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INDUCED DIRICHLET FORMS AND
CAPACITARY INEQUALITIES

By I. IscoE aND D. McDONALD

Case Western Reserve University and University of Ottawa

A Dirichlet form on a large (complicated or multidimensional) space may
be carried over onto a small (simple or one-dimensional) space. Here
conditions are given ensuring the induced form is regular. A capacitary
inequality between the two forms allows one to estimate the probability of
a large deviation on the large space by that on the small space. Also
asymptotically sharp results are derived in a one-dimensional setting.

0. Introduction. Let x(-) be a reversible Markov process on a state space
X, with respect to a stationary measure m; a more precise description of the
setting is given below [consult Fukushima (1980) as a general reference]. In
this article among other things we consider the problem of estimating
P, (sup, ¢ (o, 7, F(x(#)) > 1), where F: X — R is some given function. Note that
in general F(x(-)) is not itself Markovian. For the sake of clarity we will work
in the framework of general Dirichlet forms.

We consider a Dirichlet form & on 2(&) X 2(&) c LA X; m) X LA X; m),
where X is a locally compact, separable Hausdorff space and m is a positive
Radon measure on &%, the Borel o-algebra on X, with supp[m] =X [see
Fukushima (1980) for definitions]. Define

(0.1) &(u,v) = &(u,v) +0(u,v), u,ve 9(&8),

where (-, - ) = (-, - ),, denotes the inner product on L%(X; m), and for A open

_ [inf{&(u,u): u € D} if Dy # D,
(0'2) Capa( A) ‘_ 0 if DA — @,
where
(0.3) D,={u€ 92(&):u>1m-a.e.on A}

(Cap, is called the 6-capacity).
As is shown in Lemma 3.1.1 in Fukushima (1980) the infimum in (0.2) is
attained by a unique element e, = e,., € Z(£); and moreover

(0.4) Capy(A) = &y(eq,1).

If & is regular the form may be associated with a Hunt process x(-) on X
[see Theorems (6.2.1) and (4.3.6) of Fukushima (1980)]. In this case, assuming
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1196 I. ISCOE AND D. McDONALD

that m is a probability measure and that there is no Kkilling,
(0.5) Capy(A) =60E,e™® and ey (x) =E.e™” m-ae,

where 7 = inf{¢t > 0: x(¢) € A}.

In order to estimate 6-capacities we will consider a proper map F: X —» X*
onto a (smaller) locally compact, separable, Hausdorff space X* [see Dugundji
(1966), Chapter 11, Section 5]. Let #* denote the Borel o-algebra of X* and
let m* denote the image of m under F; evidently supp[m*] = X* and m* is
Radon. In general anything associated with X* will carry an asterisk-super-
script.

We may construct a form &* on 2(&*) X Z(&E*) c LAX*; m*) X
LA(X*; m*) by

(0.6) E*(u,v) =& (u-F,v- F), u,v € (&%),
where
(0.7) 2(&*) ={u e LA(X*;m*)|lu-F € 9(&£)}.

It will be shown in Proposition (1.4) under a mild condition on the conditional
expectation operator E, [-|F] that &* is a Dirichlet form. If we suppose in
addition that it is regular then we can associate with it a certain X*-valued
Markov process, say x*(-). If F(x(-)) happens to be Markovian then &* is its
associated Dirichlet form [see Rogers and Pitman (1981) for conditions imply-
ing F(x(-)) is Markov]. Note if A* is open in X* and A = F~(A*) then we
can consider the two first hitting times » = 7, and 7* = 74.. As will be shown
in Proposition (1.12), x* is conservative if x is conservative, which we are
presently assuming. We then have the following capacitary inequality.

METATHEOREM (0.8). Under the previous assumptions, if the Dirichlet form
&* defined at (0.6) and (0.7) is regular, then
(0.9) Cap,(A) = 0E, e " < 0E, .e %" = Cap}( A*).
Proor. Let u(r) =E,e ", u € Dy, u = 1, m*-a.e. r € A*, which implies
ueFeDyu-F=1 m-ae. x€A,ie,u-FeD,.
0E, .e~ " = Capy( A*)
=& (u,u) +0(u,u)«»=(ueF,uF)+6(ucF,u-F),
> min{&(v,v)|v € D,}
= Capy,(A) = 0E, e %", ‘ O
We refer to (0.8) as a “metatheorem” because it seems difficult to find a
spractical condition to imposé on F which would yield the regularity of &*.
This difficulty is circumvented in Section 1 by imposing some extra mild

conditions on the conditional expectation operator E, [:|F] and then restrict-
ing the domain of &*. In effect, the maximal domain of &*, as described at
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(0.7), may simply be too large for £* to be regular. Note that the outer
inequality in (0.9) does not require regularity of £* when A* is open.
Returning to (0.5), we can then estimate, in the case where A = F~1(A*),

P.(r<1) <e’E e "
=0 le? Cap,(A)
(0.10) < 07l Capy( A¥)
< 07 % min{&* (v, u)|u € Dy}
<0 le%&*(v,v),

for any suitable choice of v € D,.. In the case where X* C R we have
transferred our original problem to one for a one-dimensional process. In
particular when A* = (I,) we are addressing the problem stated in the
opening paragraph.

The layout of the remainder of this article is as follows. In Section 1 we drop
the assumption that there is no killing and by introducing the notion of a core
map F we study a suitably restricted form &*. In particular we show that if
x(+) is an m-symmetric diffusion (resp. jump process) then so is x*(-); and if
x(+) is conservative then so is x*(:). A (practical) extension of Metatheorem
(0.8) is then given which includes some killing terms. As an example, a more
concrete expression is derived for the form &* in the case of a general
conservative m-symmetric diffusion x(-) and proper map F: X -1, I a
subinterval of R. The derivation relies quite heavily on the stochastic calculus
of such diffusions.

In Section 2 we return to the problem of estimating the right-hand side of
(0.10) for x(-) € E, a certain class of classical reversible diffusions on X = R"
with F =|-|and A* = ([,»), i.e,, A = B%0;1) = {x € R"||x| > I}. A suitable
choice of v € D,. is made, based on a generalization of some calculations in
Newell (1962) and results in Section 3. Upper estimates are given for Cap,(A)
in this case [cf. Corollaries (2.19) and (2.21)].

In Section 3 we estimate Cap((l,©)) both above and below and show that
v* = v, given by (8.4) in Proposition (3.2), is an asymptotically optimal test
function. Under certain conditions [see Proposition (3.19)] we show
lim, _,, »(I)Cap#((l,»)) = 1, where v is defined in Proposition (3.2). It follows
that

lim (1) P,(7* < T) = T

This generalizes and makes precise (by identifying the dominant term) the
asymptotics as [ — o of (3.23a) in Newell (1962).

1. Induced Dirichlet forms. Let X, X* be locally compact, separable,
Hausdorff spaces, m a positive Radon measure on %, the Borel o-algebra on
X, with supp[m] = X, and F: X - X* a proper map. We denote by #* the
Borel o-algebra of X*, and the image of m under F by m*; evidently
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supplm*] = X*. In general anything associated with X* will carry an
asterisk-superscript in this section.

Denote the o-algebra generated by F by o(F'), and the projection operator
from L*X,#,m) to LAX,0(F),m) by &; F=E,[:|F] in case m is a
probability measure. A straightforward localization argument yields the follow-
ing lemma which is well known in case m is a probability measure. We omit
the proof.

LeEmMmaA (1.1).

Q) [z Fudm = [zudm,¥ B & o(F), u € LAX, B, m)..

() (Fu)? < Fu?, m-a.e,V u € LAX, B, m).

(iii) u,v € LAX, %, m) and u < v, m-a.e.= Fu < v, m-a.e.

Gv) If u € LA X, B, m) then Su = u*o F for some Borel-measurable u*.

V) uelXX,%,m)and v e L(X* B*, m*)= F(u [ve F)) =[vo F]-
Fu, m-a.e.

Let & be a Dirichlet form in L(X; m). F induces a form &g in LA(X*; m*)
by

(1.2) &gt (u*,v*) = &(u*e F,v*o F),  u*,v*e 9(&F),
where
(1.3) (&) = {u* € LA X*, m*)|u*- F € 9(&)}.

PropoSITION (1.4). If (2) c 2(&) where D is some L%-dense subset of
(&), then & is a Dirichlet form which is local if & is.

Proor. That &;* is a positive semidefinite, symmetric, Markovian bilinear
form on (&) X 2(&) is evident. We show that 2(&;*) is dense in
L%(X*; m*) and that &§* is closed.

Let ¢ > 0 and u* € L% X*; m*) be given; so that u*o F € L%(X; m). Choose
u € 9 such that (u —u*c F,u —u*°F),, <¢, and set Fu =uf-F as in
Lemma (1.1)(iv). Then by Lemma (1.1)(1), (ii),

(uf —u*,uf —u*),.= [ [u¥oF —u*oF1dm
X

= fx(?[u —u*o F])*dm

(1.8) < fX?([u - u*o‘F]z) dm
= fX[u —u*oF1?dm

<eE.

Also if (u¥),cn is (&59);-Cauchy then (u}oF),.y is &;-Cauchy,
hence convergent to some u € 2(&). Clearly u is o(F)-measurable, so u =
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u*oF for some u* € L%(X*; m*). By definition u* € 2(&;*) and
lu* — u*lly =llu, o F —ully » 0, as n > ». Thus &¢* is closed.

Finally if & is local and u*, v* € 2(£;) with disjoint compact supports
then u*o F,v*e F € 2(&) with disjoint compact supports since supplu o F] €
F~(supplu]). Therefore &5 (u*,v*) = &(u*o F,v* F)=0. O

Suppose in addition & is regular. It seems difficult to find a practical
condition to impose on F which would guarantee that &, as defined at (1.2)
and (1.3), is also regular. To circumvent this problem, we will restrict the
original domain 2(&£*) and impose the following condition on F.

DEFINITION (1.6). Let C* c Co(X*) be a dense subspace and C, a core for
&.Set Cf = {u* € C*: u*o F € 9(&)}. We say that F: X — X* is a core map
if for each u € C;,

(i) there exists a continuous version of Su, still denoted by Fu, with
Fu € 9(&),
(i) Fu = u*o F with u* € C*; u* is denoted by ¥ *u.

Thus a core map F induces two maps &: C; = C(X) N 2(&) and & *:
C, — C#. In light of Lemma (1.1)(iv), a measurable version of u* certainly
exists so that Fu = u*o F, m-a.e. The content of (1.6)(ii) is that a version
u* € C* C Co( X*) exists. In some cases when X is compact then (1.6)(ii)
follows from (1.6)(1) as we now show.

LemMA (1.7). Let F: X — X* be a proper map such that (1.6)(i) holds.
Then for u € C;, Fu = u*° F with u* € C(X*). Hence if X is compact and
© C* = C(X*) then (1.6)(ii) holds.

Proor. If Fu = u*o F, with u* Borel, and E C R is a closed subset, then
(u*)"YE) = F(Su)"YE)) is closed since u~X(E) is closed and F is a closed
map. O

Let & be a regular Dirichlet form, C;, C* and C}* as in Definition (1.6), and
F a proper core map [relative to (C;, C*)]. Define

Ex(u*,v*) = &(u*o F,v*o F), u*,v* € 9(&*) = Cf.
THEOREM (1.8). The form &% is closable and its closure, &*, is a regular

Dirichlet form with C;* serving as a core. Moreover 2(&*) ¢ X&) = {u* €
LAX* m*): u*o F € 9(&)). If A* C X* is open and A = F~1(A*) then

(1.9) Cap,(A) < Capj( A*).

Furthermore, if & has the local property then so does &*.
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Proor. That &* is a positive semidefinite, symmetrlc Markovian bilinear
form is evident. The proof that 2(¢&,*) = C;* is dense in L*(X*; m*) follows
as in Proposition (1.4) with z now chosen from C,; which 1mp11es, by our
hypothesis, that v = & *u € C}.

Next we show that Cj* is | - ||,-dense in Cy(X*). Let u* € Cy(X*); then
u*o F € Cy(X) as F is proper. Since C; is a core for &, given & > 0 there
exists a u; € C; such that |u; — u* F|, <e&. Set uf = F*u, € Cf. Then

luf — u*|l, = sup|uf o F(x) — u*e F(x)|
xeX

=esssup | F(u, — u*e F)(x)]
xeX

< esssug?ﬂul(x) —u*o F(x)))

< esssup ¥ (¢) = ¢.
xeX

That &,* is closable follows easily since ¢ is closed; we omit the straightfor-
ward notational details. Let £* denote the closure of & *.

By construction Ct* is &*-dense in Z(£7*), the (£,*);-completion of Cf* in
L?*(X*; m*), and we have already seen that C;* is | - ||m-dense in Cy(X*). Thus
&* is reg‘ular with Cj* serving as a core. The preservation of the Markovian
property, in passing from a closable Markovian symmetric form (here &*) to
its closure is a result of a general nature—see Theorem 2.1.1 of Fukushima
(1980). Also 2(£*) ¢ 2(&,) because &G+ is a closed extension of &*, by
Proposition (1.4), and &* is the smallest closed extension of &,*. The local
property of &* then follows as in Proposition (1.4).

Finally, the capacitary inequality follows as in the proof of Metatheorem
0.8). O

The Beurling—Deny representation for a regular Dirichlet form & [see
Theorem 2.2.1 and Lemma 4.5.4 in Fukushima (1980)] is the decomposition

S(uv) = o) + [ u(x) — u()][v(x) ~ v(x)]J(dx, dy)

(1.10)
+qu(x)v(x)k(dx), u,vE (&) N Cy(X).

Here £ is a symmetric form with domain 2(& @) = 9(&£) which satisfies
the property

ENu,v) =0 if u,v € 2(£) have compact support and v

(1.11) is constant on a neighbourhood of supplz].
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J is a symmetric positive Radon measure on X X X \ d, d being the diagonal;
and k is a positive Radon measure on X. The form &(© and measures J and
k are uniquely determined by &; £© is called the diffusion part of &, and J
and % are called the jump measure and the killing measure, respectively,
associated with &. The representation at (1.10) is also valid for general
u,v € 9(&£) if one replaces © and v with quasicontinuous modlﬁcatlons i
and 0, respectively, in the integral terms.

CoroLLARY (1.12). The form &* of Theorem (1.8) has Beurling—Deny
representation

E*(u*,v*) = £*O(u*, v¥)

(1.13) H o[£~ wHI(r) = v¥(9)] T*(dr, ds)

+[ w*(r)v*(r)k*(dr),  u*,v* N D(EF) N Co X*),
o

where &E*(y* v*) = &N (y*o F,v*o F), J* =dJoF~ 1 restricted to X* X
X* \ d*, where F(x,y) = (F(x), F(y)) € X* X X* for x,y € X and J is the
zero extension of J to X X X, and k* = ko F~1. Also the representation at
(1.13) remains valid for u*,v* € 2(&*) upon the replacement of u* and v*
the integral terms by quasicontinuous modifications @* and 0*, respectively.

Proor. The representation of (1.13) is evident since u* € Z(&£*) N Cy(X*)
[resp. 2(&£*)] implies that u*o F € 2(£) N Cy(X) [resp. 2(£)] by Theorem
(1.8), the assumption that F is proper, and the usual change of variables
formula for integrals. To conclude that (1.13) is the Beurling—Deny represen-
tation, it suffices to note that £* and J* are Radon measures. The former is
clear. For the latter, if K* is a compact subset of the (open) set X* X X* \ d*
then K=F"YK*) is compact [K is a closed subset of the compact

F~Y7,K) X F~Ym,K), where 7, m, denote the continuous coordinate pro-
jections from X X X onto its first and second factors]. If (x, x) € K N d then
(F(x), F(x)) € K* N d* = &, which is absurd. Thus K is compact and K N d
=, 80 JHK*) =J(K) < +». O

CoROLLARY (1.14). If u* € 2(£*) and @t* is a quasicontinuous modifica-
tion of u* then @*° F is a quasicontinuous modification of u*- F € 9(&).

. PrRoOF. The existence of #* is guaranteed by Theorem 3.1.3 of Fukushima
(1980). Also we have m(i*o F # u*o F) = m*(4* # u*) = 0. Finally, if ¢ > 0
is given and a corresponding open G* C X* is chosen with Cap*(G*) < ¢ and
@*| y«. g+ continuous, then G := F~%G*) is open and by (1.9) Cap(G) <
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Cap*(G*) <e. By construction F(X\ G)=X*\ G* and a*°F|y. g =
¥ xx g+ ° Flx g is evidently continuous. O

We now take a closer look at the form of & *( in a special case. Specifically,
we assume that: '

(1.15); the Hunt process x(-) associated with the regular Dirichlet form & is a
diffusion on X;

(1.15), X* =1, an interval in R,

(1.15)5 the subspace C* c Cy(I) [appearing in Definition (1.6) of the (even-
tual) core C;* of & *]is contained in C¥(I);

(1.15), denoting the infinitesimal generator of x(-) by .#, assume F, F2? e
(L) and F - £F € LA X; m).

THEOREM (1.16). Under assumptions (1.15);-(1.15),, the Hunt process x*(-)
associated with &* of Theorem (1.8) is a diffusion and

(1.17) E*Nu,u) = fla*(r)u’(r)2m*(dr), u e Cf,

where a* = ¥ *2 and 2= 3 /F?> — F-_/F. [ Note that by the result of
Hamza (1975) m* has a density.]

Proor. By Theorem 5.4.3 of Fukushima (1980)
&*Nu,u) = ENucoF,u-F) = %f [u'o F1*dp g,
X

where p p, is the energy measure of the martingale part, M [F1 of the additive
. functional AV = F(x(¢)) — F(x(0)). Since u'c F € Co(X) and & is regular
there exists a sequence u, € 2(&) N Cy(X) such that |u,l. <|u'° F|l
lim, .|, —u'°F|,=0, and moreover supplu,] C supplu’' F] for all n
[see Theorem 1.4.2(iii) and Lemma 1.4.2 of Fukushima (1980)]. Therefore by
the bounded convergence theorem (because u z, is Radon) and Lemma 5.4.6
and relations (5.4.24) and (5.4.25) of Fukushima (1980)

c 17 — 1 1z
(1.18) E*Nu,u) = Ellft{ofxun ducpy = E,Pfifxu” ducry

where F = (F A K)V (-K) € 2(&), again by Theorem 1.4.2(iii) of
Fukushima (1980), where K is chosen so that supplu'c Flc{—(K - 1) <
F <K - 1}. Since u, € 2(£), N C(X) and F € 2(&), we can apply Theo-
rem 5.2.3 of Fukushima (1980) to the extreme right-hand side of (1.18):

£¥O(u,u) = + lim (26(F -, F) - £©(F, u,))

1 lim {26¢(F - u,,F) - &(F?u,)}
n—oo

by Theorem 4.5.3(1) of Fukushima (1980), noting that F = F on an open
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neighbourhood of supplu,]. Therefore since &) f, g) = —(.£f, g),, when-
ever f€ 9()and g € 9(&):

lim {(3-2F%u,), - (F-u,, /F),)}

n-—o

lim (2,u,),,

n—o

E*Nu,u)

(Q, [wo F]z)

m?’

the last equality following from the dominated convergence theorem since
lw,| <llu'o Fllo * Xeupppur- 7} € L*(X; m) (supplu’e F1 is compact and m is
Radon), and 2€ L3 (X; m).

Finally, since 2 € LA X;m), a* == ¥2: I - R is defined and

EXNu,u) = /Q[u’OF]2dm
X
= [Xﬁ{g[u'oF]z} dm

= [X[(?*,@)o Fllu'> F)*dm
[by Lemma (1.1)(v) and Definition (1.6)(ii)]

= /9*9[1/]2 dm*
I

= fIa*(r)u’(r)2m*(dr).

That x*(-) is a diffusion follows from the general result of Theorem 6.2.2 (and
Theorem 4.3.6) of Fukushima (1980) since &* is regular and possesses the
local property [see Theorem (1.8)]. O

For the remainder of this section we shall assume that m(X) < ©,1 € 9(&)
and k(X) < o, where the killing measure k was described in the Beurling—Deny
representation (1.10).

As such the constant functions belong to 2(&£). An equivalent condition, in
terms of the semigroup (T,),. , associated with &, is that lim, _, o+ ¢ Y/x(1 —
T,1)dm < .

We now translate the capacitary inequality (1.9) into semiprobabilistic
terms for the Hunt processes x(-) and x*(-) associated with & and &* [see
Theorems 6.2.1 and 4.3.6 of Fukushima (1980)]. We begin with a lemma.

LEmMa (1.19). If m(X) <o, B(X) <o, 1€ 9(&) and u € D(&) then
&(u,l) = [yiidk, where @i denotes a quasicontinuous version of u.
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Proor. Polarizing (4.5.22) of Fukushima (1980) gives
Fo(u,0) = lim o B, [u(X,) ~ u(X0)][o(X) - v(X,)]
for any u,v € 2(&), where
g (u,v) = &(u,v) — leZ(x)ﬁ(x)k(dx).
Substituting v = 1 yields the lemma. O

ProrosiTioN (1.20). If m(X) < o, k(X) < x, 1 € (&) and A* c X* is
open then

(1.21) fXExe“’T(Bm +k)(dx) < fX*E,e"’T*((im* + k*)(dr),

where ¥ is the first hitting time of A* by x*(-) and 7 is the first hitting time of
A = F~Y(A*) by x(-). In particular if k = 0, then
(1.22) E,e " <E,e ",

Proor. In view of (1.9) and Proposition (1.12) one need only make the
general identification

(1.23) Cap,(A) = fXExe‘”T(Om + k)(dx)

"under the hypotheses: m(X) <o, 1 € (&) and k(X) < «. This follows
immediately from Lemma 3.1.1(iv) and Theorem 4.3.5 of Fukushima (1980),
and Lemma (1.19) with e (x) = E e °":

Cap,(A) = &(ey,1) + 0(ey,1), = [XeA dk + o[XeA dm. O

We close this section with an upper estimate on P,(r < T') which is a
generalization of the one announced at (0.10).

PropPOSITION (1.24). Let m(X) < », k(X) < =, 1 € 2(&) and A* C X* be
an open subset of finite Cap*-capacity; set A = F~Y(A*), 1 = 7, and 7* = 74..
Then for all 6 > 0,

(1.25) P (r<T)< e"{Em*e_“*/T + T0“1fE,e‘97*/Tk*(dr)}.
X

Also

(1.26) P (r<T) <0 e min{T&*(u*,u*) + 0(u*,u*),,|lu* € 2(£*),
. u* > 1, m*-a.e. on A*}.
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Proor. Denoting 6/T by 6,,
P(r<T)=P,(0,r<89)

<e’E, e "
(1.27) < eoﬂl_l{ [ Bt (o,m® + k*)(dr)} [by (1.21)]

=e’0; ! Capj (A*) [by (1.23)]
(1.28) = 97 min{&*(u*, u*) + 0,(u*, u*) lu* € Dy},
the last identification being the result of Lemma 3.1.1(i) of Fukushima (1980),

where D,. = {u* € 2(£¥)|u* > 1, m* — a.e. on A*} as in (0.4). Evidently
(1.27) becomes (1.25), and (1.28) becomes (1.26) upon replacing 6, by 6 /T. O

2. Reversible diffusions on R”. In this section we specialize and exem-
plify the results of the preceding section for the case X = R*, X* = [0, ) c R?
and F = |- |, the Euclidean norm, which is clearly a proper map. The forms
considered will correspond to a subclass of uniformly elliptic, classical re-
versible diffusions. Specifically, we will assume that the Dirichlet form & is the
closure of &', where

n a a
@D Sy = L [ ay()—ul) —o(y)m(y) dy,
i,j=1"R" Yi Y
u,v € 9(&) = C3(R");
(2.1), m(-) € CY(R") Nn L*(R";dy) and m(y) > 0 for all y € R",
[ m(y)dy=1;
.

(2.1); Vi, j:a;(:) € Li(R"; m(dy)) where m(dy) = m(y)dy,
and aij(‘) = aji(’);

(2.1), 38> 0suchthatVy eR™: Y a,;(y)&é; = 862V £ R
i, j=1

For some results we will also assume in addition to (2.1),-(2.1),,
(2.1)5 Vi,j: aij(') ELI(Rn;m).

In Lemma (2.2), we will show that (2.1),-(2.1), indeed ensure that & is
closable in L%(R"; m); C; = C5(R"™) then serves as a core for &. Theorems
2:1.1 and 2.1.2 of Fukushima (1980) then yield that & is a regular, local
Dirichlet form. We will denote the corresponding diffusion by x(-) and the

class of all m-symmetric diffusions in R™, whose Dirichlet forms arise as
outlined above, by E.
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LeEMMA (2.2). Under assumptions (2.1),—(2.1),, &' is closable in L*(R™; m).

Proor. Lemma (2.2) can be shown to follow from Lemma 4.3 and Corol-
lary 3.5 of Rockner and Wielens (1985) but for the reader’s convenience we will
carry through the type of argument given in Case (1°) of Section 2.1 of
Fukushima (1980). [Note that our assumptions (2.1) do not quite fit into that
case.]

Let (u));en ©€ CoR™) with &' (u; — up, u; —uy) + (u;u,),, > 0as l, k-
. We must show that &'(u,, u;) - 0 as | - «. By (2.1),

D(u;,—up,u;—uy) <8 ' (u;,—uy,u;—uy) >0 asl, k> o,

where
D(u,v) = [ Y Z5) L (yym(y)d Ci(R™)
u,v) = — — m , u,v e CJ(R").
‘/i;?%”i=1‘9yi y 3y, y y)ay 0

Now D is closable on L2(R™; m) by (1.1.3) of Fukushima (1980). Indeed if
(v)); en € C5(R™) with (v}, v;),, > 0 as j — =, then for each v € CF([R"),

D(v;,0) = = [ u,(»)(Sv)(y) dy,

where K = supplv] and

n

(Sv)(y) = X ——

i=1

d
[ (y)——(y)}

dy;

By Cauchy-Schwarz
iD(Uj: U)I SII[(SU)/”}] 'XK”mVVOI(K) : (vj’ Uj)in/z -0 asj—>o.

Thus D(u,,u,;) = 0 as k — . By restricting attention to a subsequence if
necessary, we may assume that du,/dy; - 0 m — a.e.foreach i = 1,2,...,n.
Then by Fatou’s lemma

é”(ul,ul)slizninfe”'(ul—uk,u,—uk)—-)O as ] — o, O

LemMma (2.3). Under assumptions (2.1),-(2.1),, 2(&) > C¢R™). If also
(2.1)5 holds, then 2(&) D> CHR™), the set of bounded continuously differen-
tiable functions having bounded first partial derivatives. The expression (2.1),
is valid for u,v € Cj(R™) [resp. CHR™), if (2.1)5 holds].

Proor. Fix a nonnegative w € Cj(R") with [Rnw(y) dy =1, and set u,
equal to the convolution u, = u * w,, where for ¢ > 0: w(y) = ¢ "w(e " 'y),
% € R™. Then if u € C&(IR”) u, € Cff(lR{”) and u, - u, du_/dy;, = Qu/dy,), =
Qu/dy)* w, — du/dy; for each i pointwise boundedly on R™ as ¢ > 07;
e e < llull. and ||0u,/dy;|l. < ||0u/dy;|l. for each i. Then by the bounded
convergence theorem (u, — u,u, — u),, = 0 as ¢ = 0" and by the dominated
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convergence theorem, as a; j(~) € L}, (R"; m) and supplu,] C supplu] +
supplw] for ¢ < 1,

(u, —u,u, —u,)

€

<2y f a;;(9)[(9u/3y,) (¥) — du/dy(y)]

i,j=1

x[(9u/dy;) (¥) — du/dy,(y)|m(dy)

vz Y [ [@u/ay) () - ousay(y)]

i,j=1

x[(9u/8y;) () — du/dy,(y)|m(dy)

-0 ase e > 0",

Since & is closed, u € 2(&).
Finally, if u,v € C3(R™) then

£(u,0) = lm &(u,,0) = [ > a,,<y)—(y)—<y>m<y>dy,
i,j=1

by another application of the dominated convergence theorem.

In case u € C}(R") only, but each a,,(-) € L'R"; m), then u,=u v, €
ClR™) c 2(&), where v, € C(°,°([R”) Wlth v, =1 on {|y| < n} and v, = 0 on
{ly] > 2n} and |9v,, /9y;|l. < 1 for i = 1,2,...,n. Then using the product rule,
one can show that (u,),cn is &- Cauchy and (u —u,,u—u,), =0 as
n — «, using the dominated convergence theorem; we omit the straightfor-
ward details. The expression for &(u,v) when u,v € C}(R") follows as in the
previous paragraph. O

In order to apply the results of Section 1 we must verify that F =|-|is a
(proper) core map [relative to some pair (C,, C*); see Definition (1.6)]; and then
calculate the resulting form £ *. This we now do.

LemMA (2.4). Under assumptions (2.1),~(2.1),, F = || is a (proper) core
map relative to C; = C3(R") and C* = C§([0, »)).

Proor. Since m(R") =1, if u € C;, then Fu and ¥ *u will just be
versions of E, [u|F] and E, [u|F = -], respectively. We proceed to verify the
conditions (1.6)1), (ii) of Definition (1.6). Denote by o the usual hypersurface
measure of S = {y € R™: |y| = 1}; so that [p-u(y)dy = [5/su(r®)do(®)r"'dr
for all u € LYR™;dy).



1208 L. ISCOE AND D. McDONALD

For any u € L*R™;m) N C(R") (in particular for u € C,) and v F
LAR", o(F), m), (v: R, — R and is Borel measurable)

E,[(veF)u] = [:v(r)[su(ro)m(ro) do(8)r"~1dr

= foov(r)?*u(r)fm(ro) do(0)r*~ldr
0 s
=E,[(veF)Fu],

where
(2.5) Fru(r) = [Su(ro)m(ro) da(o)/[sm(ra) da(0)

and
(2.6) Fu(y) = F*u(ly)) = (F*u)° F(y).
If u € C,, then clearly $u and & *u are continuous versions of E,[u|F]and
E,[m|F = -], respectively, and % *u € C* = C{(0,%)). It only remains to
check that Fu € 2(&) if u € C; = CJ(R™).

For ¢ > 0 consider

n 1/2
u(y) = 9*u([2y?+8] ) u, € C3(R") c 2(&),
i=1

by Lemma (2.3), and moreover supplu,] < supp[.# *u] c [0, R], say. Set |y, =
[(E7_1y? +€l"/% lyl. N |yl as & \ 0. By the bounded convergence theorem
(u, — Fu,u, — Fu),, - 0,as ¢ - 0*. Also, by the chain rule

é)(ue — Uy, u, — ue’)

2.7 n F*u) . FEyY " 2
(2.7) = Z aij(y)yiyj[( «)(lyl.) - ( u) (1o )J m(dy),
ty=ry|; 521 yle yle

where (¥ *u) = (d/dr)% *u, since the integrand at (2.7) is identically zero
for |y| > R. Continuing,

é)(ue T U U, T ue’)

n (F*uy(yl)  (F*u)(y) T
(2.8) s2f{|y|sR),-,,Z=1a”(y)yiyj([ 1. - lyl J

. [(«Wu)'(lyle')_ F4u(ly)
lyle Lyl
Now the integrand at (2.8) is majorized (since |y;y;|/|y|? < 1) by

n

8”(9—*1“),”00 Z ,aij( ), € L}oc(Rn; m)

i,j=1

} )m(dy).
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By the dominated convergence theorem, &(u, — u,,u, —u,) » 0as e, — 0.
Since & is closed, Fu = lim, 4+ u, € 2(&). O

As an immediate consequence we obtain the following proposition.

ProposITION (2.9). Under assumptions (2.1);-(1.2),, when F =|-|, the
induced regular Dirichlet form &* is determined on the core Cj¥* ={u €
C3(0,%): u° F € 9(&)} by

(2.10) E*(u,v) = fmf(r)u’(r)v’(r) dr, u,veCy,
0
where

f(r)=fs i a;(r0)0,0,m(ro)do(6)r*=', a.e.r>0.

i,j=1

Proor. The existence and regularity of &* follows from Theorem (1.8)
since F' =|-|is a proper core map. Finally, by the proof of Lemma (2.4) [see
the paragraph containing (2.7) and (2.8)], with u (y) = u(|y|,), since
F*u-F)=u,

E*(u,v) =&(ueF,v-F)
= lim &(u,,v,)

e—>0%

It

e—>0"

lim [ X a0y (91)v () iz (y) dy
i,j=1

[ “F(ryw(r)v'(r) dr

upon writing the integral in spherical coordinates. The interchange of limit
and integral is justified by the dominated convergence theorem. O

ReEMARK (2.11). With some additional smoothness and integrability as-
sumptions on the coefficients a; j('), one can use the arguments given in
Lemmas (2.3) and (2.4) to verify that F =|-| satisfies the hypotheses of
Theorem (1.16). In particular,

1 no4 a
Zu(y) = Wi,;;l E[aij(y)m(y)gy—iu(y)], u € C5(R") (at least).

Also one calculates that 2= 1 ZF? — F - /F is given by

2(y) = [ Xn‘, 1aij(y)yiyj]/ly|2-

i, Jj=

[Note that 2 L'(R"; m) if each a;;(-) € L'(R"; m); no smoothness assump-
tions are required for this.] The coefficient a* and density of the measure m*
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appearing in the formula (1.17) would be given by [as at (2.5)]
a*(r) =E,[2I1F=r]= [ ¥ a;;(r0)6,6;m(r0)do(6)

§i,j=1

(2.12)
+ [Sm(ro) do(6), ae.r=0,

(2.13)  m*(r) = [%(mOF‘l)](r) = [Sm(ro) da(6) - r* Y,

where A is one-dimensional Lebesgue measure and d/dA stands for the
Radon-Nikodym derivative with respect to A. Thus the coefficient f of (2.10)
satisfies

(2.14) f(r) =a*(r) -m*(r),

since the two approaches must yield the same representation for &*. We shall
not pursue a rigorous derivation of Proposition (2.9) from Theorem (1.16)
since the proof given for the former was quite simple and direct and required
no assumptions additional to (2.1);-(2.1),.

REMARK (2.15). If n > 2 and each a,;(-) is bounded near the origin then
the diffusion coefficient f, of (2.10), is degenerate, i.e., f(r) = Z(r"*1) as
r — 0%, In the terminology of Feller’s classification of one-dimensional diffu-
sions [see It6 and McKean (1965)] the boundary point r = 0 of X* = [0, ®) is
an “entrance boundary’’ for the diffusion x*(-) associated with &*. If n = 1
then O is a reflecting boundary.

As a preliminary step towards estimating the capacity Capj((x,)) for
"~ x > 0, we must make more precise the domain, 2(£*), of &*. The description
is given in the next corollary which is a consequence of more general results
developed in Section 3.

COROLLARY (2.16). Under assumptions (2.1);—(2.1),,
2(&*) = {u € L3R, ; m*)|u € AC((0,%)), u' € L3R,; f(r) dr)}.

Proor. Due to (2.1),: f(r) = 8a5(8)r"~! [see (2.10)] which implies that
1/f € L}, ((0,);dr). By (2.1);, f€ L' R,;dr) so f~!'¢&L'1,»);dr) by
Cauchy-Schwarz. Clearly m* € LXR,;dr), and (m*)~! € L} ((0,»); dr) by
(2.1),. Moreover 2(&*) contains C(R, ) (densely). Indeed, given u* € Cj(R,),
we define .

u*(r) = u"‘([r2 + 8]1/2)

for “each ¢ > 0. Then as in Lemma (2.4) [see the paragraph after (2.6)]
u* € CMR,), u*(|-) € CaR™) c 2(&) [by Lemma (2.3)], and u*(|]) con-
verges in &-norm to u*(|-|)) as ¢ » 0*. Hence u} converges to u* in
&*-norm, as ¢ — 0*. Since & [from Proposition (3.1)] and &* are closed and
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agree [identifying m(r) with m*(r)] on a common core, Ci(R,), &= &* and
the corollary is a particular instance of Proposition (3.1). O

We are now in a position to give an upper and lower estimate of Cap}((x, »))
for x > 0.

COROLLARY (2.17). Under assumptions (2.1);—-(2.1)5

m[l +6(1 — M(x))v(x)]

(2.18) < Capj((x,%))

+ 0fxv(r;x)2m*(r) dr + Bfwm*(r) dr,
0 x

1
=)
where v(r;x) = v(r)/v(x), v(r) = [{M(s)/f(s)]lds, M(r) = [[m*(s)ds and f
is given in Proposition (2.9).

ProoF. As verified in the proof of Corollary (2.16), f and m* satisfy the
hypotheses of Proposition (3.1) with &= &*; moreover [fm*(r)dr =1 by
(2.1),. To apply Proposition (8.2), it only remains to verify that M/f e
Ll (R,;dr). By (2.1), and the description of f in Proposition (2.9), f(r) >
8a(S)r"~1, and by (2.13), M(r) = &(r™) as r —» 0*; so M(r)/f(r) = O(r) as
r — 0*. Moreover M(r) < 1. Therefore M/f € L1 (R,;dr). O

COROLLARY (2.19). In (3.15) take m to be m* above and assume 8(x) tends
to 0 as x = . Under assumptions (2.1);—(2.1), and assuming there exists a
constant A > 0 such that

i 1

(2.20) > aij(y)gi'fj < A|£P,
J=

then
lim v(x)Capk((x,»)) = 1.

Proor. Simply note that § < a*(r) < A, where a* is defined in (2.12). The
result follows from Proposition (3.19). O
CoOROLLARY (2.21). Under the assumptions of Corollary (2.19),
limsupw(x) - Cap,(B(0;x)°) < 1.

X — ®©

Proor. This follows from Theorem (1.8) and Corollary (2.19). O

COROLLARY (2.22). If x(-) € E, the class of m-symmetric diffusions in R"
whose Dirichlet forms & satisfy (2.1);—(2.1)5, x > 0 and 7 is the first hitting
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time of B = {y € R": |y| > x}, then for all 6,T > 0,

P (r<T)

2.23
(2:29) se*e"{T[v(x)]‘l+o[Bv(|y|;x)m<y)dy+echm<y)dy}.ﬁo

as x = », where v and v are as described in Corollary (2.17).

Proor. This is an immediate consequence of (1.26) with A* = (x, ») and
the replacement of u* by v; &*(v,v) is estimated at (3.5) in the proof of
Proposition (3.2) O

In Iscoe and McDonald (1989a) the asymptotics of the estimate given at
(2.23) are worked out for an n-dimensional Ornstein—-Uhlenbeck process.
Subsequently, a lower bound of the same order was derived in Iscoe and
McDonald (1989b).

3. Estimates and asymptotics for one-dimensional diffusions.

ProrosiTiON (3.1). Let f and m be nonnegative Borel functions on R, =
[0, ®) such that

m, fELl (R+7dr)7 m_l? f_leLlloc((()’oo);dr); f_lﬁLl([l,oo);dr),

loc

Define the form & in LAR,; m(r)dr) by
£(u,0) = [F(u(rv(r)dr,  wve (&),
0

2(&) = {u € L3R, ; m(r) dr)|uis ACon (0,)
andu' € L3(R,; f(r) dr)}.
Then & is a regular Dirichlet form; and C}(R,) is a core for &.

Proor. Theorem 3.2 in Rockner and Wielens (1985) shows that & is a
Dirichlet form [see also Rullkotter and Spénemann (1983) for the specific
one-dimensional case.] Concerning the regularity of &, it suffices to verify that
Cy(R,) is &;-dense among the bounded functions in 2(&) since the latter are
already dense in (&) [see Theorem 1.4.2(iii) of Fukushima (1980)]. Next, it
suffices to treat the case where « is, in addition, compactly supported in R_.
Indeed if u € 2(&), u # 0 and is bounded, then given & > 0, we choose
R, > 0 such that ’

f}:[u'(r)zf(r) + u(r)zm(r)] dr <e/4
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and then R, > R, such that

([Rsz(r)‘ldr) <e/(4llull?).

Then defining

1’ OerRl,
v(r) ={1-V(r)/V(R,), R,<r<R,,
07 R2Sr,

where
V(r) = [ f(s)"ds,

it is easy to see that uv € Z(&£), uv is bounded and has compact support in
R, and &(u — uv,u — uv) < e. Finally, if u € 2(&) is of compact support,
we may use the hypotheses m, f € L} (R,; dr) and regularization to construct
a sequence u; € Cy(R,) such that &(u —uzu —u;) = 0. O

PropoSITION (3.2). Let &, fand m be as in Proposition (3.1) with more-
over m € L'R,;dr) and [fm(r)dr = 1. If further M /f € L (R.; dr), where
M(r) = [{m(s)ds, then relative to &

m[l +6(1 — M(x))v(x)]
(3.3) < Capo((x,w))

<

o (2) +Oj:v(r;x)zm(r)drﬂkOf:m(r)dr, 0>0,x>0,

- 0asx —» o,

where v(r) = [J[M(s)/f(s)lds and v(r;x) = v(r)/v(x) for 0 <r <x.

Proor. Since [Im(r)dr < «, (x,o) has finite capacity; moreover
Cap,((x, ) < &,(v, v), where v(r) = v(r; x) is given by

(3.4) v(r;x) = {V(r)/l’(x), 0<r<u,

1, x<r.

Note that v € D,, ., [see (0.4)] by Proposition (3.1) since M/f € L, (R,; dr)
implies that v, and hence v is well defined and absolutely continuous on R,;
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also v € L*(R,; dr) c LAR,; m(r)dr) and v’ € L*R,; f(r)dr):
[0 £y dr = () [ My /p()] dr

(3.5) < v(x) P M(x) [ [M(r) /F(r)] dr

=M(x)/v(x)

<1/v(x) < ce.
The upper bound at (3.3) follows immediately from (3.5), which is an upper
bound for £(v, v) and the definition: &,(v, v) = &(v,v) + 8/5v(r)*m(r) dr.

Concerning the lower bound in (8.3): By Lemma 3.1.1(i), (iii) of Fukushima

(1980) and Proposition (3.1), Cap,((x,®)) = &,(u,u) for some u € 9(&)
AC((0, ©)), such that u = 1 on (x,®). Since &,(u, u) is the minimum value of
&3(vy, v,) as v, ranges over D, .., it follows that the quadratic polynomial (in £)
&(u + th,u + th) has its minimum value at ¢ = 0 for any & € 2(&) such
that 2 =0 on [x,). Developing the quadratic polynomial and minimality
property yields

0-= ()foxu(r)h(r)m(r) dr + j:u'(r)h'(r)f(r) dr
(3.6)
= [Oxh'(r){f(r)u’(r) - GLru(s)m(s) ds} dr,

after an integration by parts. We now choose for A the absolutely continuous
function: h(r) = —[*M(s)/f(s)ds = v(r) — v(x) for 0 < r < x and h = 0 for
r>x. Then A'(r) = M(r)/f(r) = v'(r) for ae. re(0,x); so h' &
LAR,; f(r)dr) [see (8.5)]. Thus h € 2(&) by Proposition (3.1) and so is a
legitimate choice. Continuing from (3.6), we obtain, by another integration by
parts and an application of Fubini’s theorem

0= fO"M(r)u'(r) dr — OLer[M(")/f(’")]u(S)m(s) dsdr

=M(x) — foxu(r)m(r) dr — O{Lxu(s)m(s)j:[M(r)/f(r)] drds}
[M(0) =0, u(x) = 1]

1- f:u(r)m(r) dr — 0{[Lxu(s)m(s) ds]v(x) + foxu(s)v(s)m(s) ds}

\%

1- [j:u(r)m(r) dr][l + 0v(x)] + 0[1 —M(x)]v(x)

In' the last equality we used the facts: u =1 on [x,0) and M(x) =
Jom(r) dr = 1; and to obtain the inequality we discarded the positive integral
J§u(sv(s)m(s) ds.



INDUCED DIRICHLET FORMS 1215

Thus we obtain, upon rearranging the last inequality,
[u(rym(rydr=1/[1+ 8u(x)] + 6[1 - M(x)]v(x) /[1 + 60(x)].
0

It only remains to recall that Cap,((x,)) = &(u,1) = 0fgu(r)m(r)dr [see
Lemma 3.1.1(iv) of Fukushima (1980)]. Finally, /7 '(r)dr = « implies that
lim__ v(x) = « by the Cauchy-Schwarz inequality since lim, _,, M(x) = 1.

O

X —®©

The distributional limiting behaviour of r = 7, := x-level crossing time, as
x — o, of the diffusion associated with &, can be easily deduced from the
previous proposition [cf. also Mandl (1968)].

CoRrOLLARY (3.7). Let f and m satisfy the hypotheses of Proposition (3.2).
Then, under P,,, 7./v(x) converges in distribution as x — » to an exponential
random variable (with mean 1).

Proor. Define

w(r;x) = {51 +ov(r)]/[1 +6v(x)], 0< :.Sx,

’

As in Proposition (3.2), writing simply  for 7,

0E, e % = Cap,((x,»)) < &(w,w)
(%) < 0%(x) /(1 + 6v(x))* + [6/(1 + 6v(x))]
X[x[l +0v(r)’m(r)dr + 6(1 — M(x)).
0
Also, by (3.3)
(*%) m[l + 0v(x)(1 — M(x))] < Cap,((x,)) = 0E, e .

Cancelling 6 from the inequalities (*) and (* *), and then replacing 6 with
0 /v(x) yields

1
1

s (1 - M(2)]

+ 6
(% %) < Eme-eT/V(x)

(7] 1
= 2+ 2
(1+9) (1+6)

fox[l + 0%—;—] m(r)dr + (1 - M(x)).
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By the dominated convergence theorem

s v(r) T
,}l_{l:ofo {1 +0m] m(r)dr=1.

Letting x — o in ( * ) yields that lim, ,, E, e /"™ =1/(1+6). O

We now give conditions on f and m which ensure that the term »(x)~!, in
the estimate at (3.3) is the dominant one.

LEMMA (3.8). Let fand m be as in Proposition (3.2). Then the following are
equivalent:

fora.e.x > x,

11 owm(s) 2 m(x)
B9 7 T M [fx () ds] (%)

where &(x) is positive and measurable and v(xy) = [[7(m(s)/e(s)) ds]™ L

f(x)m(x)

2
M(x) v(x)* <o fora.e. x> x,

(3.10) e(x) =

for some xy, > 0.

ProoF. Assuming (3.9)
M(x) d {

f(x) dx

Integrating from x, to x,

om(s) -t om(s) -t
V(x)—v(x0)={fx—86—)—ds} —{Log(—s)ds]
so [“(m(s)/e(s))ds = v(x)~%; hence

e(x) = ﬂ—;l)—(r'zgc()—x)v(x)z a.e. x.

wm(s) -t
fx =(5) ds] a.e.

On the other hand if (3.10) holds, then

(3.11) L':((:)) s—[ M( )

since lim, _, , v(x) = o; so v(x}) = [[x (m(s)/e(s)) ds]™! < . Also

V(s)_zds =v(x) "' < o,

a.e. 0

wm(s) 2 m(x) 1
. ds] ) @)

1
M(x)[
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ProposiTION (3.12). Let f and m be as in Lemma (3.8). Suppose &(x) in
representation (3.10) is such that lim, _,, e(x) = 0, then

lim V(x)fxv(r;x)zm(r) dr=0
x—© 0

and
lgr:ov(x)(l - M(x)) =0.

Proor. Let n > x, [cf. (3.10)]. Then

hmsupv(x)f v(r;x)’m(r)dr

limsup[[ e(r) f(( ))}dr/v(x)

n M sM(r
< lirxn_)s::p [fo e(r) f((rr)) dr/v(x) + sup{e(r): r > 17}[0 f((r)) dr/v(x)J

< sup{e(r): r = n}.

The first result follows since n can be chosen arbitrarily large and
lim, _,e(x) = 0. Next, using (3.11),

limsupv(x)(1 — M(x)) hmsupf m(r)dr f =m(r )d

x> X —®©

IA

limsup{e(r): r > x} = 0. |

X — 00

LemMmA (38.13). Let m, & be nonnegative Borel functions on R, such that
m~! € L}, ((x,,®); dr) for some xo > 0. Then the following are equivalent:

x dr
(3.14) m(x) = 5(x)exp{—f 6(r)} <® a.e.x>xg,
(3.15) 8(x) =m(x)|1+ fxm " ) <o a.e. x> xg.

Proor. If (3.15) holds then integrating 1/6(x) gives

L:E%Ydr:fxocj log1+f (s))dr=10g1+

x dr
[xom(r) )
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Hence

. dr } 1 _ ) by (3.15)

e"p{_/xoa(r) 1 Emi(rydr | 8(x)

so (3.14) follows.
Conversely if (3.14) holds, then for a.e. x,

mio[ 1[50 el - [ 505 1+ Ly ey | o
il [ ol

=56(x).
Hence (3.15) holds. O

ProrosiTION (8.16). Suppose f(r) = a(r)m(r) where f and m are as in
Proposition (3.2) and where a is bounded above and away from 0 for large r.
If m(x) is represented as in (3.14), then 8(x) — 0 as x — = is a necessary and
sufficient condition for e(x) — 0 as x — », where &(x) is given by (3.10).

Proor. Suppose 6(x) » 0 as x — = in representation (3.14). Then by
(8.10) &(x) = a(x)m(x)*»(x)>/M(x), so with @ :=limsupa(x) and g :=

lim inf a(x),

limsupe(x) < (7(limsupm(x)v(x))2

M(r 2
- maup (o) [ 5 o
x dr Xg M(r 2
—‘_‘(“‘“i‘;‘p’”(x)[(‘-‘)_lfx TR a(rfmir> d])
=0,

by (3.15) since lim, _,, 6(x) = 0.
The converse follows similarly. O

ExampPLE (3.17). Consider the form
&(u,v) = fwu’(r)v’(r)be‘(b/“)’ dr in L*(R,;m(r)dr),
. 0
where m(r) = (b/a)e™®/" which corresponds to the diffusion dx(¢) =

—bdt + V2a dB(¢) with reflection at 0. Then clearly f(r) = be~®/®" = am(r).
Moreover by the representation (3.15) for (x) we see lim, _, ,8(x) # 0 so the
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criterion of Proposition (3.16) fails (barely). We note that

1-M(x)=e ®/ax,
x(1— e“b/")”) a a x
v(x) = f dr = f ———————e®/rgr = b—e‘b/“)" ¥

and »(x)[§ v(r)zm(r) dr - at/b2 as x — « by I’'Hopital’s rule. Hence
(1 — M(x)), v(x)"! and [§v(r)*m(r)dr in (3.3) are all of the same order.

xM(T‘)

ExampPLE (3.18). Consider the Ornstein—Uhlenbeck form
&(u,v) = fmau'(r)v'(r)m(r) dr in L%(R,;m(r)dr),
0

where

m(r) =y2\/ma exp{ - ;—arz}.

One easily checks that the criterion of Proposition (3.16) holds via (3.15). &
corresponds to the diffusion dx(z) = —Ax(t)dt + V2a dB(t) with reflection
at 0.

ProposiTION (3.19). Let x(-) be a reversible diffusion associated with the
form

E(u,v) = fwf(r)u’(r)v’(r) dr in L%(R,; m(r)dr),
0
where f and m are nonnegative Borel functions on R, such that m~! and
fte Ll (0,0);dr); [gm(r)dr=1; feLi R,;dr);[ff (r)dr=; and

M/fe L (R,;dr), where M(x) = [¥m(r)dr. Let v(x) = [fM(r)/f(r) dr and
e(x) = f(x)m(x)v(x)?>/M(x). Then if

lime(x) =0
we have
(3.20) lim v(x)Capy((x,»)) =1
and
(3.21) lim v(x)P( sup x(¢) > x) =T
X telo, T]

. In particular if a(r) := f(r)/m(r) is also bounded from above and away from
0 for large r then lim, _, e(x) = 0 if and only if lim, _,,8(x) = 0, where m is
represented in subexponential form (3.14) with & given in (3.15).

Proor. Using (3.3) along with Proposition (3.12), we get (3.20). The last
statement of the proposition is Proposition (3.16). Now Cap,((x,®)) =
0E, e %"x; so upon dividing through the inequalities (3.3) by 6 and replacing 6
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by 6/v(x) we obtain, by Proposition (3.12)

1
(3.22) 17 < E e /Y@ < i o(v(x)7),
where the o-term is uniform with respect to 6 as x — .
Set

1,(8) = E, e~ 7/"® = /()“e—‘*tpm(fx/u(x) € dt) = j0°°e-0t dU,(t)
and
L,(0) = L(0(x)) /L((x)) = ["e™"d[U(1) /1, (v())].
By (3.22)
(1+6v(x) ™ /(v(x) " + o(v(x) "))

<L.(0) < ([ov(x)] "+ o(v(x) 7)) /(1 + v(x)) "

Therefore lim, L. (6) = 7! = [Fe~% dt.
By the extended continuity theorem for Laplace transforms [cf. Feller
(1971), page 433],

lim U.(2) /1.(v(x)) = t.

Substituting 6 = v(x) into (3.22) yields that lim, _, .»(x)! (v(x)) = 1, and so

U.(T)
lim v(x) P, (7, <T) = lim

e Lr(2) .
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