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A PROBABILISTIC PROOF OF S.-Y. CHENG’S
LIOUVILLE THEOREM

By SETH STAFFORD

Cornell University

Let f: M - N be a harmonic map between complete Riemannian
manifolds M and N, and suppose the Ricci curvature of M is nonnegative
definite, the sectional curvature of N is nonpositive, and N is simply
connected. Then if f has sublinear asymptotic growth, f must be a
constant map. This result was first proved analytically by S.-Y. Cheng. This
paper describes a probabilistic proof under the same hypotheses.

1. Introduction. The classical Liouville theorem states that a bounded
harmonic function on the entire plane is a constant. S.-T. Yau (1975) general-
ized this by proving that nonnegative harmonic functions on Riemannian
manifolds with nonnegative Ricci curvature are constant. S.-Y. Cheng (1980)
extended it still further, by replacing the harmonic functions with maps into
manifolds other than R and showing that even sublinear growth is impossible.
In the case where the codomain is R”, a harmonic map amounts to a vector of
harmonic functions, but for more general codomains the theory reflects a
subtle dependence on the curvature tensor of the codomain.

Along probabilistic lines, Debiard, Gaveau and Mazet (1976) proved Yau’s
result in the case of bounded functions. In this paper we will prove Cheng’s
generalization as it appears in the summary above. As yet there has been no
probabilistic proof given of Yau’s result in the case of nonnegative harmonic
functions.

We prove the theorem by establishing two estimates which conflict in the
event that a harmonic function is both nonconstant and sublinear. Both of
these estimates appear in Debiard, Gaveau and Mazet (1976) in raw form, and
we merely adapt them to our context. We describe these two estimates in
Sections 2 and 3. In Section 4, we tackle the case of harmonic functions, and in
Section 5 we show how to extend the argument to the case of a general
harmonic map (N # R).

2. Lower bound. We first consider the case of a harmonic function f on
M. Thus N is taken to be R and A f = 0, where A is the Laplace—Beltrami
operator of M (i.e., the positive trace of the Hessian of f). Our first estimate is
a lower bound on Ef?(X,), where E denotes expectation with respect to the
Brownian motion X, started at a point X,. To prove this, we start with the
following Bochner formula, which holds for any smooth function # on M:

1A(IdRI?) = |Hess kII? — (dh,d Ah) + Ric(dh,dh),
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where Ric denotes the Ricci curvature tensor of M. Analogous formulas can be
derived with h replaced by a more general tensor field at the expense of
making sense of Hess and replacing Ric with a more complicated curvature
term [cf. Gallot, Hulin and Lafontaine (1987), page 159, or Téth (1984), page
46].

The main probabilistic ingredient is Itd’s formula. If 4 is a C? function on
M, and X, denotes the Brownian motion started at a point X, then

h(X,) — h(X,) — %fotAh(Xs) ds = martingale.

Actually, this martingale can be described as a stochastic integral with respect
to the “stochastic development” of the process X, onto R". See for example
Kendall (1987, 1988). Many times, the exact form of the stochastic integral is
of no consequence, since upon taking expectation it reduces to zero. Because
we wish to consider such martingales on noncompact manifolds, the distance
of X, from X, is an unbounded random variable. To ensure that the expecta-
tion of the random variables A(X,) exists, we restrict attention to those
functions & which grow at most like a polynomial in the distance function.
This is enough, since the transition density of the Brownian motion will decay
exponentially in the distance [Li and Yau (1986)], while the volume will grow
at a polynomial rate. Moreover, this will not complicate our proofs since
we consider only functions of at most quadratic growth. Actually, the Li
and Yau (1986) estimate is more than we need. The radial part of Brownian
motion on M will be stochastically bounded by the radial part of the Euclidean
Brownian motion of the same dimension. That is, P(dist(X,, X,) > y) <
P(dist(B,, B,) > y). This quantity then will decay exponentially in y, which is
sufficient for our purposes.
Our first estimate is then given in Lemma 2.1.

Lemma 2.1. Let Ric™® > 0 and Af = 0. Then
E(f3(X,) = f3(X,) + ldf(X,)I%t.
ProoF. Since A f = 0, it follows that A 2 = 2||df|%, and by Itd’s formula,
E(f(X,) - f(Xo)) = E[Ildf(X,)I" ds.
Now we want to use Itd’s formula a second time to find out what the integrand

on the right-hand side is doing. Since A f vanishes, and Ric” > 0, the Bochner
formula above yields

E(Idf(X,)I”) = Idf(X,)I* + E [ [Hess F(X,)I + Rie(df(X,), df(X,)) dr,

and since the integrand on the right-hand side is nonnegative,

E(Idf (X)I1?) = lldf (X,)II”.
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Observe now that we may interchange the expectation and integration with
respect to s, and the result follows. O

To consider the general case, we need to make two alterations in the above
equations. First we need to use a generalized Bochner formula, replacing the
l1-form df with a TN-valued (or ‘“twisted”) 1-form so that the formula
remains valid with df the differential of a map into N. Second, since f2 no
longer makes sense, we will apply 1t6’s formula to p2o f, where p is the metric
distance on N from a reference point. This is done in Section 5.

3. Upper bound. If f has nonvanishing gradient at X,, Lemma 2.1
gives us a linear lower bound on the growth of E(f2(X,)). In this section and
the next we will show that if f has sublinear growth, so does E(f?%(X,)). To
begin this we recall that Brownian motion in R™ “moves at a rate of /2 in
the sense that |B,|> — n¢ is a martingale, and consequently E|B,|? = nt. This
fact can be generalized to our context by an application of Bishop’s inequality.

LEmMaA 3.1.  Suppose RicM > 0 and let r denote the distance on M from a
point X,. Then,

E(r¥(X,)) < nt,

where n is the dimension of M.

Proor. We apply It6’s formula to the function r2. Since 72 may not be C2
on the cut locus of X, the formula stated above may not apply. Hence we
assume at first that X is a pole of M. After proving the lemma in this case,
we will indicate how to generalize It6’s formula to cover the case of nonempty
cut locus. By It6’s formula,

E(r¥(X,)) = Efot%Arz(Xs) ds.

In polar coordinates at X,

ar2 " b ar

where A® denotes terms which do not contain any radial derivatives, b denotes
the density of the Riemannian measure (y/g) and &’ denotes db/r. Observe
that
Ar?2 =2+ 23r.

Bishop’s inequality allows us to compare &'/b with the corresponding function
for flat space, since Ric¥ > 0. For flat R™ the volume form in polar coordi-
nates is r* "1 dr(dS™ 1). Thus, b = r*~! times a function of variables other
than r and b'/b is (n — 1)/r. Bishop’s inequality relates volumes of metric
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balls in M and R". To get this conclusion, one proves the inequality &' /b <
(n — 1)/r and then integrates to obtain a comparison of volumes [Gallot,
Hulin and Lafontaine (1987), page 161]. Applying this ‘“differential” Bishop’s
inequality, we conclude that Ar? < 2n, so,

1 [tAp2 t =
2foAr (Xs)dss/;nds nt
for all paths, and the estimate follows.

Now we eliminate the requirement that X, be a pole. The tool we need is
found in Corollary 1.2 of Kendall (1987), which states that

r(X,) - %ftAr(Xs) ds + L, = martingale,
0

where L, is an increasing process which only increases when X, crosses the
cut locus of X,, and Ar = Vr = 0 wherever r is not C2. In particular, (X)) is
a semimartingale. )

Since X, is almost surely continuous and r is continuous, we may apply
It6’s formula for continuous real-valued semimartingales to the C? function
22 to conclude that

t t
ri(X,) = [2r(X,)d(r(X,) + i [ 2d(r(X,)).
0 0
The first term on the right-hand side is an It6 integral with respect to r(X,),
and the second term is a Lebesgue integral with respect to the quadratic

variation process of r(X,), i.e., the quadratic variation of its martingale part.
Therefore,

(r(X)y = [1Vr(X,)* ds
0
[Kendall (1987)] and substituting we obtain
r3(X,) - ftrArds - ftIVrI2 ds + ft2rdLs = martingale.
0 0 0
Since Ar2 = 2rAr + 2|Vr|? taking expections gives
E(r¥(X,)) = E(%ftArz(Xs) ds - [‘2r(X,) dLs) < E(%ftArz(Xs) ds) <nt.
0 0 0

We get the first inequality because L, is nondecreasing. The second inequality
is the content of the first part of the proof. O

4. Functions. When ||df(X,)|”> # 0, Lemmas 2.1 and 3.1 give us upper
and lower bounds on Eh*(X,) for h = f and h = r, respectively. We now show
how this gives the conclusion of the theorem.
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Proor oF THEOREM (functions). Denote B, = {x € M|r(x) < a}, and define
m(a) = max, c g |f(x)|. Suppose f has sublinear growth, i.e.,
limsup a™'m,(a) = 0.
a—®»

We show that this conflicts with Lemma 2.1 unless f is constant. It is easy to
see that we need only prove the following lemma.

LEmMma 4.1. If lim supa_ma‘lmf(a) = 0, then for all ¢ > 0, there exists
some C > 0 such that for every t > 0, Ef%(X,) < ct + C. That is, Ef%(X,) is
sublinear in t.

Proor. For every & > 0, there exists some A such that for every a > A,
m ((a) < as. Moreover, for a < A, m 2 < C = m ;2(A). Note that (m ;)* = m 2.
Now, dividing the expectation into expectation over the two disjoint events
{r(X,) < A} and {r(X,) > A}, we find

Ef¥(X,) = E(f%(X,);r(X,) <A) + E(f¥(X,);r(X,) > A),

where E(h; S) denotes [g hdP. Clearly, the first term is < C. In the second
term, f2(x) < m 2(r(x)) = (m )*(r(x)) < (er(x))? hence,

E( fAX);r(X,) > A) = E(Ezrz(Xt); r(X,) > A)
< () E(r¥(X)) < (s?n)t,
so choosing ¢ = y/c/n completes the proof. O

5. Harmonic maps. In this section we generalize the estimates of Sec-
tions 2 and 3 to include the case where f is a harmonic map and f2 is
replaced by p? e f, where p? denotes the metric distance from f(X,) on N.

In order to apply Itd’s formula to p% o f, we need to know what A(p2° f) is.
In the case where N = R", p®> = T,x?, p®° f is T, f;?, and Hess; ;(p®° ) is
2 o f0; ;i fr + 22490, f1 9; f,- Applying tr; ; eliminates the first term of the
Hessian since f is harmonic. The result is that

2

= 2|ldf II?,

3 afy 2_ d
st =28 (2] -2z

which coincides with the case N = R%.

For a general codomain Hess; ;( pZo f) again falls into two parts. The trace
of the first part is zero because f is harmonic. The trace of the second part is
the sum over i of the Hessian of p? applied as a quadratic form to the vectors
df(d;), where 9; denotes an orthonormal basis of TM in some coordinates.
Thus, estimating A(p® > f) amounts to estimating the quadratic form Hess; ; p®
on N [Cheng (1980)].

In the flat case Hess, ; p® = 25, ;. Because Sect" <0, an application
of the Hessian comparison theorem in Greene and Wu (1979) shows that
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Hess, ; p? = 28, ; as a quadratic form. From this we may conclude that

A(p2e f) = 2lldf 1%

A complete proof of this appears as a special case of Lemma 4 in Jager and
Kaul (1979).

For the second application of Itd’s formula in the proof of Lemma 2.1, we
need an analog of the Bochner formula given above. To understand how this
formula generalizes, consider how it is derived.

We wish to study Alldf]|®. This is just tr;, ; D;D;(df,df ), where df is a
section of the bundle T*M ® f TN and ( -, - ) and D; denote the inner
product and covariant derivatives induced by the metrics on M and N. We are
allowed to ““distribute” the covariant derivatives over the inner product, giving
2tr, (D, D, df,df ) + (D, df, D; df y]. The second term is clearly nonnega-
tive. Now we want to be able to pass tr; ; D; D; through the d operator, so that
we can make use of the condition that f is harmonic. In exchanging the order
of differentiations, one produces curvature terms which measure the failure of
the derivatives to commute. The operator tr; ; D;D; is the “rough” Laplacian,
which treats tensor fields as merely vectors (or matrices, etc.) of separate
scalar fields (i.e., functions), without regard to their special nonscalar trans-
formation properties. The first term then becomes (d A f,df ) + (R(df), df)
where A is the operator defining harmonic maps (depending on the metrics of
both M and N) and R(-) is an endomorphism of the vector bundle T*M ®
f~TN. This endormorphism is essentially the Ricci curvature of M minus the
sectional curvature of N. Note that in the simplest case—when the harmonic
map is simply a function on M—the term tr; ;(D; df, D; df ) is what we called
Hess fI?>, and R(-) reduces to Ric(df, df). This argument is standard in
geometry, particularly in the study of harmonic maps. Cheng [(1980), page
149] derives the relevant Bochner formula and Eells and Lemaire [(1983), page
13] give a more general discussion.

The result is that the argument of Section 2 goes through with no further
difficulty, and Lemma 2.1 extends to

E(p?- (X)) = ldf (Xo)IIt.

Lemma 3.1 requires no change, so we need only show that the proof for
functions generalizes. That is, if lim sup, _,,a~'m (a) = 0 then E(p%- f(X))
is sublinear in ¢. This argument is exactly the same as that given in Section 4.
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