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ORDERED SKOROKHOD STOPPING FOR A
SEQUENCE OF MEASURES

By C.T. SHiH
University of Michigan

Let X be a transient right (Markov) process on a compact metric space
including a death point. Let x and v, be finite measures whose potentials
satisfy uU> -+ 2, U2 -+ 2 lU We prove that there exists a right-
continuous stochastic process Y = ({, .#, /,, Y,, Q) that is a version of X
with initial measure »,(-) = Q(Y, € -) and in which there are (.#,)-stop-
ping times 7, | 0 with Q(Y(7,) € -, 7, < ®) = v,(-). Furthermore, a canon-
ical representation of Y and (7,) is given in which one has a better
understanding of the tail behavior of the sequence 7,. Based on this
representation an open question is posed whose answer in the positive
would permit defining in X, assuming it admits a continuous real random
variable independent of the path, decreasing stopping times T, such that
PMX(T,) € -, T, < ©) = v,(-). These T, would satisfy the Markov prop-
erty T, =T,,,+8S,°0(T,.,), S, a stopping time linking v, and v, ;.
Fitzsimmons has now proved the existence of a desired decreasing sequence
T, in X for any given u and v, as above, using a very different approach.
His T, however, do not satisfy the Markov property.

1. Introduction and main results. Consider a transient right process
X=(Q, 4, 4#,X,,0,, P*) on a compact metric space E, = E U {A}, where A
is the usual adjoined death point. See [6], [11] and [3] for definitions and
notation of Markov processes and right processes. For the meaning and
relevent implications of transience see [7]. Let U = U(x, A) denote the poten-
tial kernel of X. By the transience assumption, if u is a finite measure on E,
its potential uU is a o-finite measure (on E). The following fact (general
Skorokhod stopping theorem) is well known. Let u, v be finite measures on E
with uU > vU; then there exists a stopping time T such that »(-) = uPp(-) =
PXXp € -, T <{), { the lifetime T, provided that the .#, are sufficiently
rich, in particular that there exists a continuous real random variable in .4,
independent of (X,) (under any initial measure). There are various schemes to
construct such a stopping time; see, e.g., [9],.[8], [1], [10] and [4]. In this article
we study the following question raised by Fitzsimmons. Let x and v,, n > 1,
be finite measures on E with

(1.1) wl=--- 2y, U= - 2v,U.

Does there exist a decreasing sequence of stopping times 7, such that

= uPr_ for all n, assuming the .#, are sufficiently rich? [The converse that
the existence of such a sequence 1mp11es (1.1) is of course trivially valid.] The
following result (see Theorem 3.4) is obtained. There exists a right-continuous
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stochastic process Y = (Q,.#,.4,,Y,,Q), .#, a right-continuous filtration to
which (Y,) is adapted, that is a version of the right process X with initial
measure v,(-) = Q(Y, € -), and such that there are (.#,)-stopping times 7,
decreasing to 0 with Q(Y; € -, 7, <®) =,(-) for all n. The 7, satisfy a
certain Markov property. Note that »,U = lim,»,U < uU; so in X there
exists a stopping time T, with v,, = u Py . If the process Y could be regarded as
the part of X, under P*, after time T, the above question would be completely
answered in the positive, with T, = T, + 7, - 6(T,). Furthermore, the T,
satisfy the Markov property T, = T, ,; + S, (T, ,), where S, is a stopping
time such that the P”»+i-distribution of X(T,) is v,. However, attaching Y to
X under P* after time T, involves changing the filtration (.#,), and this
change depends on x and v,. In other words the result obtained does not
imply that one can define in a given X, i.e., with fixed (.#,), a desired sequence
T, for arbitrary u and v, satisfying (1.1). We have only partially answered the
question.

But it seems this partial answer is still of interest. Furthermore, we give
what we call a canonical representation of Y and the times 7, (see Theorem
4.2), in which one has a better understanding of how the tail of (7,) may be
determined. With that an open question is posed (see Remark 2 after Theorem
2.4) whose answer in the positive would completely resolve the problem being
studied. This open question is perhaps interesting in its own right.

Fitzsimmons [5] has now proved that if X contains an independent continu-
ous randomization variable, then for any u,v, satisfying (1.1) there exist
decreasing stopping times 7, with v, as the P*-distribution of X(T,). The
approach is very different; he uses a theorem of Baxter and Chacon (see [5] for
reference) on compactness of stopping times. However, the stopping times T,
obtained in [5] do not satisfy the Markov property. Let us remark, incidentally,
that using the ordered stopping times 7, in our process Y and based on the
representation of randomized stopping times by measures in [0, 1] X €} () the
path space as defined below; see [5], especially Lemma 2) and vice versa, which
is the basic observation of Baxter and Chacon, one can also define a decreasing
sequence 7, in X with initial measure v,, and then obtain T, = T, + 7, - &(T.,)
as desired. However, the 7, and therefore T, thus obtained again do not
satisfy the Markov property.

The process Y is constructed in Section 2. In Section 3 the behavior of Y, as
t —» 0 is studied. We present in Section 4 the canonical representation of Y
and 7, mentioned above. In Section 5 examples are given to illustrate some
possibilities of the behavior of the tail of (7,).

2. The process Y. We assume that X admits a continuous real random
variable independent of (X,). Thus we can let Q = Q X R, where  is the
space of right-continuous functions from [0,~) into E, and R the reals;
X(d,r) =d,; 0(d,r) = (6,0, r), where 0,6 is the usual shifted path &' with
&' = d,,.; R(&,r) = r be the random variable independent of (X,) and with a
continuous distribution A(dr) under any P*. .# and .#, are the usual comple-
tions of the o-algebras o(X,,2 > 0) Vo(R)and N, (0(X,,s <t + &) V o(R)
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with respect to all measures P*, of course with the X, regarded as taking
values in (E,, &,*), &* the o-algebra of universally measurable sets of E,. Let
Z,, n = 0, be independent continuous real random variables depending only
on R.

Consider now fixed finite measures u and v,, n > 1, on E satisfying (1.1).
For each n there exists a stopping time S, satlsfymg v, = V,,1Pg_(using any
Skorokhod stopping scheme), which we can require to be one relative to the
filtration (&, vV 0(Z,)). Here <4, = N,,,0(X,, s <t +¢) with the X, re-
garded as taking values in (E,, @”A), &, the Borel o-algebra; Z, serves as a
randomization variable for S, that may be needed. For convenience all
stopping times T on ) are required to satisfy T = « if T > ¢. Next define
stopping times T},, 1 <n <k <, as follows. Let T,, be a stopping time
relative to (4, V 0(Z,)) satisfying vy =uPr ,and for n <k let

(2.1) =Thns1+8,°0(T, n11)
with the understandmg T,m = if T, ,,; = . Thus v, = uPy, , and obvi-

ously the distribution of (T}, = T}, ,,;, 1 <n <n,)is 1ndependent of k>n,
under P* (with the convention © — « = 0).

ProposiTiON 2.1. For any 6 >0, PXT,, = T,, >8) 2 0asm>n >
(note the probability is independent of k > m).

Proor. Let ¢ > 0. By replacing v, by some v; we may assume sup v,(E) =
lim v,(E) < v(E) + ¢/4. By the transience of X there exists a transient
nearly Borel or even compact B C E such that v,(E — B) < ¢/4. Since the
last exit time L = sup({¢: X, € B} is finite a.s., P“(Lg > t,) < /4 for some
ty < . It follows that

P¥(Ty, <, Ty > ty)
< P¥(Typ < 0, T}y = ®) + P#(Ty; < o, X(Ty,) ¢ B)
+ P#(ty < Ty <, X(T,;) €B)
< (1(E) —vy(E)) +vi(E - B) + P*(Lg > t,) < 3¢/4.

By the independence of % of the distribution (T}, — T}, ,,;, 7 < n,) men-
tioned above, if m > n are sufficiently large, P*(T},,, — T},, > 8, T\ < t,) <
€/4, and so

P¥(Typ = Thm > 8) = PX(Thp = Tppy > 8, Ty <)
2 P”’(Tkn - Tkm > 6, Tkl S to)
+ P¥(T,, < o, T, > t,) <e. O

Consider now the sequence of processes Y* = (X,, P"), where v} is the
measure on E, with v;(B) = v,(B) for B C E, vj{A} = u(E) — v,(E). They
are considered as defined on (Q,.#°), where .#° =2V o(R), = o(X,,
t > 0) with the X, regarded as taking values in (E,, &,). Note that (Q, .#°) is
a Radon space (see [11] for a definition and relevent facts), a fact needed in
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defining the space ({}, .#, Q) below. In Y* we (re)-define T,,, 1 <n <k, as
follows: T, = 0if X, € E, = wif X, = A; and T}, n < k, satisfy (2.1). Note
that (X)), (T,, — T},)) under P, where T}, are defined as before, is equiva-
lent to (Xy,, ), (T, — Tj,)) under P¥; here we use the convention X, = A.
We will define Y as a projective limit process of the sequence Y*. Let Q N Q
denote the sample space of Y* and define a mapping ¢,: (Q,,,, #°) —
(Q,, #°) by

pr(w) = o' iff R(w) = R(o') and X (o) = X7, . .(@).
Clearly 2 embeds Y* in Y**! as (Xp,,, +0 P P¥i+1); ie., we have P'k=

P”k+1o¢: By a well-known theorem, there is a (prOJectlve limit) space
Q, 2,Q that has all (0, .#° P"+) embedded in it, where

~

Q={6=(o"...,0%...) 0" €Q,, g,(0**?) = w, for all £},
=o-( Uwgljo), where 7,(&) = o*,
k

Q = the unique measure on .# satisfying @ o ;' = P** for all k.
To define Y, first let
‘Fn(‘a) = hzn(Tkn(wk) - Tkk(wk))

an increasing limit. Note the expression on the right is either T, (w*) or
® — o = 0; its value remains the same if one thinks of Y* as ( XTkk"'t’ P*) (and

so w* as a point in Q under P*). From Proposition 2.1 we have 7,10 as. Q.
We assume 7, |0 for all &. Also delete all & where T),(0*) = « for all k;
consequently Q(Q) = lim v,(E), which may be smaller than u(E) = v}(E,).
Now define

Yt(“j) = XTkk(wk)+t—‘Fk(a3)( wk)

if T,,(0*) = 0 [T,,(w*) < ® in case one thinks of w* as in Q under P*] and
7,(®) < ¢, the right-hand side being independent of such k. By the right
continuity of X, we also have

Y(o) = lilin XTkk(wk)+t(wk) = lillen X,(o*).
Denote
Ao = {7, > 0forall n} = {@: T, (w*) # T, ,_,(w*) for infinitely many &}.
The above does not define Y, on A . Define on A, Y, = lim,_,Y, if this

limit exists; = A otherwise.

3. Behavior of Y, at £ = 0. In studying ¥, as £ > 0 on A,, Y* will be
regarded as (Xr, ., P ); thus the sets A, in the following proofs are subsets
of the (same) space Q under P*.

ProrosiTION 3.1. lim, Y, exists a.s. on A .
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ProoF. Suppose not. Then by restricting 7, to a subsequence one may
assume that there exists a (compact) transient B c E, ¢ > 0 and constants
b, 10, c, > 0 such that the set

Ao N {Y(%,) € B; forall n thereare t,,t/, withe, <t, — 7, <t, — 7, <b,
and d(Y(¢,), Y(¢,)) > ¢}
has @-measure greater than ¢; here d is the metric on E,. Thus the sets
A ={X(T},,) € B;forall n < k there exist s,,,, s},
with ¢, <5, = Ty, < $pp = T} < b, and d(X(s;,), X(s}4,)) > &}

all have P“-measure greater than ¢, and so A, = limsup A , has P“-measure
greater than or equal to ¢. Define S on A as follows: If /\ , is the entire
subsequence of A, containing , let S(w) = liminf; Ty (). If t; = S(w) <

®, X(w) cannot be right continuous at #, because for any & > 0 there exist
s,s"in (¢, ¢, + &) with d(X,(w), X,(®)) > ¢; s0 S(w) = © for all w € A,. On
the other hand, let ¢, < » be such that PX(Lg > t,) <&/2. Then S(w) <
sup; T, (w) < ¢, if o is in A, —{Lp > t,}, which has P*-measure greater
than ¢ / 2. So we have a contradiction. O

ProposiTION 3.2. lim, ,,Y, € Ea.s. on A,.

Proor. Suppose not. Then by restricting 7, to a subsequence we may
assume that there exist a transient B C E, ¢ > 0, and b, |0, ¢, > 0 such that
the set
Ao N {Y(7) €B;c, <7, ~ 7,y <7, <b, and d(Y(7,),A) < 1/n forall n}
has @-measure greater than ¢. Thus the sets

Ak = {X(Tkl) = B; ¢, < Tkn - Tk,n+1 < Tkn - Tkk < bn

and d(X(T,,),A) <1/n forall n <k}
all have P*-measure greater than ¢. Let A, = limsup A , and defines on A,
as in the preceding proof. Again S < » on a subset of A, of positive P*-mea-
sure. But if ¢, = S(w) <  then for any & > 0 there exist T}, () € (¢,,¢, + )
with d(Xyp, (0),A) <1/n and n arbitrary large; so X, (0) = A. Since the

above Tkn(w) are finite and so Xy, (o) # A and since A is the death point,
such w are in a null set. We thus have a contradiction. O

We have established that a.s. Y, is right continuous at ¢ = 0 and Y, € E.

ProposiTioN 3.3. For any a > 0 and bounded f in &, U°f(Y,) is right
continuous at t = 0 a.s. on A ,, where U® denotes the a-potential of X.

Proor. U“f(Y)) is of course right continuous on [7,,®) for all n a.s.
From this and the upcrossing lemma applied to the supermartingales
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{e ®U*f(Y(7, +t), t>0}, n>1, when f>0, we have lim, , , Uf(Y,)
exists a.s. Suppose the proposition is false. Then there exist ¢ > 0, constants
b,, b, and a compact C c E such that (say) b, < by, C c {U%f < b} and

Ao {¥o € C, ImU*f(Y,) > by)

has @-measure greater than ¢ (or such that the above holds with all inequali-
ties except the last one reversed). Then again by using a subsequence of 7, we
may assume that there exist a transient B C E and c, |0, ¢/, > 0 such that

/\ 0 N {Y(fl) € B; Uaf(Y(fn)) > b2’ C;L < T~n - i:n+1 < i:n < Cn and
d(Y(%,),C) < 1/n for all n}

has @-measure greater than ¢/2; here d(x, C) denotes the distance from x to
C. Thus the sets

A ={X(T};) € B; U*f(X(T4,)) > by, c)y < Ty — Thns1 < Thn = Thp <cp
and d(X(T,,),C) <1/n forall n <k}

all have P*-measure greater than ¢/2. Let A, = limsup A , and define S on
A, as before. Again S < « on a subset of A_ of positive measure. But if
t; = S(w) < =, there exists a sequence of ¢ | ¢, such that d(X,(w),C) - 0 and
Uf(X (w)) > b,. It follows that X,(w) € C and so U*f(X,(w)) is not right
continuous at ¢,. This contradicts the fact that a.s. P“(d w), Uf(X/(w)) is
right continuous. O

Define .#,° = &, V o(R), where &, was defined early in Section 2. Then
define

70 _ -1 40 7 — 70
A= No(Umitdd, ), =42
n k=n

It is easy to see that m ‘#jp ., increases with k and o(U,, ,m; ‘47, ,,)
decreases with n.

TuEOREM 3.4. () Y = (Q,.7,.Z,,Y,,Q) is a version of the right process X
under measure P”> where v(-) = Q(Y, € -). (ii) The 7, are (.#,)-stopping time
with 7, 10 and Q(Y(7,) € -, 7, < ®) =p,(-).

Proor. (i) Using the Markov property of Y* at times T, + ¢, and the
monotonicity stated in the sentence just before the theorem, it is routine to
show the desired Markov property of (Y,) relative to the o-algebra .Z,° when
¢ > 0. The desired strong Markov property of (Y,) relative to the filtration (.#Z,)
follows from this and the right continuity of U?f(Y,) on [0, ) for all a > 0,
bounded f in &,. (i) It is easy to verify that 7, is a stopping time relative to
(«#,). We have already seen 7, | 0. Finally from the fact v, = u Py, it is clear
that QY(7,) € -, 7, <®) = p(-). O "
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We note in passing that v, is concentrated on E and is the weak limit of v,
Let Z (&) = Z,(0*). Then the Z, depend only on R(&) = R(w*), and (Y)
and (Z,), ., under @ have the same joint distribution as (X,) and (Z,), .,
under P*. Also, 7, —7,,; is a stopping time relative to the filtration
(N, 00(Y(F, + 8), s <t + &)V o(Z),)); this follows from (2.1) and the fact S,
is a stopping time relative to (&, v a(Z ).

4. A canonical representation of Y and the sequence 7 = (5,). We
will need to consider the following spaces and o-algebras. Let V = {v = (v,),, .
0<v,<w v,l0}, 7 be the o-algebra on V generated by the coordinate
mappings v,,, and 7, the tail o-algebra N ,,o(v,, n > m). Let V,, be the space
of tails of elements v in V, i.e., space of equivalence classes of V induced by
v ~V'iff v, = v, for all large n; 7, is also regarded as a o-algebra on V_.. Note
(V,7)isa Lusin space but (Vm, 7.) is not. Let Q. be the space of infinitesi-
mal initial parts of elements & in (), ie., space of equivalence classes of
induced by & ~ &' iff &, = @, for all small ¢. Denote R* = {z = (2,),,,,: 2, € R
for all n}, #* = 0(z,, n > 1). Let R% be the space of tails of elements z in R>.
Let #= N fl sm X 0(2,, n > m), a sub-o-algebra of Zx #* on QxR
here 2= o(d,, t>0)and Z,=N,s00(d,, s <t+¢). # is also regarded as
a o-algebra on Q,, X R=. Elements of V, (resp. of RY) are denoted u (resp. w),
and the tail of v € V (resp. of z € R®) is denoted v, _ (resp. zw_) elements of
Qo+ are denoted ¢, and the infinitesimal initial part of & € Q) is de-
noted @, .

Let 7 = (7). We now choose a regular conditional distribution (r.c.d.)

a(d,z,dv) =Q(Fedv|Y =6,Z =2),

where of course Y = (Y)), Z = (Z,). a is a (transition) kernel in 7/£Zx &~
(the meaning of this notation being obvious). The existence of « is due to the
fact that (V, 7') is Lusinian. Denote

q(dao,dz) = Q(Yedad, Z €dz).
By (2.1) we have
(4.1) v, =v,,,+8,(2,)°8, @), n=1,

ae QYedd, Zedz 7edv)=q(dd,dz)alé, z, dv), where S (@) is the
value of S,(w) = S,(&,r) in (2.1) When Z,(w) = a. Note S, (a) is a (£,)-stop-
ping time on Q.

PROPOSITION 4.1. There exists I € £X % with q(I') = 0 such that for all
H € 7, the restriction of a(-, - ,H) to T isin J, i.e., in #NT°.

ProoF. For m >1, ¢t > 0 denote 7™ = (7, A7, At),., and choose a
r.c.d.

ay, (&,2,dv) = Q(F™t e dv|Y =6, Z = 2)
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as a kernel in /4, X 0(Z,, n > m). Similar to (4.1) we have
(4.2) U, = [Vpsr + 8u(2,)°0, ()] Av, AE, n=1,

ae. q(da,d2)a,, (&,z dv). Define a™ &, z,dv) to be the image measure of

@, {®, 2, dv') under the mapping v’ — v defined by: If v’ satisfies (4.2) then v
satisfies (4.1) and U,_= Us_; otherwise v = 0. Clearly a™ “(&, z, dv) is another
version of Q(Ff € dvlY =68, Z =2). So a™%d,z dv) = a(d, z,dv) ae.
q(d&,dz). Let 7, , = o(v, Av,, As,n>1and s <t). Clearly, for H € 7,, ,,

a™¥d,z, H) = am ,(w z, H) and is therefore a function in &, X al(z,,n >m).
It follows that (@, 2, H) is in the g-completion of I, xolz,n> m) relative
to £ x #=. Since 7, .+ 1s countably generated, there ex1sts m,t € IX B
with ¢(T}, ) =0 such that for all H € Vn, 6 @, -, H) restricted to Ty, , is in
I, x oz, n> m). Since 7%, C %, , for all m and t > 0 (Because v, iO) and
since #= N, %, ym X 0(2,, n > m) the proposition follows, w1th =

Um m,1/m* O

DEFINITION.  Let Ty = {(¢, w) € Q. X RZ: There exist no (&, z) € I'* with
(Do, 2._) = (&, w)}). Define for each (¢, w) € QO+>< RZ a measure B(&, w, - )
on 7, as follows:

B(‘f,wa') =a(‘61z") lf(w Z) ere and("’0+7 ) (§,w)
= point mass at v2_, where v° =0, if (¢, w) € T,.

Let #* = o(H#,T,). Then B(¢, w,du) i is a kernel in 7,/#*. Note that the
mapping (&, 2) > (&, 2,_) is in H*/ZX B

We now proceed to define a representation of Y and 7 on the following
space (O, Z,P): Q= Q X V,, #Z=.#X 7, and with P = P",
P(dw,du) = P(dw)B(do., 2., du),

where of course w = (&, r), 2 = Z(w) = (Z,(w)), X,,0,,Z,, S, are regarded as
defined on Q by X,(w,u) =X (o), 6 (w u) = (6,0, u), etc Also &, =
N,.so0(X,, s <t+¢) are regarded as a-algebras on Q. Let .Z, =.#4,%x %,
Finally, let U(w, u) = u (this U is not to be confused with the potentlal ker-
nel U).

Define

v(®, 2, u) = the (unique) v satisfying (4.1) and v, _= u if such a v exists

= v°% = 0 otherwise.
It is easy to see that v(&, 2, u) is in /& X #* X 7. From (4.1) and Proposi-
tion 4.1

a(8,2,dv) = [ a(é,2,du)e,q ,, .(dv)
Vo

= fVB(('60+7 - du)sv(zﬁ,z, u)(dv)

a.e. ¢(d®, dz), where £.(-) denotes a point mass. Now define = on Q by
T= v( X’ Z’ U)’
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where of course X = (X)), Z =(Z,), ..

TuEOREM 4.2. () (X, Z, ) under P has the same distribution as (Y, Z, 7)
under Q. In particular, P(X(r,) € -, 7, <) = QY(f) € -, 7, < x) =
v,(*) for all n. (ii) Each 7, is a stopping time relative to the filtration
(&, Vv a(Z,,m >n)V a(U)) l[and therefore relative to (.#,)], and
Ty =Tns1 +8,°0(1,.,) a.s. P.

n =

Proor. (%) By the definition of 7,
P(Xedd,Zedz, v dv)

= / P(Xedd,Zedz,Uedu)e,yg , .(dv)
uevV,

=P(Xedb, Ze dz)/VB(a’30+, 2y du) ey, u(dV)

=Q(Yedd, Z €dz)a(b,z,dv)

=Q(Yedad, Z edz, 7 €dv).
The second assertion in (i) follows from the first and the right continuity of Y,
and X,. (i) Define for fixed n and ¢> 0: v™%®, 2, u) = the (unique) v
satisfying (4.2) with m,n interchanged and v,_= u if such v exists; = v =
otherwise. Then (7, A1, A?),,.; =v"Y(X,Z,U) and v™'e 7/¥, X o(z,,,
m >n) X 7. It follows that 7, A t € &, V 0(Z,,, m = n) V o(U). This proves
the first assertion of (ii). The second follows from (4.1) and the definition of
v(®d,z,u). O

REMARK 1. The above representation is still valid if Y = (O, .4, .4, Y,, Q)
is any right-continuous stochastic process, with the Z_ not necessarily satisfy-
ing the independence conditions, and of course assuming that 7, — 7,,, is a
stopping time relative to the filtration (o-(Z )V N, 0¥ (7, + s) s<t+e))
(X,) and (Z,) can be defined on Q = Q1 X R (with the Z, as coordinates on
R*) or on Q = ) X R [with the Z, as functions dependlng on R(&,r) =r]to
have the same joint distribution under a measure P as that of (Y;) and (Z).
The rest is the same.

ReEmMARK 2. The following is an open question. Consider the kernel
B(¢, w, du) defined above. Let Z, be a continuous real random variable. Does
there exist a function

u=u(é&w,zy): Qp,XRZXR -V,

in 7,/ H#* X & (where & is the Borel o-algebra of R) such that u(¢, w, Z,)
has distribution B(¢, w, du) for all (¢, w)? Suppose the answer to this question
is yes. Then, recalling there is in the process X a continuous real random
variable Z, (which is also independent of everything else), one can directly
define on ) (rather than on Q = Q X V) stopping times 7, by

r=v(X,Z,u), whereu=u(Xy,,2Z,_,2Z,).
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The 7, would satisfy the assertions in Theorem 4.2, with Z, playing the role
of U in defining the relevent o-algebras. Furthermore, assuming the above is
true, if one includes in the right process X another continuous real random
variable Z_; (independent of everything else), one could define a stopping time
T, relative to (&, V 0(Z_))) satisfying v, = uPy; then the stopping times
n = T.. + 7, °0(T,) would satisfy v, = uP; [and one would also have T, =
T,i1+S,°0(T,, ) as. P* with T, ,, a stopping time relative to (£, V o(Z,,,
m>=n+1)Va(Zy,Z_)) and S, a stopping time relative to (<, vV a(Z,))].
Thus Fitzsimmons’ question would be completely answered in the positive.

REMARK 3. Suppose a r.cd. p(§,w,dd,dz) = QY €dd, Z e dz|Y,, =
¢, z,,_= w) (which exists) satisfies p(¢, w, {0y, = ¢, z,,_= w}) = 1 for all (¢, w)
(in the terminology of [2] p is said to be “proper”). (Note this may sometimes
be the case in the more general setting stated in Remark 1.) We show that
there exists a function u(¢, w, z,) satisfying the condition in Remark 2. Choose
a rcd. y({w,dv) =Q(F € dvlYy,=¢ Z, =w). Then ae. QY,, € d¢,
Z,_edw), .

Y(é,w,dv) = [p(§,w,dé,d2)Q(F € dvlYy,= &, Z, —w,Y =6, Z =z)

~

= [p(¢,w,dé, d2)Q(7 € dvlY = 6, Z = 2)

= fp(f, w,dd,dz)a(d, z,dv),

using the property of p in the second equality. Using this property once more
and the definition of B(¢, w, du), we have y(¢, w, du) = B(¢,w, du) on %, a.e.
Q(Y,, € d¢, Z,_< dw). Now since (V, ¥) is Lusinian, there exists v(¢, w, zy)
in 7/ #* X % such that v(¢, w, Z,) has distribution y(¢, w, dv) for all (¢, w).
Let u(¢, w,zy) be the tail (ie., the projection to V) of v(¢, w,z,). Then
u(é,w,zy) € 7,/ H#* X # and u(¢, w, Z,) has distribution B(¢, w, du) for all
(¢,w) as desired in Remark 2. Note, however, that the assumption in this
remark fails if either the Z, are independent (so that the Kolmogorov zero—one
law applies) or if, given Y, the o-algebra £, = N . ,0(Y,, ¢ < ) is trivial but
not atomic (as is typical for the Y in this article because of the Blumenthal
zero—one law). If no Z, are involved (in the determination of 7, — 7,,,), and a
rcd. p(¢,dd) = QY € ddlY,, = &) satisfies p(¢,{d,, = £}) = 1 for all £, then
of course as in the above a desired function u(¢, 2,) exists. This is the situation
in Example 2 of Section 5.

5. Examples. The following examples are given only to illustrate some
possibilities of the kernel B(¢, w, du) or B(¢, du).

ExampLE 1. Let X be Brownian motion on the interval [—1, 1] absorbed
at —1 and 1, which are identified as A. Let x,,, n > 1, i € I, where I is
countable, be points in (-1, 1) — {0} with x;, |0 or x;, 10 for each i, and with
X;n, U €I, distinct for each n. Let ¢c;, = PO(T(xi,.} < ®) where T, denote the
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first hitting time of A, and let p(i) >0 with L p(i) = 1. Define v, =
L,p(i)e; e, , b =¢&o. Then p and v, satisfy (1.1). Here there exist (obvious)
nonrandomized stopping times S, such that v, = v, Pg ; so randomization
variables Z, are not needed. Clearly v, = u. The process Y can be regarded as
the process X starting at 0 together with an independent (randomization)
variable W with values in I satisfying @ (W = i) = p(i); if W=1i, 7, is the
first time Y, = X, hits x,,,. Obviously, each measure B(¢, du) is supported by a
countable set which has the same cardinality as I and varies with £. In this
example one can let I be (say) [0, 1] and x,,, c;,, be as above, p(i) be a positive
density and define v, = [gp(i)c; e, di and p =¢,. Then each B(¢,du) is
supported by an uncountable set which varies with ¢.

ExampLE 2. Let X be uniform motion to the right on the internal [0, 1]
with A = 1, possibly with premature death. Let x,,, n > 1, i € I, I countable,
be points in (0, 1) with x;, | 0 for each i, and with x,,, ¢ € I, distinct for each
n. Let c;,, p(i), v,, u be the same as in Example 1. Again there exist (obvious)
nonrandomized stopping times S, with v, =v,,,Pg; so no Z, enter the
picture. Y can be described in the same way as in Example 1. Each measure
B(&, du) is supported by a set having the same cardinality as I, but this time it
is independent of ¢ a.e. Q(Y,, € d¢). This is the situation mentioned at the
end of Remark 3 above because Q(Y,,€ d¢) is atomic (in this case a unit
mass). In this and the next example, as in Example 1, one can let I = [0, 1] to
obtain an uncountable supporting set for (¢, du) or B(¢, w, du).

ExampLE 3. In the above example let x;, be the same, and let 0 <¢;, 11
for each i satisfy

C;in < min{PO(T(xm) < Oo)’ ci,n+1Pxi'n+l(T(xm) < oo)}

Let p(i),v,, n be the same. There exist randomized stopping times S, with
v, = v,,1Pg ; so there are Z,’s involved as in Section 2. It is easy to describe

for each i stopping times T;,, with T;, =T; ., + S, 0(T; ,,,), such that

P%X(T;,) = x;,, T;, <%®) =c;,. Then Y can be described in a similar way
(using W) as in Example 1, with 7, satisfying: If W = i, then 7, “equals” T;,.
Here B(¢, w, du) is again supported by a set with the same cardinality as I;
however, this set is independent of ¢ but varies with w.
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