n>n(l-1);a,> a,q_y}-

Now fix N > 1. We consider an increasing sequence b,, for 1 < < N. Let h(v)
be the unique piecewise affine function from R* to R* that is 0 for v > 275, that
is of slope — b, between 2~ "!*D and 27" and that is constant for v < 2~ 7(V+D),
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Consider the function f on T given by f(¢) = h(d(x, t)). We note that

(3.1) Inff(¢) =0, f(x)= Y 2771,
¢ 1<I<N

Since the sequence (b;) increases, if for some [, 2 < I < N + 1, we have d(x, t),
d(x,u) = 27D then we have

If(t) = f(u)l < |d(x,t) — d(x,u)|b,_, < d(t,u)b,_,.
It follows from Lemma 3.1 that

0(®(M)) <2 Y m(B(x,27"V))d(b,).

d(t,u) I<N
Using (3.1) and condition (d) of Theorem 2.3, we have
(3.2) 2 Y m(B(x,27"®))®(d,) <1= Y 27"D-1p, < S.
I<N I<N

Let A > 0, and make the choice b, = Y(Aa, ;). The definition of the sequence
(n(1)) shows that this sequence increases. We note that by (1.1), for uz > 0 we
have

(¢ (u)) < ¥(w)(¥(u)) = up(u),
so from (3.2) it follows that
2 2 A2 (Aa,q) < 1= X 27" (Aa,g) < 28.

I<N I<N
If we choose A such that equality occurs on the left, we see that A > 1/4S, and
that ¥, _ 27" (Aa,,) < 2S. Since ¢ is increasing, we have
X 27" (a,)/48) < 28;
I<N

since N is arbitrary, we have ¥, , 27" (a,,/4S) < 28. Since a, < a, for
n(l) < n < n(l + 1), we have

_ a, — anl)
E o))
n(l+1)>n>=n() 48 48
so we have
¥ 2y 5] <48
n=s

and (1.1) follows from the inequality

e . - 9-n+1
./;—n ¢( 8Su(B(x, ¢)) ) dex? 4}( 8Su(B(x,27")) )

REMARK. From (2.1), we see that (1.1) implies

/Dm(B(x, e)) q,( e )

€ 8Sm(B(x, ¢)) de <

VxeT,

N
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This is often more convenient that (1.1) because the integrand is a convex
function of m, as is shown by Lemma 2.2. On the other hand, the easily proved
inequality xy(x) < ¥(2x) shows that it has essentially the same strength.

We now present a way to construct majorizing measures, which is based on an
idea of Fernique [4]. We denote throughout the paper the set of probability
measures on T by P(T'). For p € P(T), a > 0, we set

,a(x) = [E(n(B(x, ) de,

where D = D(T') as usual. It is a simple exercise to show that §,.4x)is a
continuous function of x if a > 0.

PROPOSITION 3.2. Assume that for some constant A > 0 and for each a > 0,
we have [r§, [(x)du(x) <A for all p.€ P(T). Then there exists m € P(T)
such that §,, ((x) < A for each x in T.

Proor. Fix a > 0 and B > A. Consider the set % of continuous functions f
on T for which there is p in P(T') such that £, 0(x) < f(x) for all x. Since ¢ is
convex by Lemma 2.2, the map p — §, , is convex and € is convex. There must
exist f € % such that f < B, for otherw1se the Hahn-Banach theorem would
produce » € P(T) such that [fdv > B whenever f € ¥. This would imply
/é,, a dv = B > A, which contradicts our hypothesis. So, for each n, we can find
B, in P(T) such that §, ,-a(x) <A + 27" for all x in T. Since the map
p— £, o(x) is lower semlcontmuous for each x, any weak #* cluster point m of
the sequence p.,, satisfies §,, o(x) < A for all x. O

The reader has noted that the convexity of ¢ is essential in the above proof; in
particular, we could not use the function ® (1 /x) instead of £.

We now suppose that T is ultrametric, and we turn to the proof of Theorem
1.4. Let s be the smallest integer with 27° < D. We fix u in P(T'); we define the
process ( X,), cr With basic probability space (T, p) as follows:

1
X, = 27 ————— |1 —ny.
‘ ngs (M(‘B(t’2_n)) ) B2
Since 27° < D, we have inf,X,(v) = 0 for each v in T. We now prove that this
process satisfies (*). Fix ¢, u in T. Let p be the largest such that d(t, u) < 277,
so that d(¢,u) > 277", By ultrametricity, we have B(¢,2™") = B(u,2™") for
all n < p. It follows that

Xt_Xu < 22—n+p—1 @1 1 1
d(t,u) |~ 5, w(B(2,27m) |70

+@-!

! 1
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Since @ is convex, we get

q)(Xt-Xu) < Z 2—n+p—1(;1 _
attu) | = W(B(6,2 ) )

n>p

1
+ ""—'—_""-"‘—'—'1 —-n
W(Bu,2 ™) P >)’
so E®((X, — X,)/d(t, u)) < 1. Since inf X, = 0, the definition of S shows that

Esup X, = [1‘( Y 2‘”‘2®‘1(m)) du(t) < 8.

nzs

Since £(x) < @ Y(1/x), we get [, §,,o(x) du(x) < 45, and Theorem 1.4 follows
from Proposition 3.2 and Lemma 2.1.

We now compare the integral conditions of (1.1) and (1.2). We first show
(what is not absolutely obvious) that the condition (1.2) is stronger-than (1.1)
(within a factor of 2). If (1.2) holds, for 0 < e < D we have in particular
e® (1 /m(B(x, €))) < 8S, so using (2.1), we have

1 o 8S 8S [8S
m(B(x, ) = ()— "“()
which gives

' sy =

so we get, using (2.1) again,

d’(‘b(m)) < (B0, e))‘b(SSmu;(x,e)_) )

1
= m(B(x,¢)’
SO
€ . 1
¢ sty < (m)
and finally

D €
——— | de < 8S.
-/0 l'b( 8Sm(B(x, ¢)) ) e<8
In the case where ®(x) = x”, p > 1, conditions (1.1) and (1.2) are not
equivalent; but the following result shows that they are equivalent when ®
grows fast enough.
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PROPOSITION 3.3. Assume that there is L > 0 and a sequence a, > 0 with
Y a, < oo such that

(3.3) Vo>a,  2"%(2%) < ®(2"Lv).
Then condition (1.2) implies that
D 1
v X O ———— |de < M,
xeX, j; (m(B(x,e))) e < MS,
where M depends only on L and ¥ a,,.

Proor. Condition (3.3) can be reformulated as follows: There exists a func-
tion A from [0,1] to R with [§ A(e)/ede < o, such that (1/¢)¢(v/e) < ®(Lv/¢)
whenever v > h(e). Set a(e) = 1/m(B(x, ¢/8S)). Then condition (2.1) implies
1/ Y(ea(e)) de < §. Let c(e) = ey(ea(e)), so that [P/®Sc(e)/ede < L. Set
b(€) = max(c(e), h(e)). We have

a(e) = %qs(c(e)) < %qb( b(s)) < @(Lb(s) )

€ € €

so that ® ~!(a(e)) < Lb(e)/e and

€

/{)D/ssd)‘l(a(s)) de < L(é + /Olh(s) ds),

since D < S (as is easily seen). This proves the result. O

Condition (3.3) fails when ® is a power function, but is satisfied when ®
increases fast enough. Elementary computations show that ®(x) = x'o8losx+e)
already satisfies (3.3) for all y > 0. These functions increase faster than any
power of x, but not so much faster.

We now conclude this section by a brief discussion of sample continuity. The
most natural property to consider in that respect is the following (as in Theorem
2.9).

Every separable process (X,),.r that satisfies (*) is sample

(3’4) continuous.

Another condition, easier to work with, is:

For every a > 0, there is 8 > 0, such that for every process
(35) (X)), that satisfies (*), we have E{Sup,, ,, (X, — X,) <
a.

It is routine to see that (3.5) implies (3.4). When ®(x) = |x| the case of the
unit interval with the usual distance, is easily checked to be an example that the
converse does not hold (see the discussion after Proposition 2.6); but we do not
have examples when lim, _,  ®(x)/x = co.
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PROPOSITION 3.4. There exists a universal constant k with the following
property: If for any process (X,),r that satisfies (*), we have

E Sup (X,-X,) <a,
d(t,u)<$é

then there exists m in P(T') such that

VieT, £8¢(m) de < ka.

If T is ultrametric, we can even say that

VvxeT, )des:ca.

®-
I\ (m(B(x )
ProoF. The first assertion is proved as Theorem 1.3, but using Theorem 2.4
instead of Theorem 2.3; the second assertion is proved as Theorem 1.4; the
details are left to the reader. O
4, Sufficient conditions. To show that our results are extensions of the
Kono-Pisier Theorem 1.2, we first relate covering numbers and majorizing
measures.

PROPOSITION 4.1. There exists m in P(T) such that

vieT, [(07(1/m(B(x,)de < 4[ 0 (N(e, T, d))de.
0 0
Proor. For ¢ > 0and p in P(T), consider

I(p,e) = [r(l) (—,u(B(x,e)) ) dp(x).

Let N = N(¢/2,T, d). There exists a partition of T in sets (B;); .y such that
for x in B;, we have B; C B(x, ¢), so p(B(x, €)) > p(B,); this shows that

o) < Zu(Bi)drl(

i<n

1
H(Bi) )

We have ¥, _ y #(B;) = 1, and the map v - v® (1 /v) is concave by Lemma 2.2;
so we have

S WIS I S E Y IR TY

and we get

D _, < D/2. _, . 5
fo0¢ (u(B( e)))dedu(x)_2f0 ® Y(N(e, T,d)) d

The conclusion then follows from Lemma 2.1 and Proposition 3.2. O
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The following simple result is a good illustration of the basic idea of majoriz-
ing measures.

THEOREM 4.2. Assume that T is ultrametric. Let m € P(T'), and let

Then S(T, d, ®) < 48M.

PRrOOF. Let s be the largest integer such that 27° > D. For n > p, we denote
by %, the family of balls of T of radius 27", By hypothesis, and since
£&(v) < @711 /v), we get

(4.1) vxeT, Y, 27"¢(m(B(x,27"))) < 3M
n>s
Since T is ultrametric, if x € B € %#,, we have B(x,2") = B. (This is the
essential point where ultrametricity helps.) Since %, is a partition of T, if we
integrate (4.1) over T with respect to m, we get

—-n

(4.2) L2 L SmB) © M

For B in %,, we fix a point x(B) in B. There is a unique element in %,, namely
T, and we denote by x(T') the corresponding point. For B in %#,, n > s, we
denote by B’ the unique ball of %, _, that contains B. We denote by &, the unit
point mass at ¢; and we define the subprobability » on T X T given by

- > 2" 8 )
= — ————8.5 ® &,
T 3M = v (1/m(B)) *® ° =@
Be#

n

According to Proposition 2.5, it is enough to show that for any Lipschitz
function f on T that satisfies

(7(¢) = f(u))
(4.3) f‘/;‘XT\A(I)(——d—(Z—u)——) dV(t, u) <1,

we have sup, ,(f(t) — f(u)) < 24M. We will show that for each ¢ we have
If(t) — f(x(T))| < 12M. We fix ¢, and, to simplify the notation, we set B, =
B(t,27™) and x, = x(B,), for n > s, so x, = x(T). It follows from (4.3) and the
definition of » that
2—n
—_—
L ¥ (m(B,)

Since f is continuous, we have f(¢) = lim

(2" (f(x) = f(x,-1))) < 3M.

noo [(X,), SO We have

(&) = F(=(T)) < X 1f(x,) = floxn-)l-

n>s
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To each term on the right, we apply (2.3) with

2—n+1

u=f(xn) =l @=27" b= gy

We note that b¥(a/b) = 27 "*¢(m(B,)), so we have

—n+1

If(¢) — f(=(T)) < E’sm@(zn_l( f(x,) = f(x,-1)))
+ ) 27" %(m(B,))
<12M

by (4.1) and (4.2). This completes the proof. O
We now turn to general spaces.

THEOREM 4.3. Assume there are an m in P(T') and numbers A, B, such that
the following conditions hold, where s is the largest integer for which D < 8°:

(4.4) vxeT, fDq)-l(——l—)desA.
0 m(B(x’e))

For any collection of finite subsets (J,),-, of T, such that
any two elements of J, are at distance greater than or equal
to 4 - 87", we have

)y

n>s

xE€dJ,
Then there exists an ultrametric space (U, 8) such that T is the image of U by a
1-Lipschitz map, and that S(U, 8, ®) < K(A + B), where K is numerical. In
particular, S(T, d, ®) < K(A + B).

(45) gn

¥ (1/m(B(x,87")))

<B.

Condition (4.5) looks artificial at first sight. In the proof of Theorem 4.2, we
have shown that, when T is ultrametric, we can deduce (4.5) from (4.4) by
integration of (4.4) with respect to m. This does not work in general spaces,
because a small motion of x can create a huge variation of m(B(x, ¢)). One way
to go around the problem is to assume an integral condition that involves not
only the measure of B(x, ¢), but that of balls B(y, ¢) for y close to x (see, e.g.,
[5]). For example (4.5) follows from an integral condition of the type

1
Inf{m(B(y,¢)); d(x, y) < ¢}

by integration with respect to m. Unfortunately, we see no reason why a
condition of the type (4.6) would be even close to being necessary. So this type of
condition is a bit artificial. We will however prove later on that for a very large

(46) VxeT, /Dcp-l( de< A
0
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class of functions ®, condition (4.5) follows automatically from (4.4), but the
argument is not trivial. We will also give an example that illustrates the kind of
very complicated structure that might arise.

ProOF OF THEOREM 4.3. We fix N > s. For s < n < N, we construct subsets
T, ; of T and points x, ; of T. For n = N we proceed by induction on i < 1, in
such a way that, setting Ty , = &,

(4.7) m(b(xN’i,B—N)) = sup{m(B(x,S‘N)); x & int( U TN,j)},

J<i
(4'8) TN,i = {y € T: d(y’ xN,i) <4 8_N’Vj< i: d(y’ xN,j) > 4- 8_N}'

Since T is totally bounded, this construction stops at some index i( N), for which
T = U, _yn) Ty, ;- Assuming now that the sets T, ,, ; have been constructed, we
construct by induction on i > 1, sets T, ; and points x, ; of T as follows, setting
T,,= 9, :

n,

(4.9) m(B(x, ;,8°")) = sup{m(B(x,B‘”)); xé int( U Tn,j)},

J<i

(410) T, ;=U{T,s1,4: Tpsr,x " B(x, ,4-87") # 8,V <i,T,,, ,¢ T, ;}.

Since there are only finitely many sets Ty ;, this construction stops at some
index i(n) for which T = U, _;,, T,,.

We observe that by conditions (4. 7) to (4.10), we have d(x, ;, x, ;) >4-87"
for i # j. Also, by decreasing induction on n, one sees that the dlameter of each
set T, ; is less than or equal to 8 "*2,

Cons1der a subset Uy of T that contains exactly a point in each set Ty >
i < i(N). Consider the distance 8y on Uy given by 8y(x, y) = 8 ™*2, where m
is the largest integer less than or equal to N such that x and y belong to the
same set T,, ; for some i < i(m). Since T,, ; has a diameter less than or equal to
gm+2 the canonlcal injection from (UN, 8N) into (T, §) is 1-Lipschitz.

Our next task is to estimate S(Uy, 8y, ®). For s < n < N, i < i(n), we choose
any point y, ;€ UyN T, . We denote ¥, ; the point yn 1, j» Where j is the
index less than or equal to z(n — 1) such that Yui €T, It follows from (4.5)
that the measure » on Uy X Uy given by

v=B" % 5 5 ®8.
s<n<N \I,_l(l/m(B(xn,i’ 8_n))) i T,

i<i(n)

is a subprobability. [Here the balls B(x, ¢) are balls in T.] Consider now a
function f on U such that

f(2) = f(u)
(4.11) ffuquN\f’(W) dv(t,u) <1
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and consider a point x € Uy. For s < n < N, denote I(n) the index I < i(n)
such that x € T, ;, and set x, = ¥, ). Since ¥, ) = Yn—1, yn—1) We see from
(4.11) and the definition of » that

8" [EAREP

8—n+2 =

(4.12) Y B.

s<nen ¥ 1/m(B(x, 1), 87")))

Also, from (4.7) and (4.9) we see that since x & T, ; for j < l(n), we have

m(B(xn’,(n),B_”)) > m(B(x,87 "))
and thus, from (4.4), we have

(413) Y 87%¢(m(B(x,,87")) < X 87 "(m(B(x,87"))) < 2A.

s<n<N s<n<N

As in the proof of Theorem 4.2, we use (2.3) to deduce from (4.12) and (4.13)
that |f(x,) — f(x,)| < K(A + B), where K is a number. Since, obviously,
i(s) =1, x, =y, is independent of x; so we have supy, .y If(¢) — f(uw)| <
2K(A + B). And it follows from Proposition 4.2 that S(Uy, 6y, ®) < 2K(A +
B). It follows from Theorem 1.4 that there exists a probability m, on Uy such
that

_
my(B(x, €))

where the balls refer now to the distance 8,. This bound is independent of N;
each point of T is within distance 4 - 8~V of Uy. By an easy compactness
argument, which we leave to the reader, we can find an ultrametric space (U, §),
such that T is the image of U by a 1-Lipschitz map, and such that there exists a
probability m on U such that

Ve Uy, fqul( ) de < 16K(A + B),
0

VxeU, fODcp—l(m)dssz(A+B).

In particular, Theorem 4.2 shows that S(U, §, ®) < K'(A + B), where K’ is a
number. This completes the proof. O

REMARK. It follows from Theorem 1.4 that there is on U a probability
measure that satisfies (1.2); but it is not clear how to construct the measure
using m.

We now investigate the relationship between (4.4) and (4.5). We recall that we
say that ¥ satisfies the A, condition (with constant C) if for ¢ > 0 we have
¥(2t) < CY(¢t). Typically, ¥ satisfies the A, condition if ®(x) = x?, p > 1, but
fails it for ®(x) = x(log(x + 1))%, a > 0. To simplify the notation, we set
n(¢) = t&(¢) = 1/¥7H(1/8).



SAMPLE BOUNDEDNESS 25

LEmMMA 4.4. If ¥V satisfies the A, condition with constant C, then for
v,w < 1, we have

(4.14) £(v) > 2C%(w) = n(w) > 4n(v).
Proor. Suppose n(w) < 4n(v). Set a = 1/q9(v), b = 1/9(w). Since a < 4b,
we have
1/v=¥(a) < C*¥(d) = C*/w.
Since ® ! is concave, we have by Lemma 2.1,

£(v) <®Y(1/v) < C20Y(1/w) < 2C?%¢(w). O

REMARK. A condition of the type (4.14) actually implies that ¥ satisfies the
A, condition.

THEOREM 4.5. Assume that for some v > 0 we have for v,w <1,

(4.15) £(v) > 2%(w) = n(w) > 4n(v).
Let m € P(T), such that for some number A, we have

(4.16) vxeT, fODg(m(B(x, e))) de < A.

Let s be the largest integer for which D < 27°. For n > s, consider a subset J,
of T such that any two different points of J, are at distance greater than or
equal to 27 "2, Then

Y, 27"y(m(B(x,27"))) < 27HA.

n>s
xE€dJ,

PROOF. Suppose, if possible, that for families </, as above and some N > s,
we have

(4.17) Y., 27"p(m(B(x,27"))) > 27HA.
s<n<N
x€d,

By induction over k& > 1, we are going to show that

(4.18) Y 2 "q(m(B(x,27"*1(1 — 27%)))) > 2k+7+34,

s<n<N
xE€dJ,

Since n(¢#) < n(1) for ¢ < 1, this is a contradiction for % large. For £ = 1, (4.18)
reduces to (4.17). Assume that (4.18) has been proved for k. For 0 < ¢ < 27, we
define

B(xa n, k, q) = B(x,2_n+1(1 _ 2—12 + q2—k—1—1))’

so B(x, n, k,q) € B(x,n, k,q + 1). For x in J,, we denote by q(x, n) a number
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0 < g < 27 such that the ratio
¢(m(B(x,n, k,q + 1)))
¢(m(B(x, n, k, q)))
is maximum among all possible choices of g. [So B(x, n) < 1.] We note that
(4.19) ye€ B(x,n,k,q) = B(y,27"*") CcB(x,n,k,q +1).
It follows from (4.16) that
vyeT, Y 27%(m(B(5,27")) <24,

B(x,n) =

so we have

vyeT, Y 2"(m(B(y,27""%"))) <2t 714,
It follows that
(4.20) Y f2_"§(m(B(y’2—n—k—‘r))) dm(y) < 2t+7A.

nx=s

It follows from (4.19) that

ARG B ’2—n—k-—-r di
'/;B(x,n,k,q(x,n)) g(m( (y ))) m(y)

> 2 "u(B(x, n, k, q(x, n)))é(m(B(x, n, k, q(x, n) + 1))
= 2""8(x, n)n(B(x, n, k, g(x, n)))
> 2778(x, n)n(B(x,27"*}(1 - 275))).

Since the balls B(x, n, k, g(x, n)), for x in J,, are disjoint, we get from (4.20)
that

Y, 2778(x, n)n(B(x,27" (1 — 27F))) < 2k+7HA,

s<n<N
xE€dJ,
It follows that
Z 2—n,q(B(x,2—n+1(1 _ 2—k))) < 2k+'r+2A,

where the summation is taken over the x € J,, s < n < N, for which 8(x, n) > 3.
It then follows from (4.18) that

2 2—nn(B(x,2—n+1(1 _ 2—k))) > 2k+-r+2A’
where the summation is over the x € J,, s < n < N, for which B(x, n) < 3. But

if B(x, n) < 3, we have

221‘5(m(B(x,2‘”“(1 - 2"“1)))) < é(m(B(x,Q"‘“(l - 2"*)))),
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so by (4.15) we have
n(m(B(x,27"" (1 = 2747)))) = dn(m(B(x,277*1(1 - 274)))).

So we have
Z 2—n,r'(m(B(x’2—n+1(1 _ 2—k—1)))) > 4. 2k+r+2A — 2(k+1)+7+3A.

x€dJ,
s<n<N

This completes the proof. O

Putting together the previous results, we now have the main result of this
section.

THEOREM 4.6. Assume that ¥ satisfies the A, condition with constant C.
Assume that there is m € P(T) such that

1
VxeT, LDQ_I(m)dESA.

Then T is the image by a contraction of an ultrametric space (U, ) such that
S(U, 8, ®) < KA(1 + log C), where K is numerical. In particular, S(T, d, ®) <
KA(1 + log C).

A version of Theorem 4.6, adapted to condition (3.5), can be stated and proved
along the same lines; we leave this to the reader.

We are going next to outline the construction of a metric space T with a
genuinely complex structure. This space is well adapted to the function ®(x) =
|x|. It is likely that the principle of the construction could be used to get
examples for certain functions ® with lim,_,, ®(x)/x = oo (but very slowly).
What happens for functions ® of the type x(log(1 + x))% a > 0, is entirely open.

EXAMPLE 4.7. There exists a compact metric space (T, d), and m in P(T)
such that

1
m(B(x, ¢))
but such that whenever (T, d) is the image of an ultrametric space (U, 8) by a

contraction, we have S(U, 4, | - |) = c. [It is however possible to show that
(4.21) imples that S(T, d,| - |) < .]

(4.21) veer, [ de < ,
0

PrOOF. According to Theorem 1.4, if an ultrametric space (U, §) satisfies
S =28(,8,| |) < oo, there exists p in P(U) such that for x in T,
JP1/u(B(x, €)) de < 88. [In the proof of Theorem 1.4, one has to replace £(x)
by 1/x.] Integrating this condition with respect to p as in the proof of Theorem
4.2 shows that [P¥) N(e, U, §) de < 0. If T is the image of U by a contraction,
we then have [P N(e, T, d) de < 0. So, it is enough to construct (T,d) and m
that satisfies (4.21), but such that [P N(e, T, d) de = . The main point is to
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show that given A arbitrarily large, one can find a space (T, d) and m in P(T')
such that

D 1
ASw [ B )
One then concludes in a routine way by gluing these spaces together. (While now
it might not be obvious how to do that, this should be the case after reading the
rest of the proof.) We fix ¢ > 1. For p >0, we consider the space zZ,
{l2 777, 0 < I < 29}, with the distance 8, induced byIR Weset a = (7,3~ ’) Y
s0 2 < a < 1. We consider the probablhty B, on Z, given by p,({127777}) = a3’
[The idea is that p (B(x, ) will be a very fast i 1ncreasmg function of &; as seen
in the proof of Theorem 4.5, this is at the heart of the matter.] Set C = C(q) =
32729, We first note that for some universal constant K, we have for 0 < [ < 29,

2P 3l< Y 27ip (B(127P79,27Y))
(4.22) p<i<p+q
<K2 793 <K2PC,

de < fDN(e,T, d) de.
0

because the term for i = p + ¢ is dominant. It follows that

(4.23) f Y 27/p,(B(x,27)) dp,(x) < K27PH
pp<i<p+gq
Also, it is clear that
(4.24) Y 27N(27.Z,d,)=q27"
P=<i<p+q

To simplify the notation, we make the following convention. For a point x in
a finite metric space T, and a measure j on T, we denote by S(x, p) the sum
Y2710 /u( B(x,274D)), where the sequence i(7) is defined by induction by i(1) = 1
and
i(1+1) =inf{i > i(1); B(x,27"P) \ B(x,27") # 2 }.

(This sequence has a finite length.) We note that

Y 24 /u(B(x,271)) < 28(x, ).

i>1

By induction over £ > 1 we construct finite metric spaces (Y, d,) of diameter
less than or equal to 1, n(k) € N and m, € P(Y,) such that the following hold.

(4.25) Ifx, y € Y, x # y, then dy(x, y) <270,

(4.26) vVxeY, S(x, mk) <2(1+K,;)C.

(4.27) L 2TNE Y dy) 2 g [ SGemy) dmy(),
1<i<n(k)

(4.28) my({x € Y,; S(x, my) < C)) < (1 — a372)",
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The point of the construction is that if & is large enough that (1 — a3~%)* < %
we get from (4.26) and (4.28) that

Y 27iN(274,Y,.d,) = qC/4K,.
i<n(k) :

Since ¢ is arbitrarily large, and since K; does not depend on ¢, when we
compare to (4.26), we see that we have the example we seek. We now proceed to
the induction. For %k =1, we take (Y}, d;) = (Z,, §,), n(1) = q. (4.26) follows
from (4.22), and (4.27) follows from (4.23) and (4.24); (4.28) follows from (4.22) for
I =29, since py({1}) = a3~%. Assume now that Y, d,, m,, n(k) have been
constructed. The space Y,,, is a union of pieces H, for x in Y,. If t € H,,
ue H, x+y, wehave d, (¢, u) = dy(x, y), and also m, ,,(H,) = m,({x}). If
S(x, m;) > C, we just take H, = {x}. If S(x, m,) < C, we consider two cases.

Case 1. If 27"®~1 > Cm,({x}), denote by p = p(x) the largest integer for
which 277 > Cm ({x}), and set H, = Z,, m,,(A) = m,({x})p(A) for A C H,,
dy (8 u) = 8,(t,u) for x,u € H,.

Case 2. If 27"®~1 < Cm,({x}), let N be the smallest integer for which
N27"®~1 > Cm({x}). We take for H, the union of N copies (U,); . y of Z, 54,
If teU, ueU, i<j, we set dy, (t,u)=2""0"L if t,ue U, we set
dpi(tu) = 8n(k)+1(t’ u); if A c U, we set m;,,(A) = mk({x})#n(k)+1(A)/N~

Finally, we take n(k + 1) large enough that (4.25) holds. It is straightforward
to see that (4.25) to (4.28) hold so we leave the checking to the reader. O

5. The homogeneous case. We first study the case where T = [0,1]%
k > 2, and the distance is the usual distance, but where ® is arbitrary.

THEOREM 5.1. There is a constant K, depending only on k, such that the
following hold.

() If S = S(T, d, ®), we have [}e*"¥(e'~*/KS) de < K.
(b) If for some A > 0, we have [}e*"W¥(e~*/A)de < B, then S(T, d, ®) <
KA(L + B).

Proor. The Euclidean distance is not well adapted to the study of cubes, so
we use instead the distance d given d(x, y) = max, _, |x; — y,| when x = (x,); _,
¥ = (2;)i < - Since this is equivalent to the usual distance, one checks easily that
it is enough to prove the theorem for (T, d). We denote by dx the Lebesgue
measure on 7.

Proor oF (a). By Theorem 1.3, there is m in P(T') such that

VxeT, )dss4S.

[)l¢( 8Sm(B(x, ¢))
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We note that by (2.1), we have ¥(u) < uy(u), for u > 0, so we get
1 1 € 1

. B —_— —=.
(5.1) Vx eT, foe m(B(x, s))\If( BSm(B(x,e)))des 5

Now, by Lemma 2.2, the function u — u¥(e/u) is convex. If we integrate (5.1)
with respect to dx, and we set a(e) = [;m(B(x, ¢)) dx, we get

j(;le_la(e)‘lf(e/SSa(e)) de < }.

Now

a(e) = '/;d(x, y)ss}dm(y) @ = f(f{d(xv y)ss}dx) i)

< f(2e)k dm(y) < (2¢)".
Since u — u¥(e/u) decreases, the proof is complete. O

Proor oF (b). We could produce a measure » on T X T that satisfies the
conditions of Proposition 2.5; but this would be cumbersome, so we will proceed
directly. (The proof actually amounts, with the notation of Theorem 2.3, to using
a functional # on G that does not arise from a probability on T X T.) As in the
proof of Theorem 2.3, we can reduce to the case where Q is finite. In that case,
the maps ¢t — X,(w) are Lipschitz, so they are almost everywhere differentiable;
since E®((X, — X,)/d(t, u)) < 1 for each ¢, u, we have E®(dX,/d¢t;) < 1 when-
ever i < k, for almost all ¢ Since ® is convex, we have

1 X,

E®

SO

E

chp

We are now reduced to the following question.

Let f be a Lipschitz function on T. Set c(¢) = X, _,|df/dt;|. Assuming that
J®(c(t)/k) dt < C, we have to prove that Sup, ,(f(¢) — f(u)) < KA(C + B).
This is a Sobolev-type inequality.

Let us fix ¢ = (¢;);., in T. We consider the probability measure A, on the
boundary H of T such that on each face {u; = 0} N H (resp. {u; =1} N H) of
H, for i < k, A has density t,/k [resp. (1 — t;)/k] with respect to the (k£ — 1)-
dimensional measure of the face. For any function g on T, we have

i<k dt;

13

1 1D, ¢
ZZ t))dtSI.

(5.2) ng(x) dx = /Hfolg((l —8)t+sx)s* tdsdA,(x).
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For 0 < s < 1, we define
a(s) = [ f((1 - s)t + sx) dN(x),
H

so a(0) = f(¢), and a(l) = [fdX,. Set b(s) = [yc((1 — s)t + sx)dA,(x), and
denote by Df the differential of f. Then a’(s) exists a.e. and

(@) =| [ D@ = 5)t-+ s)(x = ©) dd ()

< fc((l —s)t+ sx)dA,(x) = b(s),

because the components of x — ¢ are less than or equal to 1. Now we have, by
convexity of @, Jensen’s inequality and (5.2) that

R A O G

- fT(I)(C(:))dst.
Using (2.3), we have
(5.3) b(s) < kAsk_ICI)(—b(ki)) + kA.ts"‘l\If(Ask_1 )

Since a is Lipschitz, we have

1(6) = [1ar| = 1a(0) = (V) < [la’(s)ids < ['b(s) ds,

and this is less than or equal to K(A + C).
The theorem will be proved if we show that for ¢, u in T,

‘ffd)x,— ffdAu

Writing F; = H N {u; = 0}, F/ = HN {u; = 1} and denoting by p the (k — 1)-
dimensional measure on F,, F’, we have

’ffd)xt— ffdxu < %;;k

<K(A+0C).

fFfdu— fF,fdu‘-

But we have

af
8—Q(x) dx

‘fpfdu—fpfdu </

and thus

‘ffd)\t— ffd)\u < %dt.
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Writing, by (2.3),

D 0] )52 oo

completes the proof. O

REMARKS. 1. It would be interesting to extend Theorem 5.1 to compact
subsets of R*~! with nonempty interior. While the first part of the theorem
carries through, it is unclear how to proceed with the second part. One problem
in particular is that it is unclear if a process that satisfies (*) and is defined on a
subset L of R*~! can be extended to a cube containing L, while still satisfying
(*).

2. The proof has shown that the necessary condition of Theorem 1.3 is
sufficient.

We now turn to the extension of Theorem 1.1. We fix a concave function 7
from [0, 1] to [0, 1], with n(0) = 0, so n(x)/x decreases on [0, 1]. We set d(t, u) =
n(|t — u|). We construct by induction the sequence (a,),., as follows. We set
a, = 3, and

a,,; =sup{0 <a < a, n(a) <n(a,)/2; n(a)/a=2[n(a,)/a,]}.

If the set on the right is empty, we stop the construction. We note that
a,., < a,/2, and that we have either n(a,.;) =n(a,)/2 or n(a,.,)/a,,, =

2[n(a,)/a,l
THEOREM 5.2. For some universal constant K, we have

(5.4) K7 Y n(a,)® '(1/a,) < S([0,1],d,®) < K} n(a,)® '(1/a,)

(where the summation involves the a,, actually constructed).

We first make the link between (5.4) and the integral condition of Theorem
1.2

PROPOSITION 5.3. Assume that for some constant C > 0, we have, for each
0<acx<l,

a 1 1 1 1\ dt 1
f (I)‘l(—) dt < Cad)‘l(—), fqu(—)— < cqu(—).
0 t a a t)t a
Then for some universal constant K we have

chl/zn(t) ( )dt<S([0 11,d,9) < _K/wn(t) (—)dt.

t
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ProoF. The right-hand inequality follows from (5.4) and the fact that, since
a,., <a,/2, we have

fa" Ltt)d)-l(%)dtz (a, - anﬂ)n(:”)d)‘l(ai) > ——n(g”)@-l(ain).

Cpia n n

For the left-hand inequality we distinguish two cases.

CaseE 1. n(a,.,) =n(a,)/2. Then n(t) < 29(a,,,)fora,,, < t<a,, so

I ﬁ(tL)q)—l(%)dts n(a,) [ Q_l(%)flt_t

n+1 n+1

1
< 2Cn(an+1)<l)‘1( )
an+1

CASE 2. n(an+1)/an+l = 2[n(an)/an]' Then n(t)/t =< 2[n(an)/an] fOI'
a,,,<t<a, so

[ Ktt)qu(%) dt < 2"—(:3/0“"¢—1(%) dt < 2cn(an)<1>—1(ain).

Qpi n

It follows that

n(t 1 1
fl/z—u(b“(—)dts4CZn(an)<I>‘1(——). O
0 t t a,

The proof of Theorem 5.2 is rather instructive; but it will be clearer to discuss
the main feature after going through the details. We will assume throughout the

proof that the sequence (a,) is infinite. The other case is similar, and the
necessary modifications are left to the reader.

PROOF OF THE LEFT INEQUALITY OF (5.4). Set h, = %[n(a,)/a,]1® 1 /a,),
so the sequence (4,,) increases. Consider the function f on R \ {0}, that satisfies
f(=x) = f(x), f(x) = 0if |x| > § and is of slope — A, between a,,,, and a,. We
denote by m Legesgue’s measure on [0, 1]. Consider the process (X o1, With
basic probability space ([0,1], m), given by X,(w) = f(6(w — t)), where 6(w — t)
is the unique point in ]— 1, 1] congruent to w — ¢ modulo 1.

Assume that we know that
t+u)—flu
f( ) —f(u) ) du <l

1
(5.5) vi0<ts o, fcb( =0

Then we see easily that (X,) satisfies (*). Moreover, Inf X,(w) = 0 for each ¢,
and Sup X(w) = Sup f. So we have Sup f < S([0,1], d, ®). Since a,,, < a,/2,
we have Sup f > {1X ., 7(a,)® (1/a,), and this finishes the proof.

We now prove (5.5). Let p > 1 be such that @, <t <a, We distinguish
two cases.
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Case 1. We have 7n(a,.,) =n(a,)/2. In that case, n(¢) 2 n(a,,,) =
n(a,)/2. We set g(u) = [f(u) f(a, )]+ h(u) = min( f(u), f(a,)). The convex-
ity of ® shows that

q)(f(t+u)—f(u)) < §¢(3g(t+u)) N 1(1)(38(11))

n(¢) n(¢) n(¢)
. %Q( 3(h(t +nlz)t)_ h(w)) )
s0 it is enough to prove that
(5.6) /d)( :f‘(:; ) du <1,
(5.7) /cp( bt :(":p; Ax)) ) dus<l.

We prove (5.6). We have

69 /q)(sg(u)) s ¥ apf Ulam) ~i(a)|

n(a,) nap n(a,)
Also,
o) ~Hah s T at= g5 T a(a)o| o)
SO
CITATRS IV
Way = 12,% ) a)

Since n(a,,,) <n(a,)/2, we have ¥, . ,n(a;)/n(a,) < 2, so the convexity of
® shows that

6( fla,i1) — f(ap))
“’( n(a,) )
so from (5.8)

/Q(Gg(u)) Z > am(a;)

n(a ) nzp p<is<n ain(ap)
Since n(a;) < 2”7 'n(a,) and a, < 2' "a,, we have
6g(u
fqa Belu) —Z(n p+1)2° ”+”——Z(z+1)2‘—1
7’( ) n>p 6 i>0

and this proves (5.6).
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We prove (5.7). We observe that for 1 < i < p — 1, if the interval [u, u + t]
does not meet the interval [—a;, a;], we have |h(¢ + u) — h(u)| < th; so this
holds outside a set of measure less than or equal to 4a,. Also we always have
|h(t + u) — h(u)| < th,_,

So we have
6(h(t+ u) — h(u)) 6th;
f(I)( n(ap) )dus is§_14ai®(n(ap))
o1(a;) 1
< e ‘I’(mamw " (_))

Using the convexity of ®, and since n(q;)/q; < 2i‘”[n(ap)/ap], this is < 3
This proves (5.7).

Case 2. We have n(a,.,)/a,,; =2[n(a,)/a,]. In that case 7(t)/t>
n(a,)/2a,. We set

+
g(u) = [f(w) = flape)] > R(u) =Inf(f(u), f(ay.y)).
The computation is similar to that in Case 1 and is left to the reader. O

PROOF OF THE RIGHT INEQUALITY OF (5.4). We will use Proposition 2.5.
Define a, = 0. For n > 0, denote by k(n) the largest integer for which 2% >
a,, so k(l)=1, k0)=0, k(n+1)> k(n) (since a,,, <a,/2) and a,>
27kM-1 We set

J= {1} U {n>2;n(a,) =n(a,_,)/2},

so for n & J, we have n(a,)/a, =27(a,_,)/a,_;. For x € [0,1], n > 0, we
denote by I, , the unique interval of the type [i27*™), (i + 1)27*(™[ that
contains x. For each n > 1, x in [0,1], let », , be such that 27 #»=Vy g the
restriction of Lebesque’s measure to I, , ,. Let Bn,x be such that 2" k(”)u

the restriction of Lebesgue measure to the unique interval I; . of the type
[i27%™, (i + 1)27 ™[ immediately to the right of I, .. (If there is no such
interval take », , = §,.) We set

= n(an)é(an) ifne J, C, = n(an_l)g(an_l) ifné&d.

From Lemma 2.1, and the fact that n(1)® (1) < 29(3)®~'(2), it follows that
A= z"n>lc = 32"n>1a o l(l/an) Set Vy = I/A(zneJc n x + ZneEJcnI"'n x)
Consider the subprobability » = /16, ® », dx According to Propos1t10n 2.5, it is
enough to show that if a Lipschitz functlon f satisfies

(5.9) f‘l’(f(d)(t fu ))dv(t,u) <1,
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then for some universal constant K, for all ¢ in [0, 1], we have

[ 1) at

We fix x. We set b, = [fdv, ,,s0 f(x) =lim b, and b, = f¢ f(¢) dt. Set q(n) =

2km=kn=D For n>1, I, ,, is the union of g(n) intervals of the type

[i27*™, (i + 1)2~*™[, that we denote by oJ,, ; << 4(n)- Let 6, ; be the probabil-

1ty such that 27#™g,_, is the restiction of Lebesgue’s measure to o, ;. We set
= [fd6, ,. We note that

(5.10) b,=q(n)™" ¥ b,

0<l<gq(n)

< KA.

Also, we note that by definition of », we have

1
vz — Z 2_k(n)cnvn+l,x ® Vo, x

(5.11) I”E"
b3 Lokon, T 4,80,
n&d O0<l<qg(n)—-2

We note that for ¢, u in I,_, ,, we have d(t, u) < 72~ ¥ V) < 27(a,_,); and
for t in J, ;, uin J, ,,,, we have d(¢, u) < n2~*™*1) < 45(a,). So, by (5.9)
and the convex1ty of (I> we have that

b, ,— b

b _bn n n
Y a c(I)( +1) + Y Y cnand)( ! ’Hl) <A.

ned 21(a,) ned 0<l<gq(n)-—2 4n(a,)
We note that a,_,/2a, < q(n) <2a,_,/a,. If n & J, we have 1/q(n)n(a,) =
a,/2a,_m(a,) =1/4n(a,_,). Since ® is convex, we have

Y 0((b,;— b,u1)/4n(a,))

0<l<qg(n)-2

(5.12) 2(q(n)—l)‘l’( )} Ibn,z—bn,z+ll/4q(n)n(an))

0<l<q(n)—-2
> (@1/4a)0 T b= by al/160(a, )
O<l<q(n)—2

Now b, ., is one of the b, ;,, say b,,; = b, ;. For 0 </ < g(n), we have
|bn+1 n ll l n,j n,ll = Z | n l+1|’

O<l<q(n)—2

so from (5.10) we have
|bn+1 - bn| < Z | n l+1|

O0<l<qg(n)—-2
It now follows from (5.12) that

n(an) bn - bn+1
,EJ ‘1’"(1/%)@( 2n(a,) )+

2 n(a,-1) ( b, — b,y

= < 4A.
ned v l(l/an—l) 1671(an—1) )
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It now follows from (2.3), and by a now familiar computation that
Y,.>11b, — b,_;| < 64A. This completes the proof. O

The method of the proofs of Theorems 4.2, 5.1 and 5.2 are similar. If f is
Lipschitz on T, and [;.,®(f(¢) — f(u)]l/d(t, u)) dv(t,u) <1, to bound
sup, ,( f(¢) — f(u)) one finds bounds for |f(x) — [fdA|, where A is a measure
independent of x. This is done by finding a suitable “path” from §, to A. In the
ultrametric case, we go from §, to A by big jumps. In the case of Theorem 5.1,
one has to make a large number of very small jumps (as becomes more apparent
if one writes a “discretized” version of the proof). The proof of Theorem 5.2
presents features of both cases. If n € J, we jump directly from », , to »,_, ,,
but if n & J, we make g(n) small jumps in between. The next result we present
is definitely a level of complexity above the previous examples, but it is a
fascinating fact that beyond the details, the proof is similar to that of Theorem
5.2, in the sense that it mixes the techniques of small jumps and big jumps. It is
tempting to believe that these similarities do not arise by chance and that there
is some general underlying principle, yet to be formulated. ‘

We denote by U the one-dimensional torus, provided with the usual distance
d’. We fix g € N. We provide U? with the distance d, given by d(z, y) =
max; _, d'(x;, ¥) for x = (x;); .4 ¥ =(5)i<, We denote by H a ultrametric
compact group, with distance d,. We provide T = U? X H with the distance d
given by d((x, u),(y,v)) = max(dy(x, y), dy(u, v)). We propose to compute
S(T, d,| - |?). The complexity of the situation entirely arises from the metric
structure of T. (An identical result would hold for 7' =[0,1]7 X H.) We first
note that by Theorem 5.1, if ¢ > 2, and S(T, d, | - |P) < o0, we must have p > q.
It can also be shown that (provided H is infinite) this is also the case for ¢ = 1.
So we fix p > q. We define r by 1/r + q/p% = 1. We denote by 0, e’, e the units,
and by m,, m,, m the normalized Haar measures of UY, H, T, respectively. We
set u, = my(B(e’,27")) (where the ball is of course in H). We denote by n, the
largest integer for which 27 ™ > D(H).

THEOREM 5.4. There is constant K, depending on p and q only, such that

1/r
(5.13) K-S < !1+ Y 2P+ | Y (2‘”<”“”/#n)r/p) ]SK&

n>=ng n>ng

In the proof, we denote by K a number depending only on p and g, that is
not necessarily the same at each line.

PROOF OF THE RIGHT INEQUALITY. We observe first that S =
S(T,d,| - |”7) = S(U%, d,,| - IP),so 1 < KS. Also, we have S > S(H, d,,| - |?). By
Theorem 1.4, there is a » € P(T) with [P*(»(B(e’, £)) /P de < KS. If we
integrate with respect to m,, and we use the convexity of ¢ - ¢t~ /7, we see that
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DH(my(B(e’, €))"Pde < K8, so
(5.14) Y 2-mu-1/p < KS.

n>ng

For n > n,, we set ¢, = 27"/~ 1/P Tt remains to show that X, , c; <
KS”. We will use the same principle as before: If f is a continuous function on T'
that satisfies

P

dm(z) <1

(2 +w) ~ 1(2)
/

1 v T,
(5.15) we d(w.2)

the process given by X/ (w) = f(w) satisfies (*), so we have Sup, (f(¢) —
f(u)) < S. However, in the present case, the appropriate function f to use is not
a function of the distance to e.

We fix N > s > n,. Consider a sequence (%), ,, With ¢, < 3, and a sequence
(@p)ns s @y = 0. We denote by A, the piecewise affine function from R* to R™
such that A(x) =0 if x > ¢, of slope —a, between t,,, and ¢, for &k <
min(n, N), and that is constant between 0 and ., v)+1, SO that k, = 0 for
n<s. We set b, = (¢, — t,,,)a;. For zin T,z = (x,u), x € U% u € H, we
define f(2) = h,(dy(0, x)) when 27 "*! < dye’,u) <27". We note that
Inf{f =0, and that f(e) = Z,_,.n b,. To prove (5.15), we will reduce to the
cases w € {0} X Hor w € U? X {e'}.

First step. Set § = 277171/P) 50 § < 1. We prove the existence of a number
a > 0, depending only on p, g, such that if ¢,,, < 0t, for & > s, and if

(5.16) Vizs, (24a,)"mtf < e,
then, whenever w = (0, u) € {0} X H we have

f(z+w) - f(2)
1 =
(5.17) 1) = [|=—atwre)
We define & by 27 %71 < dy(e’, u) < 27% Let z = (x, v). Define n and n’ by
277 l<dy(e,v) <27, 277" l<dy(e,v+u)<27",

so we have f(z)=h,(d,0,x)); f(z+ w)=h,(d(0,x)). We have f(z)=
f(z + w) if n = n’. By ultrametricity, we have

d2(e,’ U) = dZ(D’ u+ D) =< max(d2(e,a U)’ d2(e,a u+ U)),
dy(e’,v) < max(dy(e’,u + v), dy(v, u + v)),
dy(e’,u+ v) < max(dy(e’, u), dy(u, u + v)),

P
dm(z) <27P.

so we can have n # n’ only if n = k, n’ > k or n’ = k, n > k, in which case we
have

f(2) = f(z + w)| = |k, (dy(e’, x)) = hy(dy(e’, x))|
for 7 = max(n, n’). It follows that for n > k& + 1, if we have |f(2) — f(z + w)| >
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Y <i<n by then dy(0, x) < t, and either dy(e’,v) <2 "or dy(e’,v + u) < 27"
This shows that

(1) = 1wy > b)) <200

k<i<n

whereif n =k + 1, wesetX,_;.,b,=0.
For a function g, and an increasing sequence (d;);., with d, = 0, we have
[gPdm < ¥, ,dF, ,m({g > d;}); so we have, using the convexity of ¢ — t?,

p
Iw) < ¥ 20htg(2 T b

n>k k<i<n

IA

Z2q+1+2p“ntg( 2 2k—i—12ibi)p

n>k k<is<n

2 2q+1+2pﬂntg( Z 2k_i_1(2ibi)p),

n>k k<iz<n

Since t,,, < 6t,,wehave L, ;p,t? <[1/(1 — 09)]p;t?, so we find

IA

I(u) < 20+1+2p Y 9k=i(9ig 1.\ p g

1-6¢ i>k
and this proves the claim.

Second step. For z = (x, v), we set

F(( ) = 12 0) |

M(z) = limsup
( ) y—ox d( Y U)
Then for some number 8 depending only on p and q, if we have
(5.18) Y altip,<B,
s<n<N

we also have [ M(2)? dm(z) < 27P.

To prove this, we note that we have |M(z)| < max;_, a; unless

d(e,x) <t, and dye,v) <27" so we have m({z; M(z) > max;_,q;}) <
29t2p.,. This easily implies the result.

Third step. We show that (5.16) and (5.18) imply (5.15). We set w = (y, u),
so d(e, w) = max(d,(0, y), dy(e’, u)). Let w; = (y, e’), wy, = (0, u). We have

If(z +w) = f(2)l < If(z + w) = f(z + w)| + |f(z + w) — {(2)].
Using the inequality |a@ + b|P < 27" Y(a? + bP), we have

f(z +w) - f(2)
f d(e,w)

p

dm(z) <277 [I(u) + I],
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where I = [|[ f(z + w) — (2)1/d,©, ¥)|P dm(z). Write z = (x, v). Writing ¢ —
x + ty for the natural path from x to x + y, we have

If(z + w,) — f(2)] < d,(0, y) fo M((x + ty, v)) dt.

Since [, M(z2)? dm(z) < 277, the convexity of ¢ — ¢?, integration and Fubini’s
theorem show that I < 277, and this completes the proof of this step.

Fourth step. For n > n,, we recall that c, = 29/P~Dy~1/P. We note that
¢, < 2'79Pc, .. We define n,, n,, 7 as the smallest integers for which, respec-
tively,

Sg-nl(p—l)ﬂln/lp <1, B2 < 1
(5.19)

(B—l/r21/r2—‘r(p—l))rp <1

By (5.14) we have c, < K2"9/7S. It follows that ¥, _,., ¢, < KS". If n <n,,
we have p; /7 < §27"P*" g0 ¢, < §2-"P1-4/P") = §2-"P/" This implies that
Yo <n<nmCn<KS" Also, ¥, _, p+.Cp < Kcp ,,. Let n,=max(n, + 7, n,).
We are left to show that X, ., ¢, < KS".

In the preceding steps, we have shown the following. If ¢,,, < 0¢t,, ¢, < 3,
then conditions (5.16) and (5.18) imply that f(e’) =X, _,.nya@u(t, — t,21) < S,
SO, _ponQpt, <S/(1 —0).Let y > 0. We set ¢, = 27"y P/9c/P s0 we always
have t,., < 0t,. Algebra shows that ¢, = K2-»1-1/Py/P’ We set a,=
a!/Pycl /t,. More algebra shows that (5.15) holds, while (5.18) is equivalent to

yP* /9L ncl < B, so we choose y = (BZ, ., c.)” %7 and we have

1/r r/p
(5.20) ts=[ﬁ-1/'( z o 2—“*'—‘)#1/*’] .

s<n<N

We now know that ¢, < % implies X, _, . n @,t, < S/(1 — ), so

1/r
( Y c,’,) <K,S
s<n<N
for some K, depending only on p and q. For s > n,, take N =s, so t, =
B~1/P27° < {; this shows that ¢, < K,S. We show that (T,,, c;)/" <
K.S (which finishes the proof). Otherwise let N be the smallest such
that ¥, _,.nc, > K{S", and let s =n, Since cy < KJS’, we have
Lo, <n<nCh < 2K]. It follows that from (5.19), (5.20), the choice of n, and the
fact that n, > n, that ¢, < §, so that (T, ., c,)"” < K,S. This contradic-
tion finishes the proof. O

PROOF OF THE LEFT INEQUALITY. For the same reasons as in Theorem 5.6,
we will proceed directly instead of using Proposition 2.5. We define the sequence
n(i) by induction as follows. We set n(1) = n,,

n(i) = inf{n > n(i — 1), B(e’,27"¢" D) = B(e’,27")}.
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(We assume H to be infinite for definiteness, but the case where H is finite is
similar.)

We set L, = B(e’,27"9) \ B(e’,27"*D); we note that my(L;) > p,/2
and that d(e’, u) < 27"®*1 whenever u € L,_,. We denote by A; the measure
given by my(L,)A;(A) = my(L; N A). We define », € P(T') by », = 8, ® A;. We
set A =(,.,)" A2=2,.,,2 ", "/P. For i>1, set d; = cj;/2A] +
27"y P /2A,; hence ¥, d; <1. We set »=1Y,.,d;»,. Consider a process
(X,); 7 that satisfies (*). To prove a bound on Sup, (X, — X,), we can, as in
the proof of Theorem 2.3, assume that € is finite; using convolution, we can
assume that for w in r, and u in H, the map x - X, ,(w) is differentiable on
U9 we denote by D(x, u, w)(v) the value of this differential on the vector v of
R Y. Define ||v|| = max;_, |v;|. Using (*) and Fubini’s theorem, we see that

Ef]

u#e’

P

X - X
0B T2 gm(z) dr(u) <1,

dy(e’, u)

and that if ||v|| = 1, we have
E/u)(x, u,w)(0)P dm((x,u)) < 1.

For z = (x, u), write |VX(2)|(w) = Sup;,-1/D(x, u, w)(v)|; we have
4
dm(z) < 1.

EVX(Z)

1
Ef
We have now reduced the problem to the following: Suppose we have a
Lipschitz function f on G. We set

(5.21) I - U‘ (= +O§:’(:)z)_ K& ) dv(w),
(5.22) L= [1vf(2)P dm(2),

and then we have Sup, (f(¢) — f(w)) < K(I}/? + I;/P)(A, + A,). Since these
conditions over f are invariant by translation, it is enough to show that
If(e) — [fdm| < K(I}/?P + I,/P)(A, + A,). For n > n, we define t, =
min(2,2 "¢, /PA]/P). For i > 1 and y in U9, we set

() = Ju f(y,u) dX,(u).

From (5.21), we see that if we set

1
J; = m./f/;eh;ueh—l

F(y,0+w) = f((3,0) [
dy(u,e’)

dmy(y) dmy(u) dmy(v),
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we have

(5.23) Y

1>2

Cni) + 27O P
2A7 24,

)Jisll.

We note that for v € L;, A;_, is invariant under translation by v. So from
(5.23) we see that [since d(u, e’) < 27" D1 my(L;) = pp;y/2]

f(y) - i
(5.24) )y c;rz(i)ﬂn(i)f’ n(,)+1 dm,(y) < 4A7lL.
i>2
From (5.22), we have
(5.25) Y oy [I9F:(2)P dm(2) < 21,.

i>1

We now denote by a; (resp. ;) the average of f; (resp., f;_,) over the ball (inU?)
of center 0 and radlus ti) BY (5.24), we have

(5.26) > 2pn(l)c:z(i)nu‘n(i)tn(i)|ai — BilP < KATI,.
i>2
We define p’ by 1/p + 1/p’ = 1. Denote by j the first integer greater than or
equal to 2 for which ¢, ;) < }. Algebra shows that for i > J, we have
-p’
(2" OcyBipes() " = AP,
so, by Holder’s inequality, we have from (5.26) that
(5.27) 2 la; — B < KI/7A,.
izj

From (5.23) it follows that

Y. 2= 0moulze [if(y) = fii(9)P dmy(y) < KA.

i>2
If j > 2, it follows that
> 2(p_1)n(i)ﬂln/(li’)/|ai — BilP < KA, I,

2<i<j

so, by Holder’s inequality, we have

1/p
Y e, — Bl < ( M 2_n(i)ﬂ;(1i{p) (KA211)1/p < KA,I}/".

2<i<j i<j

For r < 1, we denote by a,(r) [resp., b(r)] the average of f; (resp. |V{;|) on the
sphere of center 0 and radius r. As in the proof of Theorem 5.1, we have

a’(r) < b(r). Let Q; = Sup, ,..,(a(r) — a(r")). Then we have |a; — B;,,| < Q;.
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We have, using Holder’s inequality,
Q; < /t"‘”|a{(r)| dr < ft"‘”b(r) dr < /t"”’r‘("‘l)/”(r(q‘1)/”b(r)) dr
0 0 0

‘. 1/p
< Kt;&g/p(l')n(z)rq—lbp(r) dr) .

Now [3/2r?7'0P(r) dr < K[ |Vf.(2)|P dmy(z), so we have

1/p
le; = Byl < trlz(z;l/pl"‘n(lt{p(P‘n(i)/lvfi(z)lp dm(z)

Algebra shows that

1 . _ , 1—
ttp( q/p)p.n(li)/p = Agrp /pX ‘I/P)c;(i)’

so we have by Holder’s inequality
Z la; = Birql < KAgr/p)(l—q/p)A{/p’I;/p = KA, LI/P.

i>1
We now have
Z la; — a4 < Z let; 1 — Bial + Z la; = Bisql < K(A1 + Az)(If/p + Izl/p)'
i>1 i>1 i>1

This shows that |f(e) — ay| < K(A, + A)(I}/P + I’P). If t, > L, we have
a, = [r fdm, and we are done. Otherwise, let g(x) be the average of f on
B(x, t;) X H, so a; = g(e). The proof of Theorem 5.1 and (5.22) show that

~ [e(x) dmy(x)
Since [ g(x) dm(x) = [ f dm, this finishes the proof. O

< K( f |vg(x)P dml(x))l/p < KIM/P.

In the three cases we have studied in this section, it is possible, by a slight
modification of our arguments, to see that condition (3.5) holds whenever S < oo.

PrOBLEM 5.5. Let T be a compact group, d a translation invariant distance
on T, ® an Orlicz function. Assume that S(T, d, ®) < . Does it follow that for
every a > 0, there is § > 0 such that each process which satisfies (*) satisfies
E Supd(t, n<so(X;— X)) <a?

A positive answer would be a generalization of the fact that bounded station-
ary Gaussian processes are continuous. [For a Gaussian process, the distance d
on T given by d(t,u) = || X, — X, ||, satisfies S(T, d, ®,) < co, where @, (x) =
(expx?) — 1.]

6. Processes with values in exponential-type Orlicz spaces. In this
section, we no longer consider general Orlicz norms, but only the norms || - llo,
associated to the functions @ (x) = (exp|x|?) — 1 for ¢ > 0. [If ¢ < 1,® (%) 1s
not convex for |x| <h, = (1 - q)/q)"7 so ®, is not a Young functlon it is
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however convex for x > h,, and this is what really matters; one can for example
replace @, (n) by exp(x + h,)? — exp hl.] We fix ¢’ > q. Consider a compact
metric space T and p in P(T).

PrOBLEM 6.1. When is it true that all processes (X,), ., that satisfy
Vi,ueT, ”Xt - Xu”(Dq =< d(t’ u)

and that are p ® P measurable have their trajectories a.e. in Lo n)?
PrROBLEM 6.2. When does this occur for all p in P(T)?

These problems have been investigated by Marcus and Pisier [11], and by
Weber [16]. Problem 6.1 is by far the hardest; it is not clear whether it has a
completely satisfactory answer in general spaces, but we will solve it when T is
ultrametric. We will solve Problem 6.2 in general.

THEOREM 6.3. For a compact ultrametric space T, and p in P(T), the
following are equivalent.

(a) For each process (X,),cr that satisfies Problem 6.1, and such that X ,(w)
is 1 ® P measurable, the trajectories t - X ,(w) belong to Ld, (n) a.e.
(b) There is m € P(T) and a constant A such that

VvxeT,Vn,
(6.1) L 1 v 3 2 Ve
Z” (1°gm‘——(3<x,2-k>>) ““(bgu(B(x,‘z-‘N_))) '

PROOF. To understand better (6.1), we note that log[1/m(B(x,2~%))] = 0 if
2=% > D(T'). Many of the arguments are modifications of arguments ven; we will
not repeat them, and we will leave the checking to the reader.

(a) = (b). We fix v in T. For a function f on T, we denote by M(f) the
L, (u) norm of the function ¢ — f(¢) — f(v), so M(X.) is the random variable
equal at w to M(f), where f(t) = X,(w). The first step is to prove, as in
Theorem 2.3, that for some number S, every process that satisfies the condition
in Problem 6.1 satisfies E(M(X.)) < S. The second step is to find, as in Theorem
2.3, a linear functional @ on the set G of continuous bounded functions on
T X T \ A such that whenever f is Lipschitz on T and

(6.2) 0(@,(%2)) <1,

we have M(f) < S. For x € T, denote by n(x) the largest integer such that
277 > d(x, v). For a sequence (a,), consider the function f given by f(¢) = a,
if 27" <d(t,x) <27 ", where a,=ay if n> N and a, =0 if n < n(x).
If (6.2) holds, we have M(f) < S, so, in particular, p(B(x,2 V)) X
(exp(an/S)? — 1) <1, and ay < S(log(1 + [1/Ku(B(x,2"V)])/. As in the
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proof of Theorem 1.3, we construct from 6 a probability m on T that satisfies for
all x,
Y o (1 - )w
"|log————~~
n(x)<n<N m(B(x,2 ))

(6.3)

1 1/q
< KS|logll + ———x— .
( u(B(x,27V)) ))

If we replace m by ;(m + §,), we then get (6.1).

(b) = (a). We denote by s the largest integer for which 27° > D(T'). For
n > s, we denote by %, the family of balls of T of radius 2~ We fix v in T. To
each B in %,, we associate one of its points x(B), in such a way that x(B) = v
if v € B. For n > s, we denote by B’ the unique element of %, _, that contains
B. Replacing m by 3(m + p), we can suppose that 2m > u. We consider the
probability » on T X T given by

v=3 2°7"m(B)8,p ® &, p.
n>s
Be %,

It is enough to show that if f is a Lipschitz function on T X T such that
JI @, f(t) — f(w)l/d(¢, u)) dv(t, u) < 1, we have M(f) < K. (Here and in what
follows, K is a constant depending only on A4, g, ¢/, s, S, but can vary from line
to line.) We note that

(=(B) ~ f(x(B)) _

2—n+1

(6.4) Y. 27"'m(B)®, 27s,

n>s
Be %,

To prove that M(f) < KA, it is enough to show that for any Borel subset C of
T, we have

(6.5) fclf(t) — f(o)dp(t) < Kp(C)(1 + (log(1/n(C)))"?).

We define f " as being constant on each B in 4%,, and equal to f(x(B)) on B. We
have |f(¢) — f(v)| < X,.,|f™(t) — f*"(¢)|. For B in &, we have

66) [ "= 1" du = w(C 0 B)I(x(B)) - H(x(B)).

We note the following inequality, which is more convenient here than Young’s
inequality. For some y > 0, and all a, b > 0, we have

ab < y(exp(2a)? — 1) + b(log* b)"/7.
This is trivial by distinguishing whether or not b < exp a?. So, for u, a, b > 0,
we have
2u a\Vae
u< ybqu(—) + a(log+—)
a b
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We use this for u = |[f(x(B)) — f(x(B"))|, a=2""*% b=2""*2u(C)m(B)/
w(C N B) and (6.6) yields

j;,mBlfn _ fn_ll dp < 2_”+2Y,LL(C)m(B)<I)q( f(x(B);__nfl(x(B')) )

[emem]]
log*| ————tc

FaCn B)\log™| (6 m(B)

We rewrite this as

/cmg'fn + < fc2_n+zym(3)¢ (f( (B); —n+f1(x(B )))

(6.7) B 1
—-n+2 + » n
o (1°g (M(C)m(B)))

We need careful bounds of the last term. We denote by 5# the family of balls
B inU, ., %, such that p(B) < p*(C), and by N the largest integer such that
N(log[l/,u(C)])l/" 179" > 91794, For n > N, we have, since p < 2m,

cnB) \\" 2\
2—n+2(log+( 'u'( ) )) < 2N—n+32—N—1log+( )
r(C)

p(C)m(B)
(6.8)
1 1/q’
< 2N-nH3K1 + (log ) .
r(C)
For n < N, if B € 5#, we have
1 1/q 1/q 1/q-1/q
log < 2"A|log—— ) , 24 <27V "(log ) ,
( m(B) r(B) r(C)

so we have

1/q B 2 1/q-1/¢’ 9 1/q
(log (B)) <2 /q(logp(c)) (log'u(B))

2 1/q
< 2‘1/q(log ) ,
r(B)

since p(C) = p%(C) = w(B). This implies p(B) < 2m(B)>2. Since u(B) < p(C)?
we have p(B) < 2m(B)u(C), so p(B N C) < 2m(B)u(C); it follows that

p(BnC)

(6.9) 2‘”*2(log+(—-—m(B)u(C)

| sk
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Finally, if B & 5#, n < N, we use
p(BNC) Ve 1\
6.10) 2 nt2 log*(—————~— < 27"*%log .
( ( m(B)#(C) m(B)
For x in T, if n(x) is the largest such B(x,27") & 5#, we note that by (6.1)

1 1/q
27" log——— < All
= ("gm(B(x,a-"))) = ("g

9 1/q
)

2 /q
<A(log (C ) ) .

Summation of the inequalities (6.7) over all the balls in U, ; %, together with
(6.4) and (6.8) to (6.11) imply (6.5). This concludes the proof. O

THEOREM 6.4. For a compact metric space, the following are equivalent.

(a) For each process (X,),cr that satisfies the condition in Prdblem 6.1 and
each p € P(T) such that X(w) is p ® P measurable, the trajectories t > X ,(w)
belong to Lq,q,( L) a.s.

(b) The covering numbers N(e) = N(T, d, €) satisfy

(6.11)

Supe(log N(T, d, €))7 < .

>0

PROOF. (a) = (b) is due to Marcus and Pisier [11]; we prove it for complete-
ness. If M, (X.) denotes the L(I> (1) norm of t - X,(w) — X (w) where v is
fixed, one ﬁrst proves that for some A, we have EM (X)) < A forall pin P(T).
Then consider a family (x;); .5 of pomts of T such that d(x;, x;) > 2¢ if
i#Jj Let p=(1/N)L,_n8&,. For  in T, set Xt(w) max(0,1 — d(t w)/€),
and take (T,p) as basic probablhty space. It is easy to see that the
process aX,, for a = e(log(N/2))"/9, satisfies the condition in Problem 6.1. All
the points x,, except at most one, are at distance greater than or equal to & from
v. For such a point x;, if B8 = M,(X(x,)), we have (1/N)(exp(a/B)? — 1) < 1, s0
B > a(log(N + 1))~'/9. Since A > EM/(X)>[(N - 1)/N]B, we have 2A >
e(log(N/2))/9(log(N + 1))/, which easﬂy implies (b).

(b) = (a). Let N, = N(2™"). Denote by s the largest integer with 27° > D(T).
Let @, =TI, _, ., N,. We can clearly find an increasing sequence (.5,) of finite
partitions of T, such that card /%, < @, each set of 5, has diameter less than
or equal to 27 "*! and is Borel. The partitions %, generate the Borel o-algebra
of T. For each H € 5, we pick x(H) € H; we set v=x(T). For H in %,
n > s, we denote by H’ the unique elment of 5#,_, that contains H. We
consider the subprobability on T' X T given by

2s—n
v= Y 8. ® S

Q X
n>s n

Hex,
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Let p be in P(T'). The point is as usual to prove that if f is a Lipschitz function

on T that satisfies
f(¢) — f(u)
—/;‘qu)(W—) dv(t,u) <1,

then M,(f) < K. To that purpose, we prove (6.5). Denote by f” the function
given by f*(¢) = f"(x(H)) if t € H € i, so again f(t) — f(v) = L,. . (f"(¢) -
f*~Y(¢t)). For B € #,, set m(B) = 3(m(B) + 2°°"/Q,). As before, (6.7) holds.

Denote by N the largest integer with 27V > (log*[2/p(C)])/?~/4. For
n > N, we write

-n + y(BﬂC) e -n + 2 e
2 (log (m(B),u(C))) <2 log (m)

N-n+1 2 v

For n < N, we have, since p(B N C) < u(C),
r(BnC) ) e 1/q
27" log™| —F——=% <2 ™log* (2" **'Q, .
oo e (log"(2"*""@,))
A simple computation using (b) shows that
v 2 e
Y 27"(log(27**1Q,)) " < K(log )
Ry (log( ) C)

and (6.5) follows from summation of the relations (6.7) over all Be U, ., .
The proof is complete. O
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