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A NOTE ON HYPERCONTRACTIVITY OF STABLE
RANDOM VARIABLES!

By JERzY SzuLGA

Auburn University

It is shown that every symmetric a-stable random variable X, 0 < « < 2,
has the property:

For any p and ¢, 0 < h(a) < g < p < a, there is a constant s > 0 such
that

(Elx + sXylP)"? < (Elx + Xyl)"?,

for all x and y from a normed space. The quantity A(a) is identically 0 if
a < 1. It is strictly less than 1 for every @ < 2 which reveals the contrast to
the Gaussian case in which ¢ > h(2) = 1.

1. Introduction. The classical “two-point inequality”’ [Bonami (1970)
and Gross (1975)] :

x,y €R,

lx + syl? + lx — syP\ " (lx + 17 +]x — |7\ 77
(1.1) 2 < 5 ,

where 1 < g <p <o, s =y/(q—1)/(p — 1), and its extensions play a fun-
damental role in the theory of hypercontractive operators [Bonami (1970),
Nelson (1966) and Weissler (1980)], convolution inequalities [Ritter (1984)],
logarithmic Sobolev inequalities [Gross (1975)], stochastic Ising models [Holley
and Stroock (1987)] and related subjects in harmonic analysis, statistical
mechanics and quantum physics, to name just a few areas of great importance
nowadays.

Some more sophisticated counterparts of (1.1) were recently applied in the
intensively developing theory of multiple stochastic integrals, random multilin-
ear forms and stochastic chaoses, topics originating with Wiener (1938) in the
late 1930s. Using some properties of hypercontractive operators, Borell (1984)
showed that all pth norms, p > 2, of Hilbert space-valued polynomial chaoses
in independent random variables are comparable, generalizing a fortiori classi-
cal results of Marcinkiewicz, Paley and Zygmund (1932, 1937). The latter is
closely related to comparison of moments of sums of independent random
variables studied in Banach spaces by Hoffmann-Jgrgensen (1972 /73). Hyper-
contraction allows us to extend his results into multilinear random forms with
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vector coefficients. Moreover, even for sums of independent random variables,
a precise estimate of the best constant in Rosenthal-type inequalities can be
obtained in a short way [cf. Talagrand (1989) and Kwapiefi and Szulga (1988)].
Furthermore, this concept became a basic part of a construction of a stable
multiple stochastic integral due to Krakowiak and Szulga (1988b). A notion of
hypercontractive random variables was introduced for this purpose, having
also an intrinsic interest.

Following what is the key feature of (1.1), a random variable Y is called
hypercontractive with indices p,q > 0 in a normed space B if there exists a
constant s such that

(1.2) (Ellx + sYyll?)? < (Elx + YyI9)'?, %,y €B;

Y € HC(p, ¢, B;s), in short. We shall also write Y € HC(p,q,B) if Y€
HC(p, ¢, B; s) for some s > 0, and HC(p, ¢) = HC(p, ¢, R).

For example, Borell’s extension (1984) of (1.1) says that for a Rademacher
random variable ¢ taking values + 1 with probability 3, ¢ € HC(p, g, B; $p.q)
in any normed space B with 1 < g < ». By a central limit theorem argument, a
symmetric standard Gaussian random variable Z € HC(p, q,B; s,, ;) with 1 <
q < p < = [cf. also Nelson (1966)].

The number /(g — 1) /(p — 1) is the best possible constant for Z and e.
Moreover, there must be ¢ > 1. This is obvious in the case of a Rademacher
random variable because, for ¢ € (0, 1),

<1 ifg<l,

q
EL + tel {>1 if g > 1.

In the case of a Gaussian random variable Z we have, for 0 <g <1 <p <
and ¢ € (0, 1),

Eu+ww<1+(gy%2ﬂﬂm51y+mmueﬂﬂ
<1 — const - t2,
Eﬂ+ﬂP>1+(§ﬁMﬂﬂﬂslﬁ?

Here, and in the sequel, ‘“‘const” denotes a positive real number.

An a-stable symmetric random variable is hypercontractive in an arbitrary
normed space if 1 < ¢ < p < a < 2 [Krakowiak and Szulga (1988a)]. Although
this is an attribute of a more general class of probability distributions
[Krakowiak and Szulga (1988a)] integrability and limitation to parameters
q > 1 sounded like the prerequisite conditions. All symmetric random vari-
ables with finite variance mimic the Gaussian case, as it is seen from the
central limit theorem (cf. Corollary 2.4 below).

In contrast to this, symmetric a-stable random variables show much more
flexibility. We show in this paper that they are hypercontractive for all a, p, ¢
such that A(a) < ¢ < p < &« < 2, in any normed space. The quantity A(a) = 0
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when a < 1 and takes values in the interval (0, 1) when 1 < @ < 2. Moreover,
it increases with a and goes to 1 when a approaches 2.

Related processes, like stable multilinear forms and multiple stable inte-
grals, exhibit similar properties.

2. Preliminaries. For a p > 0 and a Banach space B we denote by Lp(B)
the Banach (Fréchet, if p < 1) space of B-valued random variables Y such that
IYll, = (EIIY]")P < . A function F,: N* — B, k > 1, is called tetrahedral if
F, vanishes outside the “tetrahedron” D, = {i, = (i,,...,i,)) e N*: 1 <i, <

+ < i,}. We define a homogeneous polynomial of degree 2 on R" by

(Ft*y = ¥ F(ip) -t - t;,, t=(t)eR"

ieD,

(by convention, F,, € B). We need a natural extension of the notion of hyper-
contractivity. Let 2 be a nonvoid set. A family Y = {Y,: y € 2} of random
variables taking values in a normed space B is said to be hAypercontractive with
parameters p, q if there is a constant s such that

llx + sYll, <llx + Y,llg, xEB,ye Z.

We shall also write Y € HC(p, g, B; s). Note that hypercontractivity of a single
random variable Y, and of the stochastic process {Y - y: ¥ € B}, have the same
meaning.

The class HC(p, q, B; s) is closed under certain algebraic operations and
under taking weak limits of its distributions. The latter statement follows
immediately from the definition of weak convergence of probability measures
[see also the proof of Proposition 2.2 in Krakowiak and Szulga (1988a) for
more details]. The precise meaning of the first part of the above observation is
contained in the following result [Krakowiak and Szulga (1988a)].

THEOREM 2.1. Let 0 <q <p <o, Y = (Y;) be a sequence of independent
p-integrable random variables, and F, . .., F, be finitely supported tetrahedral
functions valued in B. If Y; € HC(p, q,B;s;) for each j = 1,2,..., then

<
P

(2.1)

’
q

Y (Fy; (sY)*)
k=0

Z <Fk;Yk>
k=0

where sY = (s; - Y)).

Therefore, the hypercontractivity (by means of families of random variables)
is a hereditary feature under taking polynomials of several variables (not
necessarily homogeneous). In particular, using just linear forms, we obtain
immediately the following statements.

CoroLLARY 2.2. If Y = (Y)) is a sequence of i.i.d. random variables and
each Y; € HC(p, q,B; s) then the space of all B-rank linear combinations of
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Y;’s consists of hypercontractive random variables, i.e.,

(X xY: () € BM} c HC(p, q,B;s).

CoroLLARY 2.3. If Y e HC(p,q,B;s) and Y belongs to the domain of
normal attraction of a random variable X then X € HC(p, q,B; s).

Therefore, by the central limit theorem, we obtain the following corollary.
COROLLARY 2.4. IfY € HC(p,q,B) and EY? <  then q > 1.

Notice that the hypercontraction constant s € (—1,1) provided g <p.
Moreover, hypercontractivity is determined by a local behavior of pth and gth
moments of the process (x + tYy: ¢ € R) in the vicinity of 0. A precise meaning
of this assertion is given in the proposition following an auxiliary lemma.

LEmMMA 2.5. Let Y be a symmetric random variable, ¢ > 0, B be a normed
space and d > 0. Assume that Y is unbounded if ¢ > 1, and that E|1 + tY|? > 1
for all |t| > d if ¢ < 1. Then the quantity

lx +tyYll, — 1
(V) = inf{——Li—

ct>d, llyll = lxll = 1}

is strictly positive.

ProoF. When g > 1 we proceed as follows. Fix ¢ > 0, and x,y € B such
that ||x|| = |lyll = 1. Then, by convexity,

llx + tyY 117 + llx — tyY|I?
2

Elx +tyY||?> 1+ E

- 1) 1{lY| > a}

>1+ ((ta — 1) - 1)P{lY|> a}
for every a > 0. Choosing a > 2/d we make the function
g(t) = (1+ ((ta — )7 = 1)P(Y]> a})"
convex on [d, ®). Hence
g(t) =1+ mt, t>d,

where m > 0 is such that g(d) > 1 + md and g'(d) > m. Therefore ¢ (Y) >
m.
The lack of convexity in case of ¢ < 1 requires a different argument. It is
enough to show that for ¢ <1 and ¢ € R,

(2.2) p (t) = inf{Elx + tyY|?: llx]l = llyll = 1} = El1 + ¢Y[%.
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The inequality “ <" is obvious. Let x,y € B with [lx|/=|yll=1 and
x*, y* be a couple of linear functionals on B with norm 1 such that (x* x) =
(y*,y) =1.Put @ = (x* y) and b = (y*, x). Then

Pg(t) = inf{E max(|1 + atY|?, |6 + ¢Y[?):0 <a < 1, |b] < 1}.
Since for a Rademacher random variable ¢ independent of Y,
Ellx + tyY|? = EyE_|lx + telY|yl,
it is enough to prove that for every ¢ > 0,
inf{ E max([1 + atel?,|b + ¢e|?): 0 <a < 1,6l < 1} = E1 + &2/,
Observe that for t < 1and 0 <a < 1,

Ell + atel? > El1 + tel? > inf E|b + tel?.
|bl<1

Therefore, for ¢ < 1,

inf ill;nfE max(|1 + atel?, |b + te|?) > infilblfmax(Ell + atel!, E|b. + te|?)
a a
> max(infE[1 + atel’, infE[b + tel?)
a

> max(EIl + tel?, infElb + telq)

= E|1 + te|?.
Finally, for ¢ > 1, we have

p(¢) = max(infEll + atel?, infElb + tel?) = 2071,
which shows (2.2). This completes the proof. O

PROPOSITION 2.6. Let Y be a symmetric nondegenerated random variable,
0<qg<p<wx and B be a normed space. Then Y € HC(p, q, B) iff

(2.3) ENl+tY?>1
for all t + 0, and there are d > 0 and s > 0 such that
(2.4) (Ellx + sYyl?)'”? < (Ellx + Yy|*) ™/

for all x,y € B such that x|l = 1, |lyll < d.

Proor. For necessity, it is enough to show that the hypercontractivity
yields (2.3). Suppose that Y € HC(p, ¢, B, s) for some s > 0 and g < p. If the
inequality (2.3) fails then for some ¢, > 0,

121+ 8Yllg > 11 + stYllp 2 1L+ st,Yllg = -+ 2 11+ s7¢,Yll, N 1,

by the hypercontractivity of Y. Hence gth and pth norms of a random
variable [1 + st,Y| are equal, so it must be degenerated. Since Y is symmetric,
Y = 0 a.s., a contradiction.
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Now, suppose that (2.3) holds and (2.4) is fulfilled with some s € (0, 1) and

d > 0. Since c,(Y) > 0 by Lemma 2.5 then, for every x,y € B, llxll = llyll = 1,
lx + tyYllg = 1 + ¢, (Y)¢, t>d.

Let r = min(1, p). We solve the second of the following inequalities with
respect to s, uniformly for ¢ > d,

lx +syYll, (1 +s¢lYI5)"Y"

< <1
llx + yYll, 1+c,(Y)t
Define a positive number s; by
r 1/r
(@ e mye) 1)
s; = inf
t>d LY,
cg(Y) :
ifp>1,
171, i
= r 1/r
1+c¢,(Y)d) -1
(( o ) ) if p<l.

alyll,

We observe that if s is a hypercontractivity constant, or it is a number
appearing in (2.4), then any power s”, n € N, has the same property. Recall
also that |s| < 1. Then, for a suitable integer n, we can find a hypercontractiv-
ity constant s™ < s;. This completes the proof. O

If g > 1 then the quantity p,(¢) depends essentially on the geometry of the
normed space B [cf., e.g., Lindenstrauss and Tzafriri (1979)].

3. Hypercontractivity of stable random variables. For a random
variable X define

(3.1)  H(X)=inf |J({[q,p]:0<g <p <, XeHC(p,q)}
The aim of this section is to evaluate the function

(0,2) 3 a~ H(X(a)),
where X(a) is a symmetric a-stable random variable. Clearly, our task de-
pends on an estimation of absolute gth moments of a transformed a-stable
random variable x + yX(a). Explicit integral formulas, as one can find, e.g., in
Zolotarev (1980), page 63, are too complex for our purposes, so we rather

switch X(a) to an appropriate random variable from its domain of normal
attraction. Let Y(a) be such a random variable with the density

0 if |x| <1,
(3.2) f(x) = { -

o —1l-a .
Elxl otherwise.
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Put
h(a) = H(Y(a)).

THEOREM 3.1. Let 0 <a <2 and Y = Y(a) be a random variable with the
density (3.2).

() Ifa < 1thenY € HC(p, q,R) for everyqandp suchthat 0 < q <p < a.
(ii) h is an increasing continuous function from [1,2) onto [0,1) [i.e.,
h(1) =0, h(2 —)=1], and
(i)’ Ye HC(p,q,R) ifh(e) <qg<p<a,

(i) Y& HC(p,q,R) ifp>qandq <h(a).

Proor. Since L -norms are homogeneous and Y is symmetric, the proof
will follow by investigating the function ¢ — E|1 + ¢tY|?, ¢ > 0.
We shall show that for ¢ > h(a),

(3.3) infE[l + £Y|? > 1;

t>1
and that there are positive constants a = a, , and b = b, , with the property
(3.4) l1+at*<EN+tY|"<1+bt%, 0<t<l.

The conditions (i) will follow then from Proposition 2.6, where d = 1. To
deduce (i), we shall see that A = 0 on (0, 1].
Define a real function

1+ ul?+1—ul?
@, (u) = 2 .

Since
»d (u) -1

ul +a

(3.5) El+tY|7=1+ at"/ du,
t

then (3.3) and (3.4) follow trivially in case @ > 1 and q > 1. Therefore, for the
rest of the proof we may assume that g < 1. Write

(3.6) El+tY|"=1+a, t*+g, (%),
where
2@ (u) -1
/(; 1+a u’

t1—® (u)
0.olt) = ate [ L2 g,

It is easily seen that

k(@) = inf{g < min(1, a): Ay o> 0}.
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Now, (3.4) is obvious for ¢ > k(@) with a, , as defined and

1 1-¢ (u)

bg,a = Qg0 t afo ulfa

o® (u) -1
q
= ————du.
a/; u1+a u
On the other hand, (3.3) follows since

EN+tYI"2EN1+Y|">21+aqa,,,

du

whenever ¢ > 1 [for instance, by computing the derivative of the right-hand
side in (3.5) and then estimating integrals appropriately].
We evaluate the quantity e, ,. Notice that

o (u)-1 P (uw)u?-1
a =a/:( + )du

9, u1+a ul—a

_ Q(l - A(q’a))
a—gq ’

The two-parameter function A is given by the formula

A(q’a) = a_(f_q_—q)j:(l - cI)q(u))(u11+a + u1+1q—a ) du.

Therefore
h(a) = inf{qg < min(1, a): A(q, @) < 1}.
By integrating the series

L

_ - _ q) 2
1-o,(u) k§1(2k)u , O=<u<l,

term by term, we obtain the representation of the function A,

2 (-g e (2k-1-g)( 1 1
A(q,a)—a(a Q)kgl (2k)! (2k—a+2k+a—q '

A routine calculation proves that A(q, «) has the following properties:

(a) ¢ » A(q, a)/(1 — q) is a decreasing function on the interval
(0, min(1, @)) for every fixed a > 0 [hence ¢ — A(g, @) is such].
(b) a — A(g, a) is an increasing function on [1, 2) for every fixed g € (0, 1).

Therefore g = h(a) is a continuous solution of the equation A(g, @) = 1, and
it is an increasing function on [1, 2) since dq/da = —(3A/da)/(0A/dq) > O
by (a) and (b).

We infer from (a) that

A(q’a) < (1 - q)A(O,a),



1754 J. SZULGA

or, refining the latter inequality, we obtain the following estimate:

A(g, @)

_ = (a-q)2-¢) - (2k-1-¢q)( 1 1

=a(l Q)kgl (2k)! (2k—a+2k+a—q)
© @28 (2k—1) 1 1

<a(l —q)k=1 2k)! (2k;—a * 2k +a)
e 2a?

"m0k e

- 1 QT T

= ( —q)( ——2—cot3-)

[cf., e.g., Gradshteyn and Ryzhik (1980)]. This shows that

which implies that 2 = 0 on (0, 1], and that A(a) < 1 for every a € (0, 2).
Next, for a close to 2, we employ just the first term from the series
representation of A(g, a) to derive a lower estimate

2a(a —q)(1-q)
4 — a2
2a(1 - q)*

4 — a?

A(q,a) =

Hence
h(a) 21— (4 - a2/2a)1/2,
which gives A(2 — ) = 1.
It is enough to prove the statement (ii)” for a > 1. Suppose that Y €
HC(p, q,R) for some ¢ < h(a) and q < p < a. Recall quantities a,, and
&, .(t) appearing in formula (3.6). Note that

. 8g.(t) aq(l-gq)
lim 5 = .
t->0 ¢ 2(2 — @)

If ¢ <h(a) then a,, <0, and thus E|1 +¢Y|? <1 for small ¢ which, by
Proposition 2.6, violates the necessary condition for the hypercontractivity. In
the remaining case ¢ = h(a) we see that (E[1 + tY|9)/9 =1 + 8gat) =1+
const - 2 and (E[1 + stY|?)!/? = 1 + const - s%t* for small ¢ which is impossi-
ble. This completes the proof. O

a
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COROLLARY 3.2. Let 0 <a < 2. Then q > h(a), or equivalently Y(a) €
HC(p, q) for some p > q, if and only if

Il + £Y(a)lly = (1 + const - [¢1*)/, - 0.
We notice another consequence of Theorem 3.1.

ProposITION 3.3. Let X(a) be an a-stable random variable and h(a) <
q < a < 2. Then there is a constant o > 0 such that

(1 +alt!)Y* <11 + X()ll,.

Proor. Combining the relation (3.4) and Lemma 2.5, we infer that

(3.7) I+ e¥llg = (1 + alt*)™",
for some positive constant «. By homogeneity
(ll* + alyl)" < llx + yY(a)l,, x,y €R.

Then, for independent copies Y; of Y(a), we have

n 1/a
lx|*+a), Iyil"‘) <
i=1

n
x+ ) yY,
i=1

(3.8) , X, Y153 Y €ER,

q

which, in the limit, yields

(1 +alt1®)"* <1 + X(a)l,, teR.
The inequality (3.8) routinely follows by a hypercontraction argument. We
demonstrate it for n = 2. We may assume that Y; and Y, are defined on a
product probability space and denote the corresponding expectations by E, and

E,. By Fubini’s theorem and a Jensen-type inequality we obtain the following
chain of estimates:

lx + . X, + 5. X,llg = (ELEol(x + 3,Y7) + y2Y2|q)l/q

)1/
> (E1(|x + 3, Y% + a|y2|a)q/ ) !

a « 1/a
= ((E1|x +3.Y117) ¥ + aly,| )

1
> (Ixl + aly,® + aly,*) s

By repeating this procedure n times we prove (3.8) and the proposition. O

Observe that no hypercontractive arguments work for a similar upper
estimate of |[1 + tX(@)ll,. However, one case is trivial (and it will be used
later).

COROLLARY 3.4. For a symmetric Cauchy random variable X(1) and q < 1
we have

Il +¢X(1)ll, = 1 + const - [£].
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THEOREM 3.5. Let 0 <a <2 and X = X(a) be an a-stable symmetric
random variable.

() If @ < 1then X € HC(p, q,R) forevery qand p suchthat 0 < q <p < a.
(ii) The function h is such that

(ii)) X € HC(p,q,R) ifh(a) <qg<p<a,
(ii)” X ¢ HC(p,q,R) ifp>qandq <h(a).

Proor. Let g(x) denote the density of X(a) and 0 < q < a. Since
lim, . u'**g(u) = ¢ then, by dominated convergence,

3 —a q _ = l —a * t _
tgrgx+t (EN + tX(a)l? — 1) 2t_1)1(1)1+t fO(CDq( x) — 1)g(x) dx

— 3 -1l1-a ® _
_2tl_1)1(1)1+t fo(cbq(u) g(u/t) du

oo(p(u)—l
=2 L——— i )" g(u/t)d
fo Grra Hm (u/6) g (u/t) du
=2caq,a,

where a, , has been defined in the proof of Theorem 3.1. The value of the
constant ¢ can be found in, e.g., Feller (1966), Section 17.6. The aforemen-
tioned asymptotic behavior about 0 and Proposition 3.3 determine hypercon-
tractivity by virtue of Proposition 2.6. Thus X(a) € HC(p, q) if h(a) < ¢ <
p < a since, in this case, 2ca, , > 0.

Similarly, X(a) € HC(p,q) if g <h(a), g <p<a. If q=h(a) then
Ell + tX(a)? =1 =0(t*) and E[1 + tX(a)I” — 1 > const - t* by Proposition
3.3 which contradicts hypercontractivity. This proves the theorem. O

CoroLLARY 3.6. Let 0 <a < 2. Then q > h(a), or, equivalently, X(a) €
HC(p, q) for some p > q if and only if

Il +tX(a)ll, = (1 + const - Itl"‘)l/“.

Now we can provide examples of nonsymmetric hypercontractive random
variables.

ProposiTiON 3.7. H(Z(a)) = 0 for all positive a-stable random variables
Z(a) with a < 1 (sometimes called stable random variables totally skewed to
the right).

Proor. Since for some constant ¢ the product of independent random
variables c¢X(1)Z(«) has the same distribution as X(a) [cf., e.g., Zolotarev
(1986), Theorem 3.3.1], hence

Il +tX(a)llg =11 + teX (1) Z(a)lly = 111 + tZ(a)ll,,
by Fubini’s theorem and Corollary 3.4. O
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Theorem 3.5 shows in particular that the function H(X) is not continuous
with respect to the weak convergence of distributions (nor even with respect to
much stronger means of convergence). For instance, truncated a-stable ran-
dom variables X, = X1,y _,, converge as. and in L,, ¢ <a, to X but
H(X,)=1and H(X) = h(a) < 1.

If ¢ <1, then (p, q)-hypercontractivity, ¢ < p, of any random variable X
can be carried over to an arbitrary normed space B preserving the same
constant s as in the real case [Kwapiefi and Szulga (1988), Proposition 2.3].
Then, by Jensen’s inequalities, ¢ € HC(p', q’, B, s) for every p’, q’ such that
g=<q <p <p.

COROLLARY 3.8. In the stable case one can always find q <1 such that
X(a) € HC(p, q). Therefore, in the formulations of Theorems 3.1 and 3.5 and
Propositions 3.3 and 3.7 we can replace R by an arbitrary normed space B.

As mentioned in the introduction, one of the main probabilistic applications
of hypercontraction methods is a construction of a multiple stochastic integral
with respect to a symmetric Lévy stable process Z(¢) on [0, T'] (with further
generalizations to the strictly stable case):

(3.9) L(HE [ [ g oo ta) A2(20) - d2(8,),

where f is a function on [0, T']* with values in a Banach space that is
symmetric with respect to all permutations of its arguments and vanishes on
diagonals [Krakowiak and Szulga (1988b)]. Formula (3.9) defines a product
random measure M*, and the hypercontraction property of a-stable variables
yields a deterministic control measure u* [i.e., u*(A,) - 0 iff M*(A,) - 0].
However, this technique was quite simple only for « > 1. The case a <1
required additional sophisticated results like decoupling inequalities. With
hypercontraction of a-stable random variables, 0 < @ < 1, at hand, the under-
lying construction of a control measure u* becomes as straightforward as in
the case of integrable random variables.

In particular, a family of random variables of type (3.9) is hypercontractive,
too. The latter statement can be deduced from Theorem 3.5 (the argument in
Corollary 3.8 must be used in the context of a Banach space) by a standard
technique. First, one considers simple functions and proves hypercontraction
for multilinear a-stable forms. Next, since their limits in probability, or even
in distribution, preserve this property, multiple stable integrals turn out to be
hypercontractive. We refer to Krakowiak and Szulga (1988b) for details.

In some cases, even within multiple stochastic integration, applicability of
hypercontraction is limited. For example, a single value X(¢) of a Poisson
process is hypercontractive [Krakowiak and Szulga (1988a)] but the corre-
sponding hypercontraction constant s = s(¢) — 0 if ¢ — 0. This explains why
multiple Poisson integrals cannot be constructed by using the same technique
as in the stable case. No surprise, a product Poisson measure does not have
any deterministic control measure [Kallenberg and Szulga (1989)]!
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Although the origins of the concept of hypercontractive random variables
can be tracked to the theory of hypercontractive operators, further connection
at this time are hardly visible. Theorem 2.1, for instance, can be interpreted by
means of such operators but the point is that their domains are, in general,
proper subspaces of L.
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