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ON ORDERED STOPPING TIMES OF A MARKOV PROCESS!

By P. J. FitzsiMMONSs
University of California, San Diego

Let X be a strong Markov process with potential kernel U. We show
that if (v,) and u are measures on the state space of X such that
viU <vyU < -+ < uU, then there is a decreasing sequence (T),) of ran-
domized stopping times such that v, is the law of X; when the initial
distribution of X is u.

1. Introduction. Let X be a transient strong Markov process with state
space E. Fix an initial distribution u and a stopping time T, and let v denote
the P#-law of X,. Then vU < uU, where U is the potential kernel of X. Rost
(1971) has shown that this necessary condition is also sufficient for the
existence of a (randomized) stopping time linking u and v as above.

Now suppose that {v,}, . ; is a sequence of finite measures on E, ordered in
the sense that

vU<svU< - <v,U<v, U< --- <uU.

We show that there is a decreasing sequence (T',) of randomized stopping
times such that v, is the P*-law of X, . This is easy to do for a finite
sequence {v,}; ., < n, and the general case 1s handled by a limiting argument,
using the Baxter—Chacon compactness theorem for randomized stopping times,
and a criterion for the ordering of same.

One consequence of the above representation is the following characteriza-
tion of fine continuity: Given a bounded Borel function f on E, ¢t — f(X,) is
right continuous a.s. P* if and only if v,(f) — v(f) whenever {v,};_,_ . isa
sequence of measures on E such that »,U 1 v, U < pU. In fact, this result
[proved by other means in Fitzsimmons (1988b)] was the source of the problem
solved in this note.

The problem considered here has also been solved by Shih (1990), using
different methods. Shih obtains a more detailed description of the times T,
and provides several examples.

2. Ordered stopping. Let X = (Q, ¥, %, 6,, X,, P*) be a right Markov
process with state space (E, &), in the sense of Sharpe (1988). Thus E is a
universally measurable subset of a compact metric space (with the subspace
topology) and & is the class of Borel sets in E. The semigroup (P,) of X need
only be sub-Markovian, so a cemetery state A is adjoined to E, and X is
absorbed in A at its lifetime {. The potential kernel U is defined by [P, dt,
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and we assume that X is transient in the sense that there is a strictly positive,
universally measurable function f on E such that Uf < 1.

Given an initial distribution u, recall that (%,*) denotes the natural filtra-
tion of X augmented by the P*“-null sets in the P*-completion F* of
olX,, t >0} (%*) is a right continuous filtration. Let (Q, %, P) be an
auxiliary probability space. A randomized stopping time (RST) over the system
Q, %, F*, P*) [with randomization space (Q, %, P) is an F@ F*-
measurable mapping T: ) X Q — [0, ©] such that

((z,0) €O X Q:T(z,0) <t} € F& FH*, Vi=0.

If, in addition, (Q, &, P) = ([0, 1], %0,1p M), the unit interval equipped with
Lebesgue measure, and

T (-, w) is increasing and right continuous on [0,1], Vw €,

then we speak of a canonical RST. We shall write P* for P ® P*; processes

Z (o) defined on [0, ®] X Q are extended to [0, ] X Q % Q in the obv10us way.
_ Given an RST, T, consider the measure M on [0, «] X Q defined by M(Z) =
P*(Zy). Evidently the second marginal of M is P*, so there is a disintegration

M(dt,dw) = dA,(w)P*(dw),

where A,, ¢t € [0,], is a positive, increasing, right continuous (%*)-adapted
process with A, = 1. The right continuous inverse,

T'(z,w) =inf{t: A(w) >2}, 0=<z<1,

is a canonical RST, and by a standard change-of-variable formula,
P(Z;) = P“(/ Z, dAt) =P™(Zp).
[0, =]

In particular, taking Z of the form [;°g(X,)ds and using the strong Markov
property, we see that P*(Ug(X,)) = P*(Ug(Xy)), hence

PY(Xpe ) =P"(Xp € ),

since a potential uniquely determines its charge [cf. (1.1) in Getoor and Glover
(1983)]. We shall refer to T" as the canonical (monotone) rearrangement of 7T'.
For a complete discussion of these matters, see Meyer (1978).

Let v be a second measure on E such that vU < uU; ie., vU(A) < pU(A)
for all A € &. According to a theorem of Rost (1971), there is a canonical RST,
T, such that v = P“(X, € +); more precisely,

W v =[fav=[ ' (X (@), <o @) P(dw) dz,

for all positive Borel functions f on E. [For a proof that works in the present
setting of general right processes see Fitzsimmons (1988a).] Conversely, the
existence of an RST, T, such that (1) holds implies that vU < upU, by the
strong Markov property. We follow the usual convention that a function f
defined on E is extended to E U {A} by setting f(A) = 0; thus, the condition
{T < ¢} can be omitted in (1).
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Now consider an infinite sequence {v,} of finite measures on E such that
v, U<, U=<uU, Vnrnx=1.

THEOREM. There is a sequence {T,} of canonical randomized stopping
times such that

@D T(z0)=2T,, (2,0), forallz<[0,1], w € Q, and n > 1;
(ii) P“(XTH € )=vw,, foralln > 1;
(i) T, == |lim, T, is a canonical RST, and P*(X,_ € *) = v,, where v, is
the weak limit of the sequence {v,}. Moreover, v,U 1 v, U as n — .

For the proof of this theorem we require two lemmas. The first of these is
the sequential compactness theorem of Baxter and Chacon (1977), as formu-
lated by Meyer (1978), while the second is Lemma 2.14 in Baxter and Chacon
(1977). Let ¢ denote the class of bounded processes Z over (), ¥*, P*) such
that ¢ — Z,(w) is continuous on [0, ] for all w € Q. [Note that Z € ¢ need
not be adapted to (%*).] In the sequel the initial distribution x remains fixed,
and all statements are relative to the system (Q, 7, #*, P*).

LEmMA 1. Let {T,} be a sequence of canonical randomized stopping times.
Then there is a subsequence {n(k)} and a canonical randomized stopping time
T such that

lim P*(Zy,,) = P“(Zr), VZeZ.

LEmMA 2. Let S and T be canonical randomized stopping times. Then
S(z,w) < T(z,w) for all z €[0,1], for P*-a.e. w € Q, if and only if

(2) PX(Zg) < P*(Z;), for all positive increasing Z € €.
In particular, if S and T are RST’s, with the same auxiliary space (), such
that
S(z,') <T(z,-), Vze(, ae. P*
then the canonical rearrangements of S and T are likewise ordered.

Proor oF THE THEOREM. Fix %k > 1. Since v,U < -+ <y, U<uU, it is
easy to use Rost’s theorem and the strong Markov property to produce RST’s
{T}1 < » <2, With auxiliary space the product of % copies of the unit interval,
such that

(3) Tx(z,7)=T¥(z,'), Vzel[0,1]*,1<m<n <k, ae. P*
(4) PYXpy€)=v,, 1l<ns<k.

See, for example, Section 2 in Shih (1990). In view of Lemma 2, the sequence
{Ty,}1<n<pr of canonical rearrangements satisfies (3) and (4) (with the *’s
deleted and [0, 1]* replaced by [0, 1]). By Lemma 1 and the Cantor diagonal
procedure, there is a sequence {k(;)}; ., and canonical RST’s {T,} such that

(5) lim P¥(Zy,, ) =P(Z;), VZe€,n=z1l



1622 P.J. FITZSIMMONS

Thus, if m < n, then PX(Zy, ) > P*(Z; ) for all positive increasing Z € ¢. By
Lemma 2,

T.(2,°)>TJ(2,), Vze[0,1],1<m <n,a.e.P*

from which point (i) follows easily.

To prove (ii) let g be a positive bounded Borel function on E such that
rUg < =; the transience of X implies that pU is o-finite so there are many
such g’s. The process

z,- [ e(X)ds - (fo‘g(xu)du)oot

is positive, decreasing and continuous in ¢, and P*(Z,) = uUg < «. It follows
that Z is of the class (D), so by Théoréme 8 of Meyer (1978), (5) holds for this
(unbounded) choice of Z. By the strong Markov property,

v, Ug = liJI_n P“(Ug(XT,,U),,,)) = lijm PM(ZTk(j),n)

= pﬂ(ZTn) = p#(Ug(XT,,)) = l.;nUg,

where 7, = P“(X € ). Varying g, we conclude that »,U = 5,U; by the
uniqueness of charges, v, = 7,, and point (ii) is proved.

It is easy to check that T, is a canonical RST, and the other assertions in
the first sentence of (iii) follow from the right continuity of X. The final
assertion can be proved using the argument of the previous paragraph. O

Acknowledgment. Thanks go to Art Pittenger, who suggested the
Baxter—Chacon theorem as an apt tool.
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