ORDERED SKOROKHOD STOPPING FOR A SEQUENCE OF MEASURES

Ву С. Т. Ѕнін

University of Michigan

Let X be a transient right (Markov) process on a compact metric space including a death point. Let μ and ν_n be finite measures whose potentials satisfy $\mu U \ge \cdots \ge \nu_n U \ge \cdots \ge \nu_1 U$. We prove that there exists a rightcontinuous stochastic process $Y = (\tilde{\Omega}, \mathcal{M}, \tilde{\mathcal{M}}_t, Y_t, Q)$ that is a version of Xwith initial measure $\nu_{\omega}(\cdot) = Q(Y_0 \in \cdot)$ and in which there are $(\tilde{\mathscr{M}}_t)$ -stopping times $\tilde{\tau}_n \downarrow 0$ with $Q(Y(\tilde{\tau}_n) \in \cdot, \tilde{\tau}_n < \infty) = \nu_n(\cdot)$. Furthermore, a canonical representation of Y and $(\tilde{\tau}_n)$ is given in which one has a better understanding of the tail behavior of the sequence $ilde{ au}_n$. Based on this representation an open question is posed whose answer in the positive would permit defining in X, assuming it admits a continuous real random variable independent of the path, decreasing stopping times T_n such that $P^{\mu}(X(T_n) \in \cdot, T_n < \infty) = \nu_n(\cdot)$. These T_n would satisfy the Markov property $T_n = T_{n+1} + S_n \circ \theta(T_{n+1})$, S_n a stopping time linking ν_n and ν_{n+1} . Fitzsimmons has now proved the existence of a desired decreasing sequence T_n in X for any given μ and ν_n as above, using a very different approach. His T_n , however, do not satisfy the Markov property.

1. Introduction and main results. Consider a transient right process $X=(\Omega, \mathscr{M}, \mathscr{M}_t, X_t, \theta_t, P^x)$ on a compact metric space $E_\Delta=E\cup\{\Delta\}$, where Δ is the usual adjoined death point. See [6], [11] and [3] for definitions and notation of Markov processes and right processes. For the meaning and relevent implications of transience see [7]. Let U=U(x,A) denote the potential kernel of X. By the transience assumption, if μ is a finite measure on E, its potential μU is a σ -finite measure (on E). The following fact (general Skorokhod stopping theorem) is well known. Let μ, ν be finite measures on E with $\mu U \geq \nu U$; then there exists a stopping time T such that $\nu(\cdot) = \mu P_T(\cdot) = P^\mu(X_T \in \cdot, T < \zeta)$, ζ the lifetime $T_{\{\Delta\}}$, provided that the \mathscr{M}_t are sufficiently rich, in particular that there exists a continuous real random variable in \mathscr{M}_0 independent of (X_t) (under any initial measure). There are various schemes to construct such a stopping time; see, e.g., [9], [8], [1], [10] and [4]. In this article we study the following question raised by Fitzsimmons. Let μ and ν_n , $n \geq 1$, be finite measures on E with

$$\mu U \geq \cdots \geq \nu_n U \geq \cdots \geq \nu_1 U.$$

Does there exist a *decreasing* sequence of stopping times T_n such that $\nu_n = \mu P_{T_n}$ for all n, assuming the \mathscr{M}_t are sufficiently rich? [The converse that the existence of such a sequence implies (1.1) is of course trivially valid.] The following result (see Theorem 3.4) is obtained. There exists a right-continuous

Received March 1989; revised August 1989.

AMS 1980 subject classifications. Primary 60J40; secondary 60G40, 60J45.

Key words and phrases. Skorokhod stopping, right processes, randomization of stopping times.

stochastic process $Y=(\tilde{\Omega},\tilde{\mathcal{M}},\tilde{\mathcal{M}}_t,Y_t,Q),$ $\tilde{\mathcal{M}}_t$ a right-continuous filtration to which (Y_t) is adapted, that is a version of the right process X with initial measure $\nu_{\infty}(\cdot)=Q(Y_0\in\cdot)$, and such that there are $(\tilde{\mathcal{M}}_t)$ -stopping times $\tilde{\tau}_n$ decreasing to 0 with $Q(Y_{\tilde{\tau}_n}\in\cdot,\,\tilde{\tau}_n<\infty)=\nu_n(\cdot)$ for all n. The $\tilde{\tau}_n$ satisfy a certain Markov property. Note that $\nu_{\infty}U=\lim_n\nu_nU\leq\mu U$; so in X there exists a stopping time T_{∞} with $\nu_{\infty}=\mu P_{T_{\infty}}$. If the process Y could be regarded as the part of X, under P^{μ} , after time T_{∞} , the above question would be completely answered in the positive, with $T_n=T_{\infty}+\tilde{\tau}_n\circ\theta(T_{\infty})$. Furthermore, the T_n satisfy the Markov property $T_n=T_{n+1}+S_n\circ\theta(T_{n+1})$, where S_n is a stopping time such that the $P^{\nu_{n+1}}$ -distribution of $X(T_n)$ is ν_n . However, attaching Y to X under P^{μ} after time T_{∞} involves changing the filtration (\mathcal{M}_t) , and this change depends on μ and ν_n . In other words the result obtained does not imply that one can define in a given X, i.e., with fixed (\mathcal{M}_t) , a desired sequence T_n for arbitrary μ and ν_n satisfying (1.1). We have only partially answered the question.

But it seems this partial answer is still of interest. Furthermore, we give what we call a canonical representation of Y and the times $\tilde{\tau}_n$ (see Theorem 4.2), in which one has a better understanding of how the tail of $(\tilde{\tau}_n)$ may be determined. With that an open question is posed (see Remark 2 after Theorem 2.4) whose answer in the positive would completely resolve the problem being studied. This open question is perhaps interesting in its own right.

Fitzsimmons [5] has now proved that if X contains an independent continuous randomization variable, then for any μ, ν_n satisfying (1.1) there exist decreasing stopping times T_n with ν_n as the P^μ -distribution of $X(T_n)$. The approach is very different; he uses a theorem of Baxter and Chacon (see [5] for reference) on compactness of stopping times. However, the stopping times T_n obtained in [5] do not satisfy the Markov property. Let us remark, incidentally, that using the ordered stopping times $\tilde{\tau}_n$ in our process Y and based on the representation of randomized stopping times by measures in $[0,1]\times\hat{\Omega}$ ($\hat{\Omega}$ the path space as defined below; see [5], especially Lemma 2) and vice versa, which is the basic observation of Baxter and Chacon, one can also define a decreasing sequence τ_n in X with initial measure ν_∞ , and then obtain $T_n = T_\infty + \tau_n \circ \theta(T_\infty)$ as desired. However, the τ_n and therefore T_n thus obtained again do not satisfy the Markov property.

The process Y is constructed in Section 2. In Section 3 the behavior of Y_t as $t \to 0$ is studied. We present in Section 4 the canonical representation of Y_t and $\tilde{\tau}_n$ mentioned above. In Section 5 examples are given to illustrate some possibilities of the behavior of the tail of $(\tilde{\tau}_n)$.

2. The process Y. We assume that X admits a continuous real random variable independent of (X_t) . Thus we can let $\Omega = \hat{\Omega} \times \mathbb{R}$, where $\hat{\Omega}$ is the space of right-continuous functions from $[0,\infty)$ into E_{Δ} and \mathbb{R} the reals; $X_t(\hat{\omega},r) = \hat{\omega}_t$; $\theta_t(\hat{\omega},r) = (\theta_t\hat{\omega},r)$, where $\theta_t\hat{\omega}$ is the usual shifted path $\hat{\omega}'$ with $\hat{\omega}' = \hat{\omega}_{t+}$.; $R(\hat{\omega},r) = r$ be the random variable independent of (X_t) and with a continuous distribution $\lambda(dr)$ under any P^x . \mathscr{M} and \mathscr{M}_t are the usual completions of the σ -algebras $\sigma(X_t, t \geq 0) \vee \sigma(R)$ and $\bigcap_{\varepsilon > 0} \sigma(X_s, s < t + \varepsilon) \vee \sigma(R)$

with respect to all measures P^{μ} , of course with the X_t regarded as taking values in $(E_{\Delta}, \mathscr{E}_{\Delta}^*)$, \mathscr{E}_{Δ}^* the σ -algebra of universally measurable sets of E_{Δ} . Let Z_n , $n \geq 0$, be independent continuous real random variables depending only on R.

Consider now fixed finite measures μ and $\nu_n, n \geq 1$, on E satisfying (1.1). For each n there exists a stopping time S_n satisfying $\nu_n = \nu_{n+1} P_{S_n}$ (using any Skorokhod stopping scheme), which we can require to be one relative to the filtration $(\mathscr{I}_t \vee \sigma(Z_n))$. Here $\mathscr{I}_t = \bigcap_{\varepsilon > 0} \sigma(X_s, s < t + \varepsilon)$ with the X_t regarded as taking values in $(E_\Delta, \mathscr{E}_\Delta)$, \mathscr{E}_Δ the Borel σ -algebra; Z_n serves as a randomization variable for S_n that may be needed. For convenience all stopping times T on Ω are required to satisfy $T = \infty$ if $T \geq \zeta$. Next define stopping times T_{kn} , $1 \leq n \leq k < \infty$, as follows. Let T_{kk} be a stopping time relative to $(\mathscr{I}_t \vee \sigma(Z_0))$ satisfying $\nu_k = \mu P_{T_{kk}}$, and for n < k let

$$(2.1) T_{kn} = T_{k,n+1} + S_n \circ \theta(T_{k,n+1})$$

with the understanding $T_{kn}=\infty$ if $T_{k,\,n+1}=\infty$. Thus $\nu_n=\mu P_{T_{kn}}$, and obviously the distribution of $(T_{kn}-T_{k,\,n+1},\,1\leq n< n_1)$ is independent of $k\geq n_1$ under P^μ (with the convention $\infty-\infty=0$).

PROPOSITION 2.1. For any $\delta > 0$, $P^{\mu}(T_{kn} - T_{km} > \delta) \to 0$ as $m > n \to \infty$ (note the probability is independent of $k \ge m$).

PROOF. Let $\varepsilon>0$. By replacing ν_1 by some ν_j we may assume $\sup \nu_k(E)=\lim \nu_k(E)<\nu_1(E)+\varepsilon/4$. By the transience of X there exists a transient nearly Borel or even compact $B\subset E$ such that $\nu_1(E-B)<\varepsilon/4$. Since the last exit time $L_B=\sup\{t\colon X_t\in B\}$ is finite a.s., $P^\mu(L_B>t_0)<\varepsilon/4$ for some $t_0<\infty$. It follows that

$$\begin{split} P^{\mu}(T_{kk} < \infty, T_{k1} > t_0) \\ \leq P^{\mu}(T_{kk} < \infty, T_{k1} = \infty) + P^{\mu}(T_{k1} < \infty, X(T_{k1}) \notin B) \\ + P^{\mu}(t_0 < T_{k1} < \infty, X(T_{k1}) \in B) \\ \leq \left(\nu_k(E) - \nu_1(E)\right) + \nu_1(E - B) + P^{\mu}(L_B > t_0) < 3\varepsilon/4. \end{split}$$

By the independence of k of the distribution $(T_{kn}-T_{k,n+1},\ n< n_1)$ mentioned above, if m>n are sufficiently large, $P^\mu(T_{kn}-T_{km}>\delta,\ T_{k1}\leq t_0)<\varepsilon/4$, and so

$$\begin{split} P^{\mu}(T_{kn}-T_{km}>\delta) &= P^{\mu}(T_{kn}-T_{km}>\delta,T_{kk}<\infty)\\ &\geq P^{\mu}(T_{kn}-T_{km}>\delta,T_{k1}\leq t_0)\\ &+ P^{\mu}(T_{kk}<\infty,T_{k1}>t_0)<\varepsilon. \end{split}$$

Consider now the sequence of processes $Y^k = (X_t, P^{\nu_k})$, where ν_k' is the measure on E_Δ with $\nu_k'(B) = \nu_k(B)$ for $B \subset E$, $\nu_k'(\Delta) = \mu(E) - \nu_k(E)$. They are considered as defined on (Ω, \mathcal{M}^0) , where $\mathcal{M}^0 = \mathcal{G} \vee \sigma(R)$, $\mathcal{G} = \sigma(X_t, t \geq 0)$ with the X_t regarded as taking values in $(E_\Delta, \mathcal{E}_\Delta)$. Note that (Ω, \mathcal{M}^0) is a Radon space (see [11] for a definition and relevent facts), a fact needed in

defining the space $(\tilde{\Omega},\tilde{\mathcal{M}},Q)$ below. In Y^k we (re)-define $T_{kn}, \ 1 \leq n \leq k$, as follows: $T_{kk}=0$ if $X_0 \in E, =\infty$ if $X_0=\Delta$; and $T_{kn}, \ n < k$, satisfy (2.1). Note that $((X_t),(T_{kn}-T_{kk}))$ under P^{ν_k} , where T_{kn} are defined as before, is equivalent to $((X_{T_{kk}+t}),(T_{kn}-T_{kk}))$ under P^{μ} ; here we use the convention $X_{\infty}=\Delta$. We will define Y as a projective limit process of the sequence Y^k . Let $\Omega_k=\Omega$ denote the sample space of Y^k and define a mapping $\varphi_k\colon (\Omega_{k+1},\mathscr{M}^0)\to (\Omega_k,\mathscr{M}^0)$ by

$$\varphi_k(\omega) = \omega' \quad \text{iff } R(\omega) = R(\omega') \text{ and } X_{\cdot}(\omega') = X_{T_{k+1}} + \ldots + (\omega).$$

Clearly φ_k embeds Y^k in Y^{k+1} as $(X_{T_{k+1,k}+t},P^{\nu_{k+1}'});$ i.e., we have $P^{\nu_k'}=P^{\nu_{k+1}'}\circ\varphi_k^{-1}$. By a well-known theorem, there is a (projective limit) space $(\tilde{\Omega},\tilde{\mathscr{M}},Q)$ that has all $(\Omega_k,\mathscr{M}^0,P^{\nu_k'})$ embedded in it, where

$$\begin{split} \tilde{\Omega} &= \big\{\tilde{\omega} = \big(\omega^1, \dots, \omega^k, \dots\big) \colon \omega^k \in \Omega_k, \, \varphi_k(\omega^{k+1}) = \omega_k \text{ for all } k\big\}, \\ \tilde{\mathscr{M}} &= \sigma \Big(\bigcup_{\mathbf{L}} \pi_k^{-1} \mathscr{M}^0 \Big), \quad \text{where } \pi_k(\tilde{\omega}) = \omega^k, \end{split}$$

Q= the unique measure on $\tilde{\mathscr{M}}$ satisfying $Q\circ\pi_k^{-1}=P^{\nu_k'}$ for all k.

To define Y_t , first let

$$\tilde{\tau}_n(\tilde{\omega}) = \lim_k \left(T_{kn}(\omega^k) - T_{kk}(\omega^k) \right)$$

an increasing limit. Note the expression on the right is either $T_{kn}(\omega^k)$ or $\infty-\infty=0$; its value remains the same if one thinks of Y^k as $(X_{T_{kk}+t},P^\mu)$ (and so ω^k as a point in Ω under P^μ). From Proposition 2.1 we have $\tilde{\tau}_n\downarrow 0$ a.s. Q. We assume $\tilde{\tau}_n\downarrow 0$ for all $\tilde{\omega}$. Also delete all $\tilde{\omega}$ where $T_{kk}(\omega^k)=\infty$ for all k; consequently $Q(\tilde{\Omega})=\lim \nu_k(E)$, which may be smaller than $\mu(E)=\nu_k'(E_\Delta)$. Now define

$$Y_t(\tilde{\omega}) = X_{T_{b,b}(\omega^k) + t - \tilde{\tau}_b(\tilde{\omega})}(\omega^k)$$

if $T_{kk}(\omega^k)=0$ [$T_{kk}(\omega^k)<\infty$ in case one thinks of ω^k as in Ω under P^μ] and $\tilde{\tau}_k(\tilde{\omega})\leq t$, the right-hand side being independent of such k. By the right continuity of X_t we also have

$$Y_t(\tilde{\omega}) = \lim_k X_{T_{kk}(\omega^k)+t}(\omega^k) = \lim_k X_t(\omega^k).$$

Denote

The above does not define Y_0 on \wedge_0 . Define on \wedge_0 , $Y_0 = \lim_{t \to 0} Y_t$ if this limit exists; $= \Delta$ otherwise.

3. Behavior of Y_t at t=0. In studying Y_t as $t\to 0$ on \wedge_0 , Y^k will be regarded as $(X_{T_{kk}+t}, P^{\mu})$; thus the sets \wedge_k in the following proofs are subsets of the (same) space Ω under P^{μ} .

Proposition 3.1. $\lim_{t\to 0} Y_t$ exists a.s. on \wedge_0 .

PROOF. Suppose not. Then by restricting $\tilde{\tau}_n$ to a subsequence one may assume that there exists a (compact) transient $B \subset E$, $\varepsilon > 0$ and constants $b_n \downarrow 0$, $c_n > 0$ such that the set

has Q-measure greater than ε ; here d is the metric on E_{Δ} . Thus the sets

$$\begin{split} \wedge_k &= \{X(T_{k1}) \in B; \text{for all } n \leq k \text{ there exist } s_{kn}, s'_{kn} \\ & \text{with } c_n < s_{kn} - T_{kn} < s'_{kn} - T_{kn} < b_n \text{ and } d\big(X(s_{kn}), X(s'_{kn})\big) > \varepsilon \} \end{split}$$

all have P^{μ} -measure greater than ε , and so $\Lambda_{\infty}=\limsup \Lambda_k$ has P^{μ} -measure greater than or equal to ε . Define S on Λ_{∞} as follows: If Λ_{k_j} is the entire subsequence of Λ_k containing ω , let $S(\omega)=\liminf_j T_{k_jk_j}(\omega)$. If $t_1=S(\omega)<\infty$, $X_t(\omega)$ cannot be right continuous at t_1 because for any $\delta>0$ there exist s,s' in $(t_1,t_1+\delta)$ with $d(X_s(\omega),X_s(\omega))>\varepsilon$; so $S(\omega)=\infty$ for all $\omega\in\Lambda_{\infty}$. On the other hand, let $t_0<\infty$ be such that $P^{\mu}(L_B>t_0)<\varepsilon/2$. Then $S(\omega)\leq\sup_j T_{k_j1}(\omega)\leq t_0$ if ω is in $\Lambda_{\infty}-\{L_B>t_0\}$, which has P^{μ} -measure greater than $\varepsilon/2$. So we have a contradiction. \square

Proposition 3.2. $\lim_{t\to 0} Y_t \in E \ a.s. \ on \ \land 0$.

PROOF. Suppose not. Then by restricting $\tilde{\tau}_n$ to a subsequence we may assume that there exist a transient $B \subset E$, $\varepsilon > 0$, and $b_n \downarrow 0$, $c_n > 0$ such that the set

all have P^μ -measure greater than ε . Let $\Lambda_\infty=\limsup \Lambda_k$ and defines on Λ_∞ as in the preceding proof. Again $S<\infty$ on a subset of Λ_∞ of positive P^μ -measure. But if $t_1=S(\omega)<\infty$ then for any $\delta>0$ there exist $T_{kn}(\omega)\in (t_1,t_1+\delta)$ with $d(X_{T_{kn}}(\omega),\Delta)<1/n$ and n arbitrary large; so $X_{t_1}(\omega)=\Delta$. Since the above $T_{kn}(\omega)$ are finite and so $X_{T_{kn}}(\omega)\neq\Delta$ and since Δ is the death point, such ω are in a null set. We thus have a contradiction. \square

We have established that a.s. Y_t is right continuous at t = 0 and $Y_0 \in E$.

PROPOSITION 3.3. For any a > 0 and bounded f in \mathscr{E}_{Δ} , $U^a f(Y_t)$ is right continuous at t = 0 a.s. on \wedge_0 , where U^a denotes the a-potential of X.

PROOF. $U^a f(Y_t)$ is of course right continuous on $[\tilde{\tau}_n, \infty)$ for all n a.s. From this and the upcrossing lemma applied to the supermartingales

 $\{e^{-at}U^af(Y(\tilde{\tau}_n+t)),\ t\geq 0\},\ n\geq 1,\ \text{when}\ f\geq 0,\ \text{we have } \lim_{t\to 0}U^af(Y_t) \text{ exists a.s. Suppose the proposition is false. Then there exist } \varepsilon>0,\ \text{constants } b_1,b_2\ \text{and a compact } C\subset E\ \text{such that (say)}\ b_1< b_2,\ C\subset \{U^af< b_1\}\ \text{and}$

$$\land _0 \cap \left\{ Y_0 \in C, \, \lim_{t \to 0} U^a f(Y_t) > b_2 \right\}$$

has Q-measure greater than ε (or such that the above holds with all inequalities except the last one reversed). Then again by using a subsequence of $\tilde{\tau}_n$ we may assume that there exist a transient $B \subset E$ and $c_n \downarrow 0$, $c'_n > 0$ such that

has Q-measure greater than $\varepsilon/2$; here d(x,C) denotes the distance from x to C. Thus the sets

all have P^{μ} -measure greater than $\varepsilon/2$. Let $\wedge_{\infty}=\limsup \wedge_k$ and define S on \wedge_{∞} as before. Again $S<\infty$ on a subset of \wedge_{∞} of positive measure. But if $t_1=S(\omega)<\infty$, there exists a sequence of $t\downarrow t_1$ such that $d(X_t(\omega),C)\to 0$ and $U^af(X_t(\omega))>b_2$. It follows that $X_{t_1}(\omega)\in C$ and so $U^af(X_t(\omega))$ is not right continuous at t_1 . This contradicts the fact that a.s. $P^{\mu}(d\omega)$, $U^af(X_t(\omega))$ is right continuous. \square

Define $\mathscr{M}_t^0 = \mathscr{G}_t \vee \sigma(R)$, where \mathscr{G}_t was defined early in Section 2. Then define

$$\tilde{\mathscr{M}}_t^0 = \bigcap_n \sigma \bigg(\bigcup_{k > n} \pi_k^{-1} \mathscr{M}_{T_{kn} + t}^0 \bigg), \qquad \tilde{\mathscr{M}}_t = \tilde{\mathscr{M}}_{t+}^0.$$

It is easy to see that $\pi_k^{-1}\mathscr{M}_{T_{kn}+t}^0$ increases with k and $\sigma(\bigcup_{k\geq n}\pi_k^{-1}\mathscr{M}_{T_{kn}+t}^0)$ decreases with n.

Theorem 3.4. (i) $Y=(\tilde{\Omega},\tilde{\mathscr{M}},\tilde{\mathscr{M}}_t,Y_t,Q)$ is a version of the right process X under measure $P^{\nu_{\infty}}$ where $\nu_{\infty}(\cdot)=Q(Y_0\in\cdot)$. (ii) The $\tilde{\tau}_n$ are $(\tilde{\mathscr{M}}_t)$ -stopping time with $\tilde{\tau}_n\downarrow 0$ and $Q(Y(\tilde{\tau}_n)\in\cdot,\tilde{\tau}_n<\infty)=\nu_n(\cdot)$.

PROOF. (i) Using the Markov property of Y^k at times $T_{kn}+t$, and the monotonicity stated in the sentence just before the theorem, it is routine to show the desired Markov property of (Y_t) relative to the σ -algebra $\tilde{\mathscr{M}}_t^0$ when t>0. The desired strong Markov property of (Y_t) relative to the filtration $(\tilde{\mathscr{M}}_t)$ follows from this and the right continuity of $U^af(Y_t)$ on $[0,\infty)$ for all a>0, bounded f in \mathscr{E}_{Δ} . (ii) It is easy to verify that $\tilde{\tau}_n$ is a stopping time relative to $(\tilde{\mathscr{M}}_t)$. We have already seen $\tilde{\tau}_n\downarrow 0$. Finally from the fact $\nu_n=\mu P_{T_{kn}}$ it is clear that $Q(Y(\tilde{\tau}_n)\in \cdot,\,\tilde{\tau}_n<\infty)=\nu_n(\cdot)$. \square

We note in passing that ν_{∞} is concentrated on E and is the weak limit of ν_n . Let $\tilde{Z}_n(\tilde{\omega}) = Z_n(\omega^k)$. Then the \tilde{Z}_n depend only on $\tilde{R}(\tilde{\omega}) = R(\omega^k)$, and (Y_t) and $(\tilde{Z}_n)_{n \geq 1}$ under Q have the same joint distribution as (X_t) and $(Z_n)_{n \geq 1}$ under $P^{\nu_{\infty}}$. Also, $\tilde{\tau}_n - \tilde{\tau}_{n+1}$ is a stopping time relative to the filtration $(\bigcap_{\varepsilon > 0} \sigma(Y(\tilde{\tau}_n + s), \ s < t + \varepsilon) \vee \sigma(\tilde{Z}_n))$; this follows from (2.1) and the fact S_n is a stopping time relative to $(\mathscr{I}_t \vee \sigma(Z_n))$.

4. A canonical representation of Y and the sequence $\tilde{\tau}=(\tilde{\tau}_n)$. We will need to consider the following spaces and σ -algebras. Let $V=\{v=(v_n)_{n\geq 1}: 0\leq v_n\leq \infty,\ v_n\downarrow 0\}$, $\mathscr V$ be the σ -algebra on V generated by the coordinate mappings v_n , and $\mathscr V_\infty$ the tail σ -algebra $\bigcap_m \sigma(v_n,\ n\geq m)$. Let V_∞ be the space of tails of elements v in V, i.e., space of equivalence classes of V induced by $v\sim v'$ iff $v_n=v_n'$ for all large n; $\mathscr V_\infty$ is also regarded as a σ -algebra on V_∞ . Note $(V,\mathscr V)$ is a Lusin space but $(V_\infty,\mathscr V_\infty)$ is not. Let $\hat\Omega_{0+}$ be the space of infinitesimal initial parts of elements $\hat\omega$ in $\hat\Omega$, i.e., space of equivalence classes of $\hat\Omega$ induced by $\hat\omega\sim\hat\omega'$ iff $\hat\omega_t=\hat\omega'_t$ for all small t. Denote $\mathbb R^\infty=\{z=(z_n)_{n\geq 1}:z_n\in\mathbb R$ for all $n\}$, $\mathscr B^\infty=\sigma(z_n,\ n\geq 1)$. Let $\mathbb R^\infty_\infty$ be the space of tails of elements z in $\mathbb R^\infty$. Let $\mathscr H=\bigcap_m \hat{\mathscr F}_{1/m}\times\sigma(z_n,\ n\geq m)$, a sub- σ -algebra of $\hat{\mathscr F}\times\mathscr B^\infty$ on $\hat\Omega\times\mathbb R^\infty$; here $\hat{\mathscr F}=\sigma(\hat\omega_t,\ t\geq 0)$ and $\hat{\mathscr F}_t=\bigcap_{\varepsilon>0}\sigma(\hat\omega_s,\ s< t+\varepsilon)$. $\mathscr H$ is also regarded as a σ -algebra on $\hat\Omega_{0+}\times\mathbb R^\infty_\infty$. Elements of V_∞ (resp. of $\mathbb R^\infty_\infty$) are denoted u (resp. u), and the tail of $v\in V$ (resp. of $z\in\mathbb R^\infty$) is denoted v_∞ . (resp. z_∞ .); elements of $\hat\Omega_{0+}$ are denoted z, and the infinitesimal initial part of z0 is denoted z0.

Let $\tilde{\tau} = (\tilde{\tau}_n)$. We now choose a regular conditional distribution (r.c.d.)

$$\alpha(\hat{\omega}, z, dv) = Q(\tilde{\tau} \in dv|Y = \hat{\omega}, \tilde{Z} = z),$$

where of course $Y=(Y_t),\ \tilde{Z}=(\tilde{Z}_n).\ \alpha$ is a (transition) kernel in $\mathscr{V}/\hat{\mathscr{G}}\times\mathscr{B}^\infty$ (the meaning of this notation being obvious). The existence of α is due to the fact that (V,\mathscr{V}) is Lusinian. Denote

$$q(d\hat{\omega}, dz) = Q(Y \in d\hat{\omega}, Z \in dz).$$

By (2.1) we have

(4.1)
$$v_n = v_{n+1} + \hat{S}_n(z_n) \circ \theta_{v_{n+1}}(\hat{\omega}), \qquad n \ge 1,$$

a.e. $Q(Y \in d\hat{\omega}, \ \tilde{Z} \in dz, \ \tilde{\tau} \in dv) = q(d\hat{\omega}, dz)\alpha(\hat{\omega}, z, dv)$, where $\hat{S}_n(a)$ is the value of $S_n(\omega) = S_n(\hat{\omega}, r)$ in (2.1) when $Z_n(\omega) = a$. Note $\hat{S}_n(a)$ is a $(\hat{\mathscr{S}}_t)$ -stopping time on $\hat{\Omega}$.

PROPOSITION 4.1. There exists $\Gamma \in \hat{\mathscr{J}} \times \mathscr{B}^{\infty}$ with $q(\Gamma) = 0$ such that for all $H \in \mathscr{V}_{\infty}$, the restriction of $\alpha(\cdot, \cdot, H)$ to Γ^{c} is in \mathscr{H} , i.e., in $\mathscr{H} \cap \Gamma^{c}$.

PROOF. For $m \ge 1$, t > 0 denote $\tilde{\tau}^{m,t} = (\tilde{\tau}_n \wedge \tilde{\tau}_m \wedge t)_{n \ge 1}$ and choose a r.c.d.

$$\alpha_{m,t}(\hat{\omega},z,dv) = Q(\tilde{\tau}^{m,t} \in dv | Y = \hat{\omega}, \tilde{Z} = z)$$

as a kernel in $\mathscr{V}/\hat{\mathscr{G}}_t \times \sigma(Z_n, n \geq m)$. Similar to (4.1) we have

$$(4.2) v_n = \left[v_{n+1} + \hat{S}_n(z_n) \circ \theta_{v_{n+1}}(\hat{\omega}) \right] \wedge v_m \wedge t, n \ge 1,$$

a.e. $q(d\,\hat{\omega},dz)\alpha_{m,\,t}(\hat{\omega},z,dv)$. Define $\alpha^{m,\,t}(\hat{\omega},z,dv)$ to be the image measure of $\alpha_{m,\,t}(\hat{\omega},z,dv')$ under the mapping $v'\to v$ defined by: If v' satisfies (4.2) then v satisfies (4.1) and $v_{\infty-}=v'_{\infty-}$; otherwise $v\equiv 0$. Clearly $\alpha^{m,\,t}(\hat{\omega},z,dv)$ is another version of $Q(\tilde{\tau}\in dv|Y=\hat{\omega},\ \tilde{Z}=z)$. So $\alpha^{m,\,t}(\hat{\omega},z,dv)=\alpha(\hat{\omega},z,dv)$ a.e. $q(d\,\hat{\omega},dz)$. Let $\mathcal{V}_{m,\,t}=\sigma(v_n\wedge v_m\wedge s,\,n\geq 1$ and s< t). Clearly, for $H\in\mathcal{V}_{m,\,t},$ $\alpha^{m,\,t}(\hat{\omega},z,H)=\alpha_{m,\,t}(\hat{\omega},z,H)$ and is therefore a function in $\hat{\mathscr{J}}_t\times\sigma(z_n,\,n\geq m)$. It follows that $\alpha(\hat{\omega},z,H)$ is in the q-completion of $\hat{\mathscr{J}}_t\times\sigma(z_n,\,n\geq m)$ relative to $\hat{\mathscr{J}}\times\mathscr{B}^\infty$. Since $\mathscr{V}_{m,\,t}$ is countably generated, there exists $\Gamma_{m,\,t}\in\hat{\mathscr{J}}\times\mathscr{B}^\infty$ with $q(\Gamma_{m,\,t})=0$ such that for all $H\in\mathcal{V}_{m,\,t},\,\alpha(\cdot,\cdot,H)$ restricted to $\Gamma^c_{m,\,t}$ is in $\hat{\mathscr{J}}_t\times\sigma(z_n,\,n\geq m)$. Since $\mathscr{V}_\infty\subset\mathscr{V}_{m,\,t}$ for all m and t>0 (Secause $v_n\downarrow 0$) and since $\mathscr{H}=\bigcap_m\hat{\mathscr{J}}_{1/m}\times\sigma(z_n,\,n\geq m)$, the proposition follows, with $\Gamma=\bigcup_m\Gamma_{m,\,1/m}$. \square

DEFINITION. Let $\Gamma_0 = \{(\xi, w) \in \hat{\Omega}_{0+} \times \mathbb{R}_{\infty}^{\infty} : \text{ There exist no } (\hat{\omega}, z) \in \Gamma^c \text{ with } (\hat{\omega}_{0+}, z_{\infty-}) = (\xi, w) \}$. Define for each $(\xi, w) \in \hat{\Omega}_{0+} \times \mathbb{R}_{\infty}^{\infty}$ a measure $\beta(\xi, w, \cdot)$ on \mathscr{V}_{∞} as follows:

$$\begin{split} \beta(\xi,w,\cdot) &= \alpha(\hat{\omega},z,\cdot) \quad \text{if } (\hat{\omega},z) \in \Gamma^c \text{ and } (\hat{\omega}_{0+},z_{\infty-}) = (\xi,w) \\ &= \text{point mass at } v_{\infty-}^0, \quad \text{where } v^0 \equiv 0, \text{if } (\xi,w) \in \Gamma_0. \end{split}$$

Let $\mathscr{H}^* = \sigma(\mathscr{H}, \Gamma_0)$. Then $\beta(\xi, w, du)$ is a kernel in $\mathscr{V}_{\infty}/\mathscr{H}^*$. Note that the mapping $(\hat{\omega}, z) \to (\hat{\omega}_{0+}, z_{\infty-})$ is in $\mathscr{H}^*/\hat{\mathscr{G}} \times \mathscr{B}^{\infty}$.

We now proceed to define a representation of Y and $\tilde{\tau}$ on the following space $(\overline{\Omega}, \overline{\mathscr{M}}, \overline{P})$: $\overline{\Omega} = \Omega \times V_{\infty}$, $\overline{\mathscr{M}} = \mathscr{M} \times \mathscr{V}_{\infty}$, and with $P = P^{\nu_{\infty}}$,

$$\overline{P}(d\omega,du) = P(d\omega)\beta(\hat{\omega}_{0+},z_{\infty-},du),$$

where of course $\omega=(\hat{\omega},r), z=Z(\omega)=(Z_n(\omega)), X_t, \theta_t, Z_n, S_n$ are regarded as defined on $\overline{\Omega}$ by $X_t(\omega,u)=X_t(\omega), \ \theta_t(\omega,u)=(\theta_t\omega,u),$ etc. Also $\mathscr{G}_t=\bigcap_{\varepsilon>0}\sigma(X_s,\ s< t+\varepsilon)$ are regarded as σ -algebras on $\overline{\Omega}$. Let $\overline{\mathscr{M}}_t=\mathscr{M}_t\times\mathscr{V}_{\infty}$. Finally, let $U(\omega,u)=u$ (this U is not to be confused with the potential kernel U).

Define

 $v(\hat{\omega}, z, u) = \text{the (unique) } v \text{ satisfying (4.1) and } v_{\infty} = u \text{ if such a } v \text{ exists}$ = $v^0 \equiv 0 \text{ otherwise.}$

It is easy to see that $v(\hat{\omega}, z, u)$ is in $\mathcal{V}/\hat{\mathcal{G}} \times \mathcal{B}^{\infty} \times \mathcal{V}_{\infty}$. From (4.1) and Proposition 4.1

$$\begin{split} \alpha(\hat{\omega},z,dv) &= \int_{V_{\infty}} \alpha(\hat{\omega},z,du) \varepsilon_{v(\hat{\omega},z,u)}(dv) \\ &= \int_{V_{\infty}} \beta(\hat{\omega}_{0+},z_{\infty-},du) \varepsilon_{v(\hat{\omega},z,u)}(dv) \end{split}$$

a.e. $q(d\hat{\omega}, dz)$, where ε .(·) denotes a point mass. Now define τ on $\overline{\Omega}$ by $\tau = v(X, Z, U)$,

where of course $X = (X_t)$, $Z = (Z_n)_{n \ge 1}$.

Theorem 4.2. (i) (X,Z,τ) under \overline{P} has the same distribution as $(Y,\tilde{Z},\tilde{\tau})$ under Q. In particular, $\overline{P}(X(\tau_n)\in\cdot,\ \tau_n<\infty)=Q(Y(\tilde{\tau}_n)\in\cdot,\ \tilde{\tau}_n<\infty)=\nu_n(\cdot)$ for all n. (ii) Each τ_n is a stopping time relative to the filtration $(\mathscr{I}_t\vee\sigma(Z_m,m\geq n)\vee\sigma(U))$ [and therefore relative to $(\overline{\mathscr{M}}_t)$], and $\tau_n=\tau_{n+1}+S_n\circ\theta(\tau_{n+1})$ a.s. \overline{P} .

PROOF. (i) By the definition of τ , $\overline{P}(X \in d\hat{\omega}, Z \in dz, \tau \in dv)$ $= \int_{u \in V_{\infty}} \overline{P}(X \in d\hat{\omega}, Z \in dz, U \in du) \varepsilon_{v(\hat{\omega}, z, u)}(dv)$ $= P(X \in d\hat{\omega}, Z \in dz) \int_{V_{\infty}} \beta(\hat{\omega}_{0+}, z_{\infty-}, du) \varepsilon_{v(\hat{\omega}, z, u)}(dv)$

$$= Q(Y \in d\hat{\omega}, \tilde{Z} \in dz)\alpha(\hat{\omega}, z, dv)$$
$$= Q(Y \in d\hat{\omega}, \tilde{Z} \in dz, \tilde{\tau} \in dv).$$

The second assertion in (i) follows from the first and the right continuity of Y_t and X_t . (ii) Define for fixed n and t>0: $v^{n,t}(\hat{\omega},z,u)=$ the (unique) v satisfying (4.2) with m,n interchanged and $v_{\infty}=u$ if such v exists; $=v^0\equiv 0$ otherwise. Then $(\tau_m\wedge\tau_n\wedge t)_{m\geq 1}=v^{n,t}(X,Z,U)$ and $v^{n,t}\in \mathscr{V}/\mathscr{J}_t\times\sigma(z_m,m\geq n)\times\mathscr{V}_\infty$. It follows that $\tau_n\wedge t\in \mathscr{J}_t\vee\sigma(Z_m,m\geq n)\vee\sigma(U)$. This proves

 $m \ge n$) $\times \mathscr{V}_{\infty}$. It follows that $\tau_n \wedge t \in \mathscr{Y}_t \vee \sigma(Z_m, m \ge n) \vee \sigma(U)$. This proves the first assertion of (ii). The second follows from (4.1) and the definition of $v(\hat{\omega}, z, u)$. \square

Remark 1. The above representation is still valid if $Y=(\tilde{\Omega},\tilde{\mathscr{M}},\tilde{\mathscr{M}}_t,Y_t,Q)$ is any right-continuous stochastic process, with the \tilde{Z}_n not necessarily satisfying the independence conditions, and of course assuming that $\tilde{\tau}_n-\tilde{\tau}_{n+1}$ is a stopping time relative to the filtration $(\sigma(\tilde{Z}_n)\vee\cap_{\varepsilon>0}\sigma(Y(\tilde{\tau}_n+s),s< t+\varepsilon)).$ (X_t) and (Z_n) can be defined on $\Omega=\hat{\Omega}\times\mathbb{R}^\infty$ (with the Z_n as coordinates on \mathbb{R}^∞) or on $\Omega=\hat{\Omega}\times\mathbb{R}$ [with the Z_n as functions depending on $R(\hat{\omega},r)=r$] to have the same joint distribution under a measure P as that of (Y_t) and (\tilde{Z}_n) . The rest is the same.

Remark 2. The following is an open question. Consider the kernel $\beta(\xi,w,du)$ defined above. Let Z_0 be a continuous real random variable. Does there exist a function

$$u = u(\xi, w, z_0) : \hat{\Omega}_{0+} \times \mathbb{R}_{\infty}^{\infty} \times \mathbb{R} \to V_{\infty}$$

in $\mathcal{V}_{\infty}/\mathcal{H}^* \times \mathcal{B}$ (where \mathcal{B} is the Borel σ -algebra of \mathbb{R}) such that $u(\xi,w,Z_0)$ has distribution $\beta(\xi,w,du)$ for all (ξ,w) ? Suppose the answer to this question is yes. Then, recalling there is in the process X a continuous real random variable Z_0 (which is also independent of everything else), one can directly define on Ω (rather than on $\overline{\Omega} = \Omega \times V_{\infty}$) stopping times τ_n by

$$\tau = v(X, Z, u), \text{ where } u = u(X_{0+}, Z_{\infty-}, Z_0).$$

The τ_n would satisfy the assertions in Theorem 4.2, with Z_0 playing the role of U in defining the relevent σ -algebras. Furthermore, assuming the above is true, if one includes in the right process X another continuous real random variable Z_{-1} (independent of everything else), one could define a stopping time T_∞ relative to $(\mathscr{G}_t \vee \sigma(Z_{-1}))$ satisfying $\nu_\infty = \mu P_{T_\infty}$; then the stopping times $T_n = T_\infty + \tau_n \circ \theta(T_\infty)$ would satisfy $\nu_n = \mu P_{T_n}$ [and one would also have $T_n = T_{n+1} + S_n \circ \theta(T_{n+1})$ a.s. P^μ , with T_{n+1} a stopping time relative to $(\mathscr{G}_t \vee \sigma(Z_n))$ and $T_n = T_n + T_$

REMARK 3. Suppose a r.c.d. $p(\xi,w,d\hat{\omega},dz)=Q(Y\in d\hat{\omega},\ \tilde{Z}\in dz|Y_{0+}=\xi,\ z_{\infty-}=w)$ (which exists) satisfies $p(\xi,w,\{\hat{\omega}_{0+}=\xi,\ z_{\infty-}=w\})=1$ for all (ξ,w) (in the terminology of [2] p is said to be "proper"). (Note this may sometimes be the case in the more general setting stated in Remark 1.) We show that there exists a function $u(\xi,w,z_0)$ satisfying the condition in Remark 2. Choose a r.c.d. $\gamma(\xi,w,dv)=Q(\tilde{\tau}\in dv|Y_{0+}=\xi,\ \tilde{Z}_{\infty-}=w)$. Then a.e. $Q(Y_{0+}\in d\xi,\tilde{Z}_{\infty-}\in dw)$,

$$\begin{split} \gamma(\xi,w,dv) &= \int & p(\xi,w,d\,\hat{\omega},dz) Q \big(\tilde{\tau} \in dv | Y_{0+} = \xi,\, \tilde{Z}_{\infty-} = w,\, Y = \hat{\omega},\, \tilde{Z} = z \big) \\ &= \int & p(\xi,w,d\,\hat{\omega},dz) Q \big(\, \tilde{\tau} \in dv | Y = \hat{\omega},\, \tilde{Z} = z \big) \\ &= \int & p(\xi,w,d\,\hat{\omega},dz) \alpha(\hat{\omega},z,dv), \end{split}$$

using the property of p in the second equality. Using this property once more and the definition of $\beta(\xi,w,du)$, we have $\gamma(\xi,w,du)=\beta(\xi,w,du)$ on \mathscr{V}_{ω} a.e. $Q(Y_{0+}\in d\xi,\,\tilde{Z}_{\omega-}\in dw)$. Now since $(V,\,\mathscr{V})$ is Lusinian, there exists $v(\xi,w,z_0)$ in $\mathscr{V}/\mathscr{H}^*\times\mathscr{B}$ such that $v(\xi,w,Z_0)$ has distribution $\gamma(\xi,w,dv)$ for all (ξ,w) . Let $u(\xi,w,z_0)$ be the tail (i.e., the projection to V_{ω}) of $v(\xi,w,z_0)$. Then $u(\xi,w,z_0)\in\mathscr{V}_{\omega}/\mathscr{H}^*\times\mathscr{B}$ and $u(\xi,w,Z_0)$ has distribution $\beta(\xi,w,du)$ for all (ξ,w) as desired in Remark 2. Note, however, that the assumption in this remark fails if either the Z_n are independent (so that the Kolmogorov zero-one law applies) or if, given Y_0 , the σ -algebra $\tilde{\mathscr{F}}_0=\bigcap_{\varepsilon>0}\sigma(Y_t,\,t<\varepsilon)$ is trivial but not atomic (as is typical for the Y in this article because of the Blumenthal zero-one law). If no \tilde{Z}_n are involved (in the determination of $\tilde{\tau}_n-\tilde{\tau}_{n+1}$), and a r.c.d. $p(\xi,d\hat{\omega})=Q(Y\in d\hat{\omega}|Y_{0+}=\xi)$ satisfies $p(\xi,\{\hat{\omega}_{0+}=\xi\})=1$ for all ξ , then of course as in the above a desired function $u(\xi,z_0)$ exists. This is the situation in Example 2 of Section 5.

5. Examples. The following examples are given only to illustrate some possibilities of the kernel $\beta(\xi, w, du)$ or $\beta(\xi, du)$.

Example 1. Let X be Brownian motion on the interval [-1,1] absorbed at -1 and 1, which are identified as Δ . Let $x_{in},\ n\geq 1,\ i\in I$, where I is countable, be points in $(-1,1)-\{0\}$ with $x_{in}\downarrow 0$ or $x_{in}\uparrow 0$ for each i, and with $x_{in},\ i\in I$, distinct for each n. Let $c_{in}=P^0(T_{\{x_{in}\}}<\infty)$ where T_A denote the

first hitting time of A, and let p(i)>0 with $\sum p(i)=1$. Define $\nu_n=\sum_i p(i)c_{in}\varepsilon_{x_{in}},\ \mu=\varepsilon_0$. Then μ and ν_n satisfy (1.1). Here there exist (obvious) nonrandomized stopping times S_n such that $\nu_n=\nu_{n+1}P_{S_n}$; so randomization variables Z_n are not needed. Clearly $\nu_\infty=\mu$. The process Y can be regarded as the process X starting at 0 together with an independent (randomization) variable W with values in I satisfying Q(W=i)=p(i); if $W=i,\ \tilde{\tau}_n$ is the first time $Y_t=X_t$ hits x_{in} . Obviously, each measure $\beta(\xi,du)$ is supported by a countable set which has the same cardinality as I and varies with ξ . In this example one can let I be (say) [0,1] and x_{in},c_{in} be as above, p(i) be a positive density and define $\nu_n=\int_0^1 p(i)c_{in}\varepsilon_{x_{in}}\,di$ and $\mu=\varepsilon_0$. Then each $\beta(\xi,du)$ is supported by an uncountable set which varies with ξ .

EXAMPLE 2. Let X be uniform motion to the right on the internal [0,1] with $\Delta=1$, possibly with premature death. Let $x_{in},\,n\geq 1,\,i\in I,\,I$ countable, be points in (0,1) with $x_{in}\downarrow 0$ for each i, and with $x_{in},\,i\in I$, distinct for each n. Let $c_{in},\,p(i),\,\nu_n,\mu$ be the same as in Example 1. Again there exist (obvious) nonrandomized stopping times S_n with $\nu_n=\nu_{n+1}P_{S_n}$; so no Z_n enter the picture. Y can be described in the same way as in Example 1. Each measure $\beta(\xi,du)$ is supported by a set having the same cardinality as I, but this time it is independent of ξ a.e. $Q(Y_{0+}\in d\xi)$. This is the situation mentioned at the end of Remark 3 above because $Q(Y_{0+}\in d\xi)$ is atomic (in this case a unit mass). In this and the next example, as in Example 1, one can let I=[0,1] to obtain an uncountable supporting set for $\beta(\xi,du)$ or $\beta(\xi,w,du)$.

Example 3. In the above example let x_{in} be the same, and let $0 < c_{in} \uparrow 1$ for each i satisfy

$$c_{in} \leq \min \bigl\{ P^0 \bigl(T_{\{x_{in}\}} < \infty \bigr), \, c_{i,\, n+1} P^{x_{i,\, n+1}} \bigl(T_{\{x_{in}\}} < \infty \bigr) \bigr\}.$$

Let p(i), ν_n , μ be the same. There exist randomized stopping times S_n with $\nu_n = \nu_{n+1} P_{S_n}$; so there are Z_n 's involved as in Section 2. It is easy to describe for each i stopping times T_{in} , with $T_{in} = T_{i,\,n+1} + S_n \circ \theta(T_{i,\,n+1})$, such that $P^0(X(T_{in}) = x_{in}, \ T_{in} < \infty) = c_{in}$. Then Y can be described in a similar way (using W) as in Example 1, with $\tilde{\tau}_n$ satisfying: If W = i, then $\tilde{\tau}_n$ "equals" T_{in} . Here $\beta(\xi, w, du)$ is again supported by a set with the same cardinality as I; however, this set is independent of ξ but varies with w.

REFERENCES

- [1] AZEMA, J. and MEYER, P.-A. (1974). Une nonvelle représentation du type de Skorokhod. Séminaire de Probabilités VIII. Lecture Notes in Math. 381 1-10. Springer, Berlin.
- [2] BLACKWELL, D. and DUBINS, L. E. (1975). On existence and non-existence of proper, regular, conditional distributions. Ann. Probab. 3 741-752.
- [3] BLUMENTHAL, R. G. and GETOOR, R. K. (1968). Markov Processes and Potential Theory. Academic, New York.
- [4] FITZSIMMONS, P. J. (1988). Penetration times and Skorokhod stopping. Séminaire de Probabilités XXII. Lecture Notes in Math. 1321 166-174. Springer, Berlin.
- [5] FITZSIMMONS, P. J. (1990). On ordered stopping times of a Markov process. Ann. Probab. 18 1619-1622.

- [6] Getoor, R. K. (1975). Markov Processes: Ray Processes and Right Processes. Lecture Notes in Math. 440. Springer, Berlin.
- [7] Getoor, R. K. (1980). Transience and recurrence of Markov processes. Séminaire Probabilités XIV. Lecture Notes in Math. 784 397-409. Springer, Berlin.
- [8] MEYER, P.-A. (1972). Le schéma de remplissage en temps continu, d'après Rost. Séminaire Probabilités VI. Lecture Notes in Math. 258 120-150. Springer, Berlin.
- [9] Rost, H. (1971). The stopping distributions of a Markov process. Invent. Math. 14 1-16.
- [10] Rost, H. (1976). Skorokhod stopping times of minimal variance. Séminaire Probabilités X. Lecture Notes in Math. 511 194-208. Springer, Berlin.
- [11] SHARPE, M. J. (1988). General Theory of Markov Processes. Academic, New York.

DEPARTMENT OF MATHEMATICS UNIVERSITY OF MICHIGAN ANN ARBOR, MICHIGAN 48109-1003