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SPECIAL INVITED PAPER
THE RATE OF ESCAPE OF RANDOM WALK"

By WiLLiam E. PruITT

University of Minnesota

Let {X,} be an iid. sequence and define S, =X, + --- +X,. The
problem is to determine for a given sequence {8, } whether P{|S,| < 8, i.0.}
is 0 or 1. A history of the problem is given along with two new results for
the case when P{X; > 0} = 1: (a) An integral test that solves the problem
in case the summands satisfy Feller’s condition for stochastic compactness
of the appropriately normalized sums and (b) necessary and sufficient
conditions for a sequence {8,} to exist such that liminf S, /B8, = 1 a.s.

1. Introduction. Let X, X,, X,,... be a sequence of nondegenerate, in-
dependent, identically distributed random variables taking values:in R? and
having distribution function F. The random walk {S,} is defined by S, =
X, + -+ +X,. The problem of interest here is the rate of escape of |S,| to .

The first question is whether |S,| — «; the random walk is said to be
transient if it does. This problem was solved by Chung and Fuchs (1951) who
gave a criterion in terms of ¢, the characteristic function of X. A slightly more
elegant form was obtained by Spitzer (1964) and Ornstein (1969) [see also
Kesten and Spitzer (1965)]; it reads:

S, is transient iff the real part of (1 — ¢(8)) ~" is locally integrable at 0.

Once the random walk is determined to be transient, there are different
ways to measure the rate of escape. One possibility is to attempt to find a
sequence {B,} such that

n

|
(1.1) lim inf

n—oo

=1 a.s.

n

When this is possible it provides much of the information about the rate of
escape. Even so, it does not answer the question of whether |S,| eventually
stays above B, almost surely. Furthermore, it is often the case that for all
sequences {B,}, liminf 8, 1|S,| is either 0 or  almost surely. Thus the most
desirable way of measuring the rate of escape is to have a criterion that
determines, for a given sequence {B,}, whether P{|S,| < B, i.0.} is 0 or 1.
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(Here i.0. means infinitely often and the Hewitt—Savage zero—one law guaran-
tees that the probability is either 0 or 1.) Such a criterion is usually called an
integral test and is often written in the form of an integral although we will
use sums instead. Thus the integral tests we will consider here will be of the
form

0 iff ). d, <,
n

P{|S,| <B,i0.} = | Y d =
n

where d, = d,(B,, F) should be a sequence that can be readily determined
when {B,} and F are given. In particular, it should not depend explicitly on
knowing the distribution of S,. To give some feeling for this, we will now
discuss some of the known results. In most of these, there are some regularity
conditions imposed on the sequence {8,}; in some cases, these are important,
but we will shorten the present discussion by ignoring them.

The first result was an integral test for simple random walk in R? with
d > 3. (This makes the random walk transient.) This test was obtained by
Dvoretzky and Erdés (1951) and is equivalent to taking

g [B)TPL_(B)2
S T B b S
Note that in this case the convergence of d,, is not affected if B, is multiplied
by a constant. This means that
0 iff ), d, =,
IS, z,,,"

(12) ll’Illl)lol;lf-En— = w  iff Z dn < .
n

Similar tests were obtained by Takeuchi (1964) and Taylor (1967) when X is a
stable random variable of index a < d not supported on a half-space and by
Erickson (1976) for some distributions in the domain of attraction of such
stable laws. The most complete result of this type is due to Griffin (1983b). His
result includes the following: If X is in the domain of attraction of a genuinely
d-dimensional stable law of index @ < d, a # 1, the stable law is not supported
on a half-space, and EX = 0 if it exists, then (1.2) is true if

a,

d
d, - (F—) Q(B,),

where Q(x) = E(x™X| A 1)? and a,, is the solution of @Q(a,) =n"'. Note
that in case EX = 0 and EX? < o, this gives the same test as that obtained by
Dvoretzky and Erdés for simple random walk. There is one general result that
is related to the Dvoretzky—Erdos test. It is due to Kesten (1978) who proved
Erickson’s conjecture that if d > 3, any random walk escapes at least as fast
as simple random walk.
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The next class of results we will discuss is concerned with the case where
d = 1and P{X > 0} = 1. The first result here was an integral test for nonneg-
ative random variables in the domain of attraction of a nonnegative stable law
obtained by Lipschutz (1956) under a slight additional assumption. Also see
Fristedt (1964) and Breiman (1968) for an alternative approach. In this case,
there is a ““correct”” norming sequence which is of order n!/*(loglog n)~(~®/¢
where « is the index of the stable law. The sequence d,, for the integral test is

1 [ nl/e a/2(1-a) B —a/(1-a)
d, = —( ) exp(—c[ 12] ),
nl\ B, n

where the constant ¢ depends on the scale parameter of the stable law. Note
that in this case changing B, by a multiplicative factor may affect convergence
and this is the reason that it is possible to find a norming sequence {8,} so that
(1.1) holds. Fristedt and Pruitt (1971) proved that under the rather mild
restriction that EX°® < » for some ¢ > 0, there is a norming sequence {8,}
such that (1.1) holds. The sequence is defined by .

loglog n
- n(yn~'loglogn)’

B

where 7 is the inverse function of the log of the reciprocal of Ee “%, and y is a

constant larger than 1. This norming sequence makes the liminf in (1.1) a
positive, finite constant but the fairly crude methods used gave little informa-
tion as to its value. Bounds on the value of the lim inf were obtained by Zhang
(1986) for fairly general norming sequences. Fristedt and Pruitt also showed
that if

1
1.3 P{X > = — >
(1.3) { x} ogx 17

then for any norming sequence, the liminf must be 0 or » so that some
condition is needed to obtain (1.1) even when P{X > 0} = 1. Some results that
give information on how large a negative tail the distribution might have with
the lim inf still as in (1.1) were obtained by Feller (1946), Kesten (1970), Klass
(1976, 1977, 1982), Klass and Teicher (1977) and Pruitt (1981). The relation of
these results to the present ones is explained below for the case of Feller’s
paper.

There are distributions in one dimension in the domain of attraction of a
nonnegative stable law that are not covered by either of the above classes of
results. This will occur if the negative tail of the distribution is positive but
small compared to the positive tail and the positive tail resembles a stable tail.
The lim inf problem was recently solved for a class of examples of this type in
Pruitt (1989). These are the first results that show how the transition takes
place between the two radically different types of behavior described above. An
integral test is not yet available in this case even for the examples. It has
recently been shown by Cox (1982) that in infinite-dimensional spaces there
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may be ‘“correct” norming sequences even in the symmetric case so that one
may not get these two different types of behavior in these spaces.

One of the main ingredients that is needed for the solution of this problem
is good estimates of P{|S,| < x} when this probability is small. In the first
class of results described above, this is a local limit theorem type of estimate.
The recent generalizations in this area that were obtained in Griffin (1983a)
and in Griffin, Jain and Pruitt (1984) were fundamental to the recent improve-
ments in the rate of escape results. In the second class of results when the
summands are nonnegative, we need estimates of P{S, < x} when this is small
and this is a large (or moderate) deviation problem; we are now interested in a
tail estimate instead of a local limit estimate. The recent estimates in Jain and
Pruitt (1987) will be used in the present paper to provide much more general
integral tests for this class of random walks. In the third class of results
described above where the distribution is asymmetric without being too asym-
metric, the estimation of P{|S,| < x} is a combination local limit, large devia-
tion problem. The interval [—x, x] is in the tail but does not go all the way
to . Probability estimates of this type were obtained in Pruitt (1989) for
the class of examples discussed there but the problem of doing this for
more general distributions for the summands still remains.

There are two major new results in the present paper. Both are for the case
of nonnegative summands. The first is an integral test that we believe to be
completely general although it has only been proved in the case that the sums
can be normalized so as to be stochastically compact. This is a very general
class that includes all laws in the domain of attraction of any stable law. An
integral test was not previously available except that obtained by Lipschutz
(1956) in the domain of attraction setting under some additional restrictions.
In fact, not even the exact value of the lim inf was known outside the domain
of attraction setting. The test sequence takes the form

3
(1.4) d,=n"'p,log—,

by
where p, = P{S, < B,}. This does not appear to meet the criteria for a good
test since it depends on the distribution of S,,. However, it actually does since
the exact asymptotic behavior of p, is available in this situation in Jain and
Pruitt (1987). This test is obtained as Theorem 1 in Section 3. As evidence that
the test is valid in general, we will show that the convergent part of the test
does work in general and in Theorem 3 in Section 4 we will also show that the
test is valid in the extreme case when the tail of the distribution is so fat that
there is no correct norming sequence for the lim inf problem. Of course, the
integral test is not as delicate in this latter case. In the intermediate situation
between the cases covered by Theorems 1 and 3, we do not yet have adequate
estimates of p,,.

To demonstrate the usefulness of this integral test, we will give some
results here for a class of examples which are the analogues of the improve-
ments in the law of the iterated logarithm that follow from the
Kolmogorov-Erdés integral test. We consider the family of distributions for
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the summands given by
1

P(X>ax) = —

, x> 1.
Define
(k) =ln+3ln+1l;n+ - +(1+e)l,n,
where lln is loglog n and [,n is the logarithm iterated % times; then let

Bk, )

a(1 - a)*™%(T(1 - a))nV/ (£, (k,e)) 7, 0<a<l,
n
log——— — C =1
B n oggn(k’e) n, a ,
a a 1/a 1/a (a—1)/a
T~ —I(F(Z—a)) n'/*(¢,(k,€)) , 1<a<2,
a— a—
2n — (2né&,(k, ¢)logn)'/?, a=2,

where C is Euler’s constant. Then for every k2 > 4 and every ¢ > 0,
P{S, <B,(k,0)i0} =1 and P{S, <B,(k,¢e)i.0.} =0.

As k increases, the difference between B,(k,0) and B,(k, ¢) becomes smaller
so these bounds improve. These results follow from the corollary to Theorem 1.
In order to obtain them, one needs to obtain good asymptotic expansions of the
functions g and R that are defined below. This introduces some errors but
these can be made small compared to the absolute difference between B,(%, €)
and B,(k + 1,¢) for £ > 0. These examples are already included in the cases
covered by the integral test of Lipschutz except for a« = 1 and 2. [Note,
however, that for 1 < a < 2, the probability estimate and the integral test in
Lipschutz (1956) are missing a factor of a~1/*~D in the exponent and thus
would give an incorrect result.]

We will give one example which is not in a domain of attraction. For this, we
choose the Petersburg game which is discussed in Feller (1968). We take

P{(X=2¢=2"% k=12....

This should be somewhat closely related to the example given above for a = 1.
But it is not in the domain of attraction of the Cauchy and it turns out that
there are some rather surprising differences. Now we should take

B.(k,e) = n Log - C(A,)n,

n
£k, €)
where Log denotes the logarithm to the base 2. The log is to the base 2 due to
putting mass 2% at 2%; if we had used mass (e — 1)e * at e*, then it would
have been a natural log. The interesting feature is the coefficient C(A,). Here
A, is a sequence which tends to 0; it is defined in the corollary to Theorem 1.

n
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The function C satisfies C(2A) = C(A) and
C(A) = 0.803979xxx,

where the digits xxx vary from 632 to 973. Thus C is almost constant but not
quite! Since it is essential to have this term in B,(%, ¢), this means that it is
more difficult to actually compute B,(%, ¢) in this example than in the ones
given above. It appears that this phenomenon of coefficients that vary a little
bit but not very much is to be expected when the distribution for the
summands is one that can be normalized so as to be stochastically compact but
is not in any domain of attraction. This phenomenon can also occur with
branching processes; see Section 3 in Barlow and Perkins (1988) and the
references therein.

We also want to mention the connection of Theorem 1 with the work of
Feller (1946). Feller was interested in whether

P{S,=B,i0.}=00rl,

in the context where the summands have mean 0 and variance 1. He showed
that the Kolmogorov-Erdos test works if

(1.5) EX21{X| > x} = O((llx) ™),
ie., if B, = n'/?%p, then the test is in terms of
dn = n_l(Pn exp(—<p3/2).

Feller also shows that when (1.5) fails, the test still works but one should use
B,, = BY?%p,, where

B, = EX?1{X| < n'/2/(lin)?}.

Feller’s problem is converted to the one we consider here by considering the
transformation X — —X. Then our integral test reproduces the results of
Feller for the case where the support of the distribution is bounded above. In
fact, we can show that the definition of B, may be changed to the slightly
more elegant

B, = EX?1{|X| < n'/?}.

It should be noted that although Feller claims his result is general, he actually
tacitly assumes that the summands have a symmetric distribution. The gen-
eral case has recently been obtained by Bai (1989) and he gives even more
information about the possible choices for B,. There is also an interesting
difference in the methods used. Feller uses two levels of truncation and only
needs good probability estimates for the sums of the terms coming from the
center of the distribution. We are able to obtain good probability estimates for
S, without using truncation by making use of the one-sided boundedness of
the support of the distribution.

The other new result resolves the question raised by Fristedt and Pruitt
(1971) as to exactly when there is a right norming sequence for the liminf
problem. [A partial answer to this question is in Klass (1982).] The result is
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stated as Theorem 2 in Section 4 but we will try to give a little feeling for it
here. Define

(1.6) u; = P(X < e/ 1X > e},
Then the condition is that
(1.7) lirjp_)sgpuj log r; = o,

where r; is the rank of u; when ranked in decreasing order. The first
observation is that there may be a correct norming sequence for the lim inf
even if the tail of the distribution of the summands is slowly varying. To get
some idea of the “dividing line” as to when there is a correct norming
sequence, we consider the class of examples with

log x
(loglog x)*

for large x. Then there is a norming sequence that gives (1.1) iff @ < 1. Note
that all these examples have much thinnér tails than the example of (1.3) given
in Fristedt and Pruitt.

In the case where the lim inf must be 0 or o, the test is given in Theorem 3.
The lim inf is 0 iff

Y (P{X > B}V n—l)e—nP(X>;3n) -
n

(1.8) P{X >«x} = exp(—

[By using Lemmas 2 and 3, one may check that in this case this is the same
test given by (1.4), but the form of this test was suggested by Theorem 3 of
Kesten (1970).] It is interesting to note that this is exactly the same integral
test obtained by Klass (1985) to solve the question of whether M, < 8, i.o.,
where M, = max(X,, X,,..., X,). This raises the question of whether M,
and S, are essentially the same when the tail of the distribution of the
summands is this fat. This question was answered in Pruitt (1987), where
necessary and sufficient conditions were obtained for

M,

Since this ratio is bounded above by 1, M,, and S, will be comparable when
(1.9) holds. The condition for (1.9) to hold is that

Lupt <

n

for some r, where u, is as in (1.6). Then if r is chosen so that this series
converges but it diverges if the power is changed to r, the liminf in (1.9) is
r~ 1 If one takes

P{X>x} =exp(—(logx)®), x>1,

with 0 < @ < 1, then liminf M, /S, > 0 a.s., but if the tail is as in (1.8) with
@ > 1, then this liminf is 0 so that S, and M, are not always comparable and
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yet
P{S, <B,io} =P{M, <p,iol}

no matter what the sequence {8, } is.
A simpler version of the proof given here shows that (1.7) is also necessary
and sufficient for a sequence {B,} to exist such that

. . n
liminf — = 1.
n— o n

This means that S, is normalizable iff M, is normalizable. The “if”’ part of
this statement is in Klass (1982).

An interesting feature of both the necessary and sufficient condition for
normalizability and the determination of the liminf of M, /S, is that they
only depend on the sequence of probabilities {u ;} and not on how the probabil-
ity is distributed within the intervals (e’, e/ *!]. Moreover, the probability may
be rearranged by permuting these intervals in any way without changing the
criteria and also any number of these intervals may be assigned zero probabil-
ity with the other probabilities being assigned to later intervals without
affecting the criteria. I do not have an intuitive explanation for these facts but
it seems that such an explanation would be of interest.

Some notation and preliminary results are presented in Section 2. The
integral test is given in Section 3. The necessary and sufficient conditions for
normalizability of the lim inf are presented in Section 4.

2. Preliminaries. We start by collecting the results that we need from
Jain and Pruitt (1987) on the lower tail of the distribution of S, . Recall that X
is nonnegative and nondegenerate. For u > 0, let

T __¢)
2.1) ¢(u) =Ee ™%, g(u) o)’
R(u) = —log (u) — ug(u).

The functions ¢, g and R are continuous on (0, »), g is strictly decreasing, R
is strictly increasing and

(2.2) g(u)=-V(u), R'(u)=uV(u),

where

o(u)e"(u) — (¢'())*
(e(u))? '

V is strictly positive since X is nondegenerate. The limiting behavior of g and
R is given by

(24) g(0)=EX, g(v)=a, R(0)=0, R(»)=-logg,
where EX < » and
(2.5) a = inf{x > 0: P{X < x} > 0}, q = P{X =a}.

(2.3) V(u) =
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If ¢ = 0, then R(») = ». Furthermore,
(2.6) u?V(u) = O(R(u)), u=-0.

The proof given in Jain and Pruitt (1987) actually shows that u2V(x) < 4R(u)
for small » and we will use this now. (In fact, the 4 may be reduced to 2 + &
with a little more care.) Note that

d R(u) _ u2V(u)2—R(u) B %V(u).

du u u
If EX < » then " 'R(z) — 0 as u — 0 and so in this case this leads to

A 4 d R 4 R(A
(2.7 g(0) —g(A) =fOV(u)du2 0*55 (uu) -3 f\).

Next, let a < x,, < EX and define A, by g(A,) = x,,. Then

(2.8) P{S, < nx,} < exp(—nR(A,)).

Moreover,

(2.9) P{S, <nx,} -0 iff nR(A,) - .

Finally, if nR(A,) - @ and A, — 0, then

(2.10) log P(S, < nx,} ~ —nR(A,).

;Pll;eése) facts are all in Lemmas 2.1, 2.2, 2.3 and Theorem 2.1 of Jain and Pruitt
7).

Next, we will describe Feller’s (1967) condition for stochastic compactness.
For x > 0, define

G(x)=P{X>x}, K(x)=x2EX%1{X <«x)},
(2.11) M(x)=x"EX1{X < x},
Q(x) = G(x) + K(x) = E{(x'X)* A 1}.

Here 1{-} denotes the indicator function of the event described in the braces. Q
is continuous and strictly decreasing for x > a. The analytic form of the
stochastic compactness condition is

: G(x)
(2.12) lim sup < o,

xoo K(2)

Since G(x)/K(x) actually converges to a finite limit when X is in the domain
of attraction of any stable law, this condition is more general. Assuming (2.12),
it follows that

(2.13) u?V(u) =R(u) =Q(u"Y), O<uc<l,

where =~ means that the ratio is bounded above and below by positive, finite
constants. The comparison of R and @ in (2.13) is valid even without (2.12).
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Another bound that we will need follows from Schwarz inequality and (2.13):
ug(u) ~ —u¢'(u) = EuXe *% < (E( uX)2e_“X)1/2(<p( u))'?

~ (E(uX)?e %) < (Q(u~1))"* = (R(u))">.
Furthermore, when EX < o and (2.12) holds, we can show that
(2.15) u®(g(0) — g(u))/R(u) is decreasing for small u,
‘provided that ¢ is small. To see this, we have by (2.2), (2.13) and (2.7):

d u(g(0) —g(u)) [eR(n) — u*V()](g(0) — g(u)) + R(w)uV(u)

(2.14)

du R(u) u'"*R%*(u)
_ [0 = 1+ utV()(800) ~ g()
= ul—sRZ(u) :

The constant C comes from (2.13) and depends only on the underlying
distribution of X. Thus we may make the derivative negative by taking &
small, say ¢ = 1/8C. Finally, if (2.12) holds, we have a stronger version of
(2.10): If a < x,, < EX, A,, is defined by g(A,) = x,,and A,, = 0, nR(A,) — o,
then

(2.16) P(S, < nx,} = (nR(A,)) " exp(—nR(A,)).

These last facts are in Lemma 4.1, Theorem 4.1 and Remark 4.1 of Jain and
Pruitt (1987). [Even the exact asymptotic behavior is available in Theorem 4.1
of Jain and Pruitt (1987), but the form given in (2.16) is more useful here.]

3. The stochastically compact case. In this section we will assume
that the sums can be normalized so as to be stochastically compact, i.e.,

(3.1) G(x) < CK(x) forlarge x,

where G and K are defined in (2.11). The main result is the integral test for
the rate of escape problem. We suspect that it is true in general [i.e., without
(8.1)] in the form stated but we do not have adequate estimates of P{S, < B,}
in order to prove it. Nevertheless, we will be able to show that the convergent
part of the test works in general and in Section 4 we will show that the test is
valid whenever the tails of the distribution of X are so fat that there is no
exact rate of escape function.

THEOREM 1. Assume X is nonnegative and nondegenerate, (3.1) is satisfied
and n~'B,, is nondecreasing. Then

0 iffy, n 'p,log(3p,*) <=,

P{S,<B,i.0} = "
(Sh<Bniod =1, iffy, n"'p, log(3p, ') = =,

where p,, = P{S, < B,}. [ Note that the asymptotic behavior of p,, is available in
(2.16) under assumption (3.1).]
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As an immediate consequence, we obtain the following results which are
analogous to the usual improvements of the law of the iterated logarithm that
follow from the Kolmogorov-Erdos integral test. A further simplification of
these results was given in the introduction for a class of examples. A related
result that gives the correct liminf behavior under assumptions somewhat
weaker than (3.1) is in Theorem 4 in Section 4.

COROLLARY. Define
Bn(k’ £) = ng()‘n(ka 5))’
where A,(k, €) is defined by

k,e
RO (h,e)) = 2227

and
E(k,e) =lln+ 3gn+1;n+ - +(1+e)l,n.
Then, for any k > 4 and any € > 0,
P{S, <B,(k,0)i.0}) =1 and P{S, <pB,(k,e)i.0}=0.

Proor or THEOREM 1. We will proceed as far as possible without using
(8.1). Since the function x log(3x~ 1) is increasing on (0, 1), we note that if we
have two sequences {8,} and {8,} with the property that B, < B, for all
n > n* and we can prove the divergent part of the test for {ﬁn} then we
automatically have it for {B,). Similarly, the convergent part of the test for
{B,} implies the convergent part of the test for {B,}. We will use this observa-
tion to make a few simplifications. First, note that if we let B, = B,(c) =
ng(A,), where A, is defined by R(A,) = n™1c loglog n, then the series in the
statement of the theorem converges if ¢ > 1 and dlverges if ¢ < 1. [Use the
estimate in (2.16) for p,.] Thus by using the above comparison and recalling
(2.4), we see that we may assume that @ < n~'8, < EX for all n. This means
that there exists A, such that g(A,) = n~'8,. Furthermore, if A, does not
approach 0, then g, will eventually be smaller than 8,(2) and so we may use
the comparison again provided, of course, that we can prove the theorem
for B,(2). Finally, if liminf nR(A,) < », then limsupp, > 0 and so
P{S, < B, i.0.} = 1 by the zero—one law. The series diverges in this case since
A, and hence R(A,) are nonincreasing and so for n, < n < 2n,,

nR(A,) <2n,R(A,) <2C if nyR(a,,) <C.
Thus p, > ¢ > 0and so n™'p, logBp,; ") = ¢;n"! for n, < n < 2n,. Thus we
have seen that we may suppose that
(3.2) nR(A,) > and A, >0, whereg(A,) =n"18,.

This means that we may simplify the form of the series somewhat. Note that
by (2.10)

n~'log(3p, ') = n"Y(log3 — log p,) ~ n"'(log3 + nR(1,)) ~ R(A,)
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and so we may consider the series ¥ p,R(A,) instead. Next we define the
subsequence that will be used in the proof. Let

n, = min{n: Zn‘, R(Aj) = k}.

j=1

Note that by (3.2), L R(A;) = » so n, is well defined for all %, and since
R(;) — 0, it follows that

(3.3) g R(A;) ~ 1.

J=np_1+1

Next we will see that we can essentially bound p,, on the interval n,_; <n <
n, by its values at the endpoints. Suppose that n,_, <m <n <n, and
consider
9Qmn =P{Sn - Sm Sﬁn _ﬁm}‘
We want to show that q,,, is bounded below by a positive constant for large k.
Since
Bn - ﬁ m n
=—=—"> =g
8umn) = —— - —&(A,)
by the monotonicity of n~18,, we have by (3.3)

(n=m)R(un,) < (n-m)R(A) < % R(xy) <2

Jj=m+1

This gives the lower bound for q,,, provided that n — m > n* for some n* by
(2.9). The bound is trivial for n — m < n* and large k since

PIS, = 8, %8, ~ ) = PS, - S, < P - m)

> (P{Xs %})n—m > (P{Xs %})n
- (P{X<EX})" >0,

where the convergence follows from n~'8, = g(1,)1 EX under (3.2) and
P{X > EX} < 1 since X is nondegenerate. Then we have for n,_; <m <
n<n,,

In particular, this means that cp,,  <p, < c‘lpnk for n,_; <n <n,. Thus
by (3.3),

n, ng
Y p.R(A)=zep,,, L R~
n=n;_;+1 n=n,_,+1

and essentially the same argument gives an upper bound of c‘lpnk. This
means that the convergence of the series ¥ p, R(A,) is equivalent to that of
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the series ¥ p,,. To complete the proof of the convergent case, we need an
improvement of the above upper bound for p, which is essentially Skorokhod’s
inequality. Define

Sn SJ .
A, ={—<1,—=>1forn,_ ,<j<nj.
Bn BJ

Then
S Tk
P{ min — < 1} = Y P(A)

np_1<n<n;, P, n=n,_;+1

ny

= Z q;r}kP{An’ Snk - Sn =< Bnk - Bn}

n=n,_;+1
ng
-1 . -1
<c Y P{A,;S, <B,)<cp,,.
n=n;,_;+1

This maximal inequality is crucial here even though S, is monotone as filling
in between the members of the subsequence by monotonicity is too crude in
general. We have now completed the proof of the convergent case and shown
that X p,, diverges in the divergent case. In order to complete the proof we
only need to show that the supplementary condition holds for the generalized
Borel-Cantelli lemma [see Kochen and Stone (1964)]. But showing this is
technical, quite delicate and somewhat long. This is where we will use (3.1).
Since we will be dealing exclusively with the subsequence from now on, we will
abuse the notation by letting 8; = Br,, Pj =Py, and A; = A Thus by (2.16)

-1/2
p; = P(S, <8} = (n;R())))" " exp(—n;R(1;))
and we will let
pjk = P{Sn_] < BJ, S”k < Bk]
We will prove that for j < &,
(3.4) P < Cy(k _j)_z(Pj +p) + Copjpy
which easily implies that
A ):N= .
lim sup === iv k II;Jk
No (Ek=1pk)
The proof of (3.4) will be broken down into three cases. First, assume
(A) Ian(Aj) —n,R(A,) = 2log(k —j).
If n;R(A;) = n,R(A,) + 2log(k —.]:?,
-1/2
Pjr SP; = (an(/\j)) exp(—an()tj))
= (nkR()‘k))_l/zeXP(_nkR(/\k) — 2log(k —j)) = pi(k _j)_2~

< C,.
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In the other case, a similar argument shows that p;, <p, < Cp;(k — J)
In;R(A;) — nyR(A,)l < 2log(k —j)
and (n, —n;)R(A,) = Czlog(k —j).
First, we will specify the value of Cj. Take p € (3,1) such that
(3.5) R(pA) = $R(A) forall A € (0,1).
To see that this is possible, we have by (2.2) and (2.6)

(B)

R(A) - R(pA) = [“uV(u) du < Cf);u‘lR(u) du < CR(\)log p~?

and so
R(pA) =R(AM)(1 = Clogp™?).

Here C depends only on the distribution of X and so we may choose p close
enough to 1 to make (3.5) hold. Then we take

Cs = 32p(1 —P)_l-
Now we define u, a and v by
(3.6) n;R(u) =n;R(A;) + 2log(k —j), a=n;g(n),

-2zt (2
(3.7) RN nk ng i\ j
_ J _
=g(A,) + — (8(n) —g(w))-

There is the question of whether u and v exist. For u, we observe that by case
(B),

which implies that log(k — j) = O(n;R(A))) since C; > 32. This means that u
will even go to 0. v presents a problem only when EX < = since then the value

given for g(v) might exceed EX. To see that this cannot happen (for large &),
first note that by case (B)

nj(R(M) - R(Ak)) = nj(R()‘j) - R(./\k)) + 2log(k —j)
<(n, - nj)R(/\k) + 4log(k —j) < 2(n, — nj)R(/\k).

Now we use the generalized mean value theorem. Recalling (2.2), there exists
¢ € (A, ) such that R(u) — R(A,) = £€(g(A,) — g(w)), which in conjunction
with (2.7) leads to (for large &)

nj(g(Ak) —-g(w) < %(nk - nj)R(/\k)/)‘k < 5(n, - nj)(g(o) - 8(2)).
Thus

g(A;) +

n_j o (g(ry) —g(p)) <g(r,) + %(g(0) —g(r,)) <g(0).

J

ng
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This means that v also exists. Since u > A j» we have a <n;g(};) = B;. Now
we will use

Pjr < P{Snj <a} + Pla< Sn, < Bj; S, < By}
(38) <P(S, <a} +p;P(S, _, <P —a}.
Since
P(S, <a} = (n;R(w))""* exp(—n;R(un))

< (an()tj))_l/2 exp(—an(/\j) — 2log(k —j)) ~p;(k -2

the first term in (3.8) satisfies (3.4). For the second term, we will use the
bound [from (2.8)]

P(S,, ., < B, - a} < exp(—(n, — n,) R(v))
and so it will suffice to show that
(3.9) (np—n;)R(v) = 2log(k —j).
Take 6 = (1 — p)/4p and note that § < § since p > 3. If R(v) > 8R(),), then
(ny = n;)R(») = 8(n, — n;)R(A,) > 8C, log(k - /) = 8log(k — )

so we may assume that

(8.10) R(v) <8R(A;) < $R(A,) <R(pA,).
Thus v < pA,. We define n by
(3.11) (ny —n;)(g(pA,) — 8(A4)) =n,;(g(n) — g(w)).

(It will be clear in a moment that such an 7 exists.) Then by (3.7) and (3.11)
(n, - nj)(g(") - g(P/\k)) = nj((g(/\k) —&(n))
(3.12) — (g(n) - &(w)))
=n;(g(A,) — g(m)).
Thus we have
v<pAp<A,<n<u.

Now we are going to use the generalized mean value theorem four times. We
have

R(P/\k)_R(V)=§1(g(V)_g(P)‘k)), R(/\k)_R(P/\k)=§2(g(P/\k)_g(/\k)),
R(n) —R(A,) =£3(8(A,) —g(m)),  R(p) —R(n) =é,(g(n) —g(n)),

where
vV<§E <pAL, <€y <A, <E3<m<E<p.
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Using this in conjunction with (3.12) and (3.11) leads to
(ny = n;)(R(pAy) — R(v)) = &165'n;(R(n) — R(A,))
<pn;(R(n) — R(A)),
(3.13)
(ny = n;)(R(A,) — R(pAy)) = é365 'n;(R(1) — R(m))
< n,(R(k) = R(m)).
This gives [using (3.10) and case (B)]
(1-8)(n, —n;)R(A,) < (n, —n)(R(A,) — R(v))
<n;(R(p) — R(n) + p(R(n) — R(A,)))
=n;(R(pr) = R(A,) — (1= p)(R(m) — R(A,)))
=n;(R(A;) = R(A) = (1 = p)(R(n) = R(1)))
+ 2log(k —j)
< (n, —n;)R(A,) — (1 = p)n;(R(n) — R(A,))
+ 4log(k — j).
Therefore
(1 =p)n;(R(n) — R(A,)) <8(n, —n;)R(A,) + 4log(k —j).
Using (3.13) again,
(np = n;)(R(pA,) — B(v)) < pn;(R(n) — R(A}))
<p(1—p) '(8(n, — n;)R(A,) + 4log(k —j)).
Finally, this gives by (3.5) and the definitions of § and Cj,
(n, —n;)R(v)
> (n, —n;)(R(pAy) — 8p(1 = p) 'R(A,)) — 4p(1 — p) "' log(k — j)
> (n, = n))R(4) (3 — 8p(1 - p) ") = 4p(1 — p) " log(k - j)
= log(k = j)(3Cs — 4p(1 = p) ") = Cy log(k —j) /8 = 4log(k —j).
This proves (3.9) and hence finishes the proof in case (B).
In;R(A;) = n,R(A,)l < 2log(k —j)

(©) and (n, —n;)R(A;) <Cjlog(k —j).
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First, note that by (3.3) and case (C) we have for large j,

P
4 <(n, - nj)R()‘j) =(n, - nj)(R(/\j) - R()‘k)) + (ny, — nj)R(/\k)

n,—n. log(k —j

+ C5 log(k —j)

J n;

Cy3(C3 + 2)log?(k — j)
n;R(A.)

+ Ca log(k _j).

Thus we have

(3.14) n;R(A,) = O((k —j) " log?(k —j)).

Since x2Q(x) is increasing and R(u) = Q(u~!) by (2.13), we have
(3.15) R(pA) < Cp%R())

for p > 1. Note that for large j, using (3.2), (8.15) and (3.14),

Aj 2 Aj 210g2(k —J)
(3.16) 1< an(/\j) < C4(E) n;R(A,) < Cs(A_k) E—j
Thus
, log?(k —j)
Ay log(k‘ -j) = O(Aj——(k —j)l/z = 0(",‘)

for £ — j large and so we may assume that A ;> Ay log(k — j). Now define p
and v as in (3.6) and (3.7). This time u may not exist but we defer this
possibility until later. In case EX < » we must show that v exists. Observe
that by case (C) and (3.14), if £ — j is large,

n;R(u) =n;R(A;) + 2log(k —j) < n,R(A,) + 4log(k — j)
=(n, —n;)R(A,) +n,R(A,) +4log(k —j) <(Cs+5)log(k—j).
Thus, for any &£ > 0, we have by (3.16) and (3.2)

nR(w) (A [ log®(k —j) |
m(z) S(C3+5)log(k _J)(T) -0

as k —j — . By (2.15) we have
n,(8(0) —g(n) _ ( Ax ) nR(w)
n,(g(0) - g(1y)) ~ A; nyR(A,)
Thus, if £ —j is not too small,
n;(8(0) — g(n)) <n.(g(0) — g(A)),
which is equivalent to g(v) as defined in (3.7) being less than EX. To continue

0.
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with the proof, we will now use p = log(k — j) (assuming that £ —j > 3) and
then define ¢ by

g(l)=g() -

n;

— (g(rs) — &(pAr))

n

=g(M) + ———(g(pMs) — &(w)).

S
This means that { is defined and lies in the interval (v, A,). Now we are going
to use the generalized mean value theorem four times again:

R({) —R(v) = &(g(v) —g(£)),  R(A) — R({) = &:(8(8) — 8(A)),
R(pA,) — R(A,) = &3(8(Ay) - 8(pAy)),
R(u) — R(pAy) = £4(8(pAs) —8(1)),

where v < ¢, < <&y <A, <§3<pA, <&, <p. Using this in conjunction
with the definition of ¢, (8.15) and (8.14) leads to [recall that p =log(k — j)]

(ny — nj)(R(g) - R(v)) = §1§§1nj(R(P/\k) - R(/\k)) < C4an2R(/\k)
= O(log*(k —j)/(k - j)) = O(1),
and also using case (C)
(ny — nj)(R(/\k) - R({))
= §2§4_1nj(R(I-L) —R(pAy)) <p 'n;(R(n) — R(A;))
=p Y n,;R();) + 2log(k — j) — n;R(A,))
Sp_l((nk —n;)R(A,) + 4log(k -7))
<p (Cs + 4)log(k —j) = C3 + 4.

Combining these last two facts shows that (n, — n ;}(R(1;) — R(»)) is bounded.
Thus, recalling (3.14),

(ny —n;)R(v) =n,R(a,) + 0(1).
Thus

P{Snk_nj <B,—a}=((n, - nj)R(v))_l/2 exp(—(n, — nj)R(v))

= (nkR(Ak))_l/z exp(—n, R(A;)) = py-
Recalling (3.8), this completes the proof of case (C) when u exists. We must

still consider the case when u does not exist. In this case, we will ignore u and
use

pjk =< P{SnJ < Bj}P{Snk—nj < Bk}’
and so it will be enough to show that
(3.17) P(S,, . <Bi) = O(py).
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Thus we define v by g(v) = (n), — n;)~',. Once more, if EX < , we must
show that v exists. First, note that the fact that u does not exist means that
n;R(A;) + 2log(k —j) > n;R(1),

which implies that
(3.18) n; = O(log(k —j)).
By (3.14) we have

n;R(A,) _ log?(k - j)
(3.19) R(A,) = n—, = 0(—kT——)
so that
(3.20) n;(R(A))2 -0

as k —j - ». Since x2@Q(x) is increasing and R(A) = Q(A 1), it follows that
A72R(A) = ¢ > 0 for small A. Using (2.7), (3.2) and (3.20) leads to -

n,(g(0) —g(1,)) > fﬁ R(A) > nyR(A) e
n;g(0) 3 1n; 2,8(0) ~ Tn (R(A))?

This means that

n,(g(0) —g(A,)) > n;g(0),
when % — j is large and this is equivalent to
g(v) = (n, —n;) 'n,g(),) <EX
so that v exists. Next we use the generalized mean value theorem:
R(X;) — R(v) = £(&(v) — &8(1y)) = £(ny — ny) “'njg(Ay),
where v < ¢ < A,,. Thus by (2.14) and (3.20)
(ni = n;)(R(A) = R(0)) < n;0,8(A) < Cny(R(1,))* = 0.
Thus we have
(ny—n;)R(v) =n,R(A;) +o(1)
and by (2.16) this implies (3.17), which completes the proof. O
4. Necessary and sufficient conditions for normalization. We let
G(x) = P{X > x} as above and define
G(ej+ 1)
u;=1—- ———
J G(e’)

If G(e’) = 0, we define u ; = 1 by convention. Next, let r; be the rank of u;
when ranked in decreasing order,

=P(X<el*YX>el), j=1,2,....

rj=card{k:u, >u;oru, =u; and k <j}.



1436 W. E. PRUITT

If u; =0, then r; = % since {(j: u ;> 0} is always infinite. When G is slowly
varying, u; = 0 so r; will be finite for all j such that u; > 0. But r; = for
any j such that 0 <u; <limsupu,. The main result of this section is
Theorem 2.

THEOREM 2. Assume X is nonnegative and nondegenerate. Then it is
possible to find B, increasing, such that

S,
liminf— =1 a.s.

n—o n
if
(4.1) lim supu ; log r; = .
J—)w

(We use the convention that u ;log rj = 0 when u; = 0.)

We start with the necessity of (4.1). We will prove some lemmas which
culminate in an integral test (Theorem 3) which shows that if (4.1) fails, then
for any given sequence {B,}, the lim inf is either 0 or ». The first lemma gives
the estimate for the lower tail of the distribution of S, that will be used here
since (2.16) is not available.

LEMMA 1. Assume that G is slowly varying and

(4.2) nG3(x) < C,,

(4.3) n(G(y) — G(ey)) <C, forallye [%(x)’ ;]

Then there exist C4 and x, (depending on C3) such that for all x > x,,
(4.4) Cye "™ < P(S, <x} < e 0@,

Furthermore, Cy depends only on C, and C, and may be made arbitrarily close
to 1 by making C; and C, small. If (4.2) and (4.3) are replaced by nG(x) < C,
then (4.4) holds for any C3 < 1.

Proor. The upper bound in (4.4) is trivial and completely general:
(45) P{S,<x} <P{X;<x,i=1,2,...,n}) = (1 - G(x))" <e 6@,

For the lower bound, we first consider the case where nG(x) < C. Define the
events

A=(X,<x,i=1,2,...,n}), D= {ZX,J{X,.sx} Sx}.

i<n
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Then AD c {S, < x} so that
P(S, <x} > P(AD) > P(A) — P(D"),

and since nG%(x) < CG(x) < ¢ for large x, we have

(4.6) P(A)=(1-G(x)" = (e'G(x)_Gz(x))n > e nG(®)=e 5 g=C-e,
Next, we use a first moment estimate for D°¢. Recall that
M(x) = x'EX1{X < x}.
Then
P(D°) <x 'nxM(x) = nM(x) < CM(x)/G(x) <ee °7* <eP(A),
for large x, where we have used the fact that when G is slowly varying

G(x)

-0 asx — o

see Lemma 2.5 of Pruitt (1981). Thus we have
P{S, <x} = e "0®e72(1 —§)

and e~%(1 — ¢) may be made close to 1 by taking &£ small. For the remainder of
the proof, we will fix a small positive number n and then take 8 small enough
that

8<3, 2C8<3, 8(Cy+1)<n and 38<n,

where C, = ¢3C, v 1 and let C = e?/?; from the above we may assume that
nG(x) > C. Next, define

ko = min{k: (I,x)* <nG(x)},  k; = min{k: (I,x)* < C},

where [, is the logarithm iterated % times, and the events (we abuse the
notation a little by letting A and D now stand for slightly different events)

A X g 1,2 D y X, 1{X : il
= < = e = . < <
{ ST RS ,n}, {isn ’{ '_nG(x)}_lO}’

X X .
Bk= Zl{Ux—)z<XiSzl—x)2}SC4lk+lx , k=k0,...,k1—1,
i<n k k+1

B, ;={XY1 L<X,.sL <Cyl,x).
: nG(x) (L) °

i<n
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Now, on the event AD N N ,B,, we have
S, =Y Xil{X,. < 1}
i=1 c
n X n X X
< Xil{X,-s——————} + Xil{—<X,.s——}
zz=:1 nG(x) L nG(x) (lkox)2

i=1

+fkilxi1{ T <x L}

<X; <
(lkx)z (lk+1x)2

i=1k=kg
ky 1
<—+C —
10 4xk§k l,x

Now, for k < k,, we have
Lex = exp(l,1%) 2 elyyqx

since e” > eu for u > 1, and

(4.7) Lpp1x = 1 x =log(l, _1x) >1log C/2 =671 > 2.
Thus we may compare the above sum with a geometric series:
(4.8) § isi(1+e_1+e_2+~-)s6 ¢ < 28.
E—k, baX L e—1
Thus by our choice of C, we have
AD N B, c{S, <x}.

k
We will use the estimate
(4.9) P{S, <x} > P(A) - P(AD°) — Zk: P(ABj).

Next, for x/nG(x) <y < x, we have by (4.3)
2(60) - () =n X (6e"~) = G(re)
(4.10) + n(G(ye’) — G(x))
<Cy(j+1) < 02(1 + log%),

where j = [log(x/y)]. Thus

nG(x/nG(x)) < nG(x) + Cy(1 + log(nG(x))) < (Cy + 1)nG(x)
so that
(4.11) G(x/nG(x)) = G(x).
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In particular, this means that x/nG(x) is large for large x. Now it is time to
estimate the probabilities. First, we have

P(A) — (1 _ G(%))n > e—nG(x/C)—nGz(x/C)’

and by (4.10)
n(G(x/C) — G(x)) < Cy(1 +1logC)
and
nG2(x/C) < n(G(x) + Cy(1 + log C)n~1)

< nG%(x) + 2Cy(1 + log C)G(x) + C2(1 + log C)%n~!

< C; + 2C,(1 + log C) + C2(1 + log C)2.
Thus
(4.12) P(A) > Cze 0™,
where

Cs = exp(—C; — 3Cy(1 + log C) — C3(1 + log C)?)

and since C is fixed (note that C is independent of C, when C, < e3), C5 will
be close to 1 when C; and C, are small. Next, letting

A ={X,<xCYi=2,...,n)},

we have

P(AD") =P{A; X Xi]-{Xi < nGozx)} > %}

< 17()[ Xz Xil{X,. < nngx)}

10 xalx x
< — < —
<) X% o5

10 x x P(A)
7nnG(x) (nG(x) ) 1-G(xC™1)

G(x/nG(x))

< Gy P =8(C+ DP(4)
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since M(y) = o(G(y)), when G is slowly varying as mentioned above and since
we have already seen that x/nG(x) is large. Finally, for the B,, we let

P{ Y _<x x} Bk, —1
<=0 = )
(1x)* c '

X X
P{ <X<—}, ko<k<k -1,

Pi (Lx)? 7 7 (Lyrx)®

x x
P <X<——=}, k=Fk,— 1.
{nG(x) (lkox)z} 0

Then, using (4.12) and the elementary inequality j! > j/e ™, j > 1, we have

n

P(aB) < ¥ (})pi1-6Ge)-p)" < T (})pi(1-G(2)"

J=Cqlpy1x
npye J npe /
< 76 (——) < C5P(A (—) .
Lia-emn) =& PAL 6w
We will be able to compare the series with a geometric series since
np,e )j“( npe )‘j np,e j oVt
(j+1D(1-G(x)) J(1 - G(x)) 1-G(x)\j+1 J
e
T JA-G(x))
Now, by (4.10)
x
npksn(G( 2) —G(x)) <Cy(1+20,,.x),
(1px)
and so
Co(1l + 21,1 5
(4.13) Gl pa¥) 5

J Cilpirx 2¢°

since C, =e®C, v 1and [, ;x> 2 for all £ <k, by (4.7). [For k =k, — 1,
replace G(x/(1,x)?) by G(x/nG(x)). The bounds given above are then still
valid.] Thus the sum will be comparable to the first term and by (4.13) we have
for large x

np,e Cylp i1 5e Cylp 1%
<
Cylys1x(1 — G(x)) ) 1 26°(1 - G(x))

Thus we have

< e_C4lk+1x < —.
lx

1
1—e2

1
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and so by (4.8),
ky

Y P(AB;_,) <C5'P(A)—=.
E—kq 1-e

Putting the pieces together using (4.9), (4.12) and the conditions on 8, we have
28

1-—e2

P{S,<x} > P(A)(l —-8(Cy+1) —C5!

> e 0@ (Cy(1 — m) — m).
Since m is small and Cj is close to 1 when C; and C, are small, this is enough.
O

The next step is to show that when (4.1) fails, Lemma 1 applies in what
turns out to be the relevant range. Define

. . Bn
I, ={j:e/<B,nG(B,) and e/*! > —-——-}, .
{ (nG(B,))*

and let

v, =min{r;: j € L}.

LemMaA 2. Suppose that B, — o,
limsupu;log r; < o
Jjo®

and
(4.14) nG(B,) < 3lin A 3logv,.
Then for all ¢ > 0, we have
(4.15) P{S, <cB,} = e "GBn) = g~ nGEB)

Furthermore, if u;logr; > 0, then = may be replaced by ~ in (4.15).

Proor. We fix C such that u;logr; < C for all j. We also note that this
implies that G is slowly varying. Next, suppose that nG(B,) < C¢ for n in a
subsequence. Then, along the subsequence, nG(cB,) ~ nG(B,) < C¢ and so by
Lemma 1,

P{S, <cB,} ~ e "G(eB) ~ o nG(Br)
The second ~ follows from
G(cB,)
G(B,)
Thus we may assume that nG(B8,) — «. Next,
_ (rG(B,)) _ )

n n

G(cB,)

—— -1

Gy "

nlG(cB,) — G(B,)| = nG(B,)

1'506

nG*(cB,) ~ nG*(B,)
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so we may assume that (4.2) holds with C, small. If

[y,ey] —(#;n))z’BnnG(Bn) ,

then we take m so that e™ <y < e™*! and then we have

—13"——2—3y<e'"+1 and e’"SysM

(nG(B,)) €
so that m, m + 1 € I,. Therefore

C C C C
Hm = log r,, = log v, and iy < log 7,41 = log v,
and so
n(G(y) - G(ey)) <n(G(e™) — G(e™*) + G(e™*') — G(e™*?))

(4.16) =n(G(e™)u,, + G(e™ Nu,,,1)

< 2nG(e™)C(logv,) .
Adding over the relevant values of y gives (for large n)
G(8(nG(B,) ") = G(B,nG(B,)) _ 1 +310g(nG(B,))
G(B.(nG(8,)) 7 B log v, '
Since nG(B,) < 3log v,, we must have v, — « and
3log(nG(B,)) < 3llv, + 3log3
so the right-hand side of (4.17) tends to 0. Thus
G(Bue ™ (nG(B,)) %) ~ G(B.(rG(B,)) ") ~ G(B,nG(B,))
and then with m as in (4.16)

G(e™) < G(B,e ' (nG(B,)) ") ~ G(B.nG(B,)) < G(B,)-

(4.17)

Using this bound in (4.16) leads to a bound of 7C for large n. Thus we have
(4.3) satisfied for large n with C, = 7C when x = c¢B,,. [We are using the fact

that nG(B,,) — » to imply
B - cB,
(nG(B,))" ~ nG(ch,)

and cB, <B,nG(B,)

for large n.] Furthermore, if u;log r; > 0, then we may assume that C and

hence C, is small. Thus Lemma 1 applies and gives
P(S, <cpB,} = e "GCEn,
This is enough since by (4.10)
nlG(cB,) — G(B,)l < Cy(1 + llogcl).
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Next, we must deal with the terms where (4.14) fails. Let E = E, U E,,
where

E, ={n:nG(B,) >3lin} and E,={n:nG(B,) > 3logv,}.

Then we have Lemma 3.

LemMmA 3. Suppose that B, — » and that G is slowly varying. Then
Y. G(cB,)e P < w forallc > 0.

nekE

Proor. Fix c¢ > 0. Since G(cB,) ~ G(B,), we have for large n € E,,
nG(cB,) > 2lin. Then

Z G(cBn)e—"G(CBn)= Z n—l(nG(cBn))e—nG(cﬁn)

nek; nekg,;
< Y 2n"Ylne~2'" = Y 2lin(n log?® n)_1 < .
n n
The situation with E, is more complicated. Let
E = {n:v,=Fk,ilogk <nG(cB,) < (i + 1)logk,e/ <cB, <e/*} \ E,,

and note that except for some small values of n which may be neglected

E;,NE,c{nv,=1})NE,UUJ U U E
k=2 i=2 j=-o

ijk
Suppose that n ¢ E,. Then
B nB,G(B,)

(nG(B,))  (nG(B,)) ~ (3lin)’

since G is slowly varying and B, — ». Recalling the definition of I, this
means that the minimum integer in I, tends to « and this implies that
v, > ®. Thus {n: v, = 1} N E{ is a finite set and so we may ignore it in the
summation. Now, if E;;, # &, define n,;;, = min{n: n € E, ,}. Since we are
assuming that B, — », we only need consider j — ». Then we have for § > 0
and n € E;,,

B.G(B,) = =

13

nG(e’*Y) ~nG(e’) = nG(cB,) = ilogk

so that
n;,G(e/*t) > (1 - 8)ilogk
and then
. " e G’
Y G(eB,)e P < ¥ G(e))e %™ < G(e) ———r
nek; nek. 1-— e_G(eJ )

ijk ijk

~ e—n,»jkG(ef“) < -8
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Now we want to fix i and %2 and sum over j. As observed above, for n & E,
v, — o, and so if n € E, also, then nG(B,) — . This means that for large n,
I, will be nonempty. If E,;, # O, take n € E;;;, and m € I,,. Then we must
have

e/ <cB, <c(nG(B,))’em " ~ c(nG(cB,))’e™ ! < c(i + 1)*log? ke™*!

and

m m

ce™ ce ce
nG(B,) ~ nG(cB,) = (i+ Diogk"

j+1
e/t >2cB, =

Thus j must satisfy
m+1loge—log(i +1) —lk—1<j<m+1+]logc+ 2log(i +1) + 2Iik
so the number of j with E,;, + & is at most
3log(i + 1) + 3lik + 3.
Thus
Y Y G(cB,)e "CCPw < 3(log(i + 1) + Uk + 1)k~ A 72E,

j neE,,
Now we sum over i > 2. This leads to a bound of order
(1 + Uk)R™21-3),
Now this is summable on % so long as we take § < 3. O
Now we are ready to prove the necessity of (4.1). This will follow immedi-
ately from Theorem 3.

THEOREM 3. Assume X is nonnegative, nondegenerate, 3, 1 and

limsupu ; log r; < .

Jjo®
Then
S, )
liminf — =0 a.s.iff Y. (G(B,) V n 1)e "Gt = o
S,
lim — = a.s.iff Y, (G(Bn) V n1)e 0B < oo,

Proor. First, we must take care of two special cases. If 8, < C for all n,
then G(B,) > G(C) = C; > 0. (Recall that u;logr; < C implies that G is
slowly varying and so is positive everywhere.) Then the terms of the series are
bounded by e~ and the series converges. But

Sn Sn

— =2 — —>®© a.s.

B. C
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since even n 'S, — « by the strong law. Thus the theorem is true in this case.
The second special case is when

liminf nG(B,) < .
Suppose that n,G(B,,) < C. Then for n, <n < 2n,,
nG(B,) < 2n,G(B,,) <2C

so that
2nk 2nk 1
Y (G(B,) Vnl)enGhn »¢72C ¥ _ ~ 72 ]og2
n=n,+1 n=n,+1

and so the series diverges. By Lemma 1, we have
P{Snk < SBnk} > Cse—nkG(ank) > Cae—C—l

for large k. Thus S, < B, i.o. with positive probability and this probability
must then be 1 by the Hewitt—Savage zero—one law. Thus the test works in
these special cases so in the rest of the proof we may assume that -

B, >~ and nG(B,) — «.
Thus the criterion becomes the convergence or divergence of the series

(4.18) Y G(B,)e "G,

By Lemma 2, we note that for n & E, G(cB,)e "6F» = G(B,)e %P, s0
that by Lemma 3, the series ¥ G(cpB,)e "% F») either converges for all ¢ or
diverges for all c¢. Thus suppose that the series in (4.18) converges. We will
show that S, > B, eventually with probability 1. Since we could have used
CB,, with C large in place of B,,, this will prove the convergent part of the test.
Now define a sequence {n,} by

(4.19) n, = max{j: XJ‘, G(B,) < k}.

n=1

These will be well defined since we are assuming that nG(B,) — «. The
assumption that B, — « means that G(B,) —» 0 and so as & — o,

np Np+1

Y G(B,) =k +o0(1), Y G(B,) =1+0(1).

n=1 n=n;+1
Now suppose that n, <n <n,_.,. Then
(4.20) l+o() 2 X G(B;) = (n~-ny)G(B,)
i=n,+1
and so using (4.20) twice,
nG(B,) = (n —n,)G(B,) + n,G(B,)
<1+0(1) + (ny = ny1)G(B,,) + 1y 1G(B,,)
<2+o0(1) +n,_,G(B,,)-
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Thus for large %,

Np+1 Mg+l
Y G(B,)e 0P 2 om0 Y G(B,)
n=n,+1 n=ng.q

= (1 + o(1)) e 3 m4-1G6np
> (1+0(1)e*P(S,, , <B.,)
by (4.5). This means that
Z P{Snk_l S Bnk} <
k

so that for large 2 and n,_; <n < n,,
S,28,, ,>B,, =B,

It remains to prove the divergent part of the test. By Lemma 3, we know that
Y, « 5G(B,)e "¢ diverges. From now on we will restrict our attention to
those n & E, i.e., we will assume that n ¢ E for all n. We define {n,} as in
(4.19) but it may be different now since we have omitted all those n’s in E. For
n, <n < n,,,; we have by (4.20)

nG(Bn) = nkG(Bnk+1) = (nk - nk+1)G(Bnk+1) + nk+1G(Bnk+1)

(4.21)
> —1+o0(1) +ny,G(B,,,,)
and so
Mht1 Npit
Z G(Bn)e—nG(Bn) < e2e—nk+1G(ﬁnk+1) Z G(Bn) ~ eze_"”“G(ﬁ"kH)
n=n,+1 n=n,+1

= P{Snk+1 = Bnk+1}

by Lemma 2 since we know n,_,, € E. Thus

Y P(S,, <B,,} ="
%

Thus once we show the supplementary condition for Borel-Cantelli [Kochen
and Stone (1964)], this will prove the divergent case since we will have
S, < B, i.0. with probability 1 and we could have used &8, in place of B,,
where ¢ is small. As in Section 3, this verification of the supplementary
condition is quite lengthy. We will use the basic estimate for j < &,

P(S,, < By, Su, <Bu) < P(S, <B,; 8., —Sn <B,,}
(4.22) < e~ G Bn)e = (nk=n)G(Bry)
~ P{Snj < B,,J}P{Snk < B, JemCEmw.

This follows from (4.5) and (4.15) since we know that n;,n, & E. [Note that
we do not need to know that n, — n; & E since (4.5) is general.] Now (4.22) is



RATE OF ESCAPE 1447

sufficient for those j and k& with n;G(B,,) < 1. We define
H= {(j,k):j <k, an(Bnk) > 1} =H, UH,,
where
H, = {(j, k) € H: n,G(B,,) = n,G(8, )},

J

Hy = {(j, k) € H: n,G(B,,) <n,G(B,)}-
We will prove that for j fixed
(4.23) Y P{S, <B,,S, <B,}<CP(S, <B,)}
{k:(j,k)eH}}
and that for % fixed
(4.24) Y P{S,,<B., S, <B,) <CP(S,, <B,,}.
{J: (J,k)eH,)

This will be sufficient for the supplementary condition. The two bounds are
similar but there are a few differences. We will start with (4.23). We will first
consider those j and % for which

L<n,G(B,)<L+1, M<nG(B,)<M+1,
where L and M are nonnegative integers. In proving (4.23), L is fixed and M

will vary with M > L since (j, k) € H,. Next, we let §, = and define for
1>1,

y; = min{m > §,_;: n,G(B, )< (M,M+ 1]},
8, = min{m >t an(Bnm) e¢(M-1,M+ 2]}

v, is well defined since %k satisfies the condition. But since we are assuming
that nG(B,,) — «, there will be only finitely many vy, which are well defined.
We must have & € [vy;, §,) for some i. We will let i denote this index. We will
sum on k by letting & vary in this interval, then letting i vary and finally
letting M vary. Now suppose that

n,<n<n,,, withy, <m<k.
Then by (4.20)
nG(B,) <2+n,G(B,) <2+n,G(B, )<M+4 sincem <k<3§,
and by (4.21)
nG(B,) = -2+n,.,G(B, )=M~-3 sincem+1<k<S5,.

Therefore

g g 1
k-y+o(l)= L G(B)= L —nG(B)
n=n,+1 n=n,+1

(M+0(1) ¥ % —(M+ O(l))(log;ln—k + o(ni))

n=nyl+1 Yi Yi
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Now

_ G(B,) _G(Bn,) _ (i)

1
;7::; n'YiG(Bnyi) = M ° M

so the O(1/n,) error term may be incorporated with the o(1) term on the
other side. We have

(4.25) e exp(k—;l%;%l()ll).

n.h

Next, we need to estimate n, /n,  for m <i. If n, G(B, )<M-1,
then "

n ns . M-1 M-1 <M—l
< < ’
n‘Ym nYm n')’mG(BnSm_l) n7mG(Bn7m) M

while if n; G(B,, _1) > M + 2, then

n n n’)’m—lG(anm_l) n’Ym—lG(Bnym_l) M+1
< <

Ym-1

< .
n n, M+2 = M+2 T M+2

m-—1

Thus, in either case,

(4.26 Brm o Sq 4 !
26) n, M+1
Finally, we have
n
(4.27) M <n,G(B,,) <n,G(B,) < (L +1)—.

J

Putting (4.25), (4.26) and (4.27) together yields

n; L+1/M+1)\"" E—v, +0(1)
(M+2) P\ T "M+ 0(1)

<
n, M
(4.28)

M-L-1 i-1 Ek—vy+o(1)
SEP\T Ty T M+2 M+ 0Q)
We consider first the possibility that i + 2 — y; < M. Then

M-L-1 i-1 k—y+o(l) M
— <
M Tu+2t mMro ' TmM+om T

3
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for large M. Using the inequality 1 — e ™ > cx for x < 3 leads to
(n4 = )G(B,,) = msG(8,, )1 - =2
M-L-1 i-1 Ek—-y+0(1)
M M+z ! M+o00)
>c(M—L+i+k—-vy —3).
Recalling (4.22), we have
P(S, <B.,,; S, <B,} <CP(S, < B Je G B

ZMc(

< CP{SnJ < an}e—cl(M—L+i+k—'y,»—3)

and we may sum the series on % > y,, then i > 1, and finally on M > L. We
must still deal with those values of i, £ and M such that i + £ ~y, > M. In
this case,

M-L-1 i—1 k—v +0(1) M-3
+ + > ~1
M M+ 2 M+ 0(1) M + 0(1)

for large M, so that
n.
(ny = 1,)G(8,,) > M[1 = 22| > M(1 = 7%) - o,
k

say. Thus
(4.29) P(S, <B,, S,, <B,) < Ce™P(S, <B,)},

and it remains to count the number of possible values of i and % that can
arise for a given value of M. For this we will use

n; n;G(B,,) S 1
n, nkG(Bnk) M+1

since (j, k) € H. Thus by (4.28)

1 M-L-1 i-1 k—-v+o0(1)
M+1 T T M T M+2z mM+o0()
or
log(M+l)>M—L—1+ i-1 +k—yi+o(1)
M M+ 2 M+ 0(1)
so that

i=0(MlogM) and k—1vy;,=0(MlogM).
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Thus by (4.29), when we sum over k£ > y; and i > 1 we will obtain a bound of
C(M log M)*e*MP(S, <B, },

which is still summable on M. Note that there was no harm in assuming that
M was large as there are only a finite number of % corresponding to any value
of M since we are assuming here that nG(B,) — . Thus we have proved
(4.28). For (4.24), M will be fixed and L will vary with L > M since (j, k) € H,.
Let 8, = k and define for i > 1,

Yi = max{m < 61'—1: an(Bnm) € (L’ L+ 1]}7
8; = max{m < v;:n,,G(B, ) & (L - 1,L +2]}.

(We are abusing the notation by changing the meaning of y; and §;.) Since
y; < k, there are only finitely many y; which are well defined. We must have
J € (8;,7,] for some i; this will define i as before. Now if

n,<n<n,. withj<m<y
we have

nG(B,) <2 +n,G(B,) <2+ an(Bnm) <L+4 since$, <j<m<y,,

nG(B,) = -2+ anG(Bnmﬂ) >L -3 sinced, <j<m+1<y,.

Thus
) ny, ny, 1
vp—j+o(l)= ¥ G(B,)= X —nG(B,)
n=n;+1 n=n,+1 n
= (L +0(1))|[1 " 40 -
= (1)) |log , "
and
1 G(B,) G(B.) ( 1
—= < =o|—]|.
n; an(an) L L)
Therefore
n,, v, —J +o(1)
( ) n; L+ 0(1)
Forn, /n,.ifn; G(B, )<L-1,then
n'ym_l S n'ym_l S n‘Ym—IG(B"Sm_l) > n'Ym—lG(Bnym_l) > L
n, n - L-1 - L-1 L-1’
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while if n, G(B,, _1) > L + 2, then
n ng L+2 L+ 2 L+2
>

nol > > > .
nYm nYm nYmG(anm_ ) n'ymG(Bnym) L+1

1

Now

G(Bnk) _ nkG(Bnk) _n_J < M 1

+
G(B.,) n;G(B.,) mx L n,
M+1(L+1\"! v —Jj +0(1)
L (L+2) (_TO(I))
L-M-1 i-1 y,—j+o(1)
“4_ L L+2 L+0u))

i
n

IA

IA

If i +v,—j <L, then
L-M-1 i-1 vy, —j+o(1) L
< ———
I  T+27" L+o ='TI7o0)
for large L. Then using 1 — e * > cx for x < 3 again yields
L-M-1 i-1 y,—j+o(1)
nAM&J-quﬂzh( L "L+z' L+o(

>c(L-M+i+y,—j—3).

<3

Recalling (4.22),
P{S, <B., S, <Bn) < CP(S,, <B,,Je " @)= GEn)
< CP(S,, < B, Je L ~M+i+yij=5)

and so we may sum this estimate on j < vy;, then i > 1, and finally on L > M.
It remains to consider i + y; —j > L. Then

L-M-1 i-1 y-j+o(l) L-3
I T Lrz  Lron) “LroQ "
for large L, so that

nj(G(an) - G(Bnk)) >L(1-e %) =cL,

1

say, and then
P{S, < By, Su, < B,,} < Ce™"P(S,, <B,}.
The number of possible values of i and j for fixed L is counted as before:
1 n;G(B,,) L-M-1 i-1 vy —j+o(1)
< E- < exp| - - - ,
L+1 " n,G(B,) L L+2 L+ 0(1)
L-M-1 i-1 y,—j+o0(1)
L * L+ 2 * L+0(1)

log(L +1) >
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so that i=0O(LlogL), y,—j=0(LlogL) and then (L log L)’ °* is
summable. O

We will now prove the sufficiency of (4.1) in Theorem 2. This will be done in
two parts. First, we will take care of the case when G is slowly varying which
is the harder part. Then we will construct a nicer normalizing sequence when
G is not slowly varying.

PROOF OF SUFFICIENCY OF (4.1). We start by defining some sequences. Take
J1 = 1 and suppose that j,..., j,_; have been defined. Since we are assum-
ing that G is slowly varying we have u, — 0. Take N,, such that

u, < (logm)~" foralln>N,,.
Then choose k,, such that

Bpm>N,, 1, >2(N,Vij, 1), u, logr, >m?
This is possible by (4.1). Next, define )
E,={viu,2u,}, Jjn=max{v:v€E,}, F,=E,n (37 Jnl
We list some properties for future reference:
(4.31) Jm=card(E,) >r, andso r, >r, ;
(4.32) veE, implies u,>u, >m?/logr, ;
(4.33) v €F, implies u, < (log m) Y
(4.34) card(F,,) > card(E,,) — 375, > 37 .

Now suppose that v € E,, and let v, = v and then define
=max{i <v,_:u; >eu, |
so long as this set is nonempty. Since
1>u, >e'u,>e'm?/logr,

there can be no more than llr, of these defined. Thus for any v € F,,, we can
find in (v — 3(llr, )% v) a block of 2[Uir,, ] consecutive u’s with all of them no
larger than e times the last one; furthermore, the last one will be in E,. We
let u, =[3(r; )'/?] and split the members of F,, into u,, blocks of at ¢ least
2u,, members ‘each. Since 3r, )? is small compared with p,, we can find in
the right half of each block 2[ llrk ] u’s with the above property. (These need
not be in F,, but the last one will be.) We will suppress the dependence onm
for now and denote the u’s at the right end of these ““good runs” as u,,. There
will be u,, of them. Furthermore, we have i, € F,, and

(4.35) u, . <eu, Jj=1,...,2[Ur, ];

y=J = iy

(4.36) there are at least u,, members of E,, in (iy,%,,,)
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for all k. Next, we define A, and n, by

R(A,) m2 m2 pir+?
= — n,=|————\|=|———|.
g(A4) 3ui,,el"+2 k 3ui,,R(/\k) &(Ap)

Since

m? logr, logr,
< m

-0

u,eik - eik - erkm/z
g
by (4.32), A, will be defined, at least for large m, and will approach 0 as
m — o, Now by (2.10) we have
—log PS,, <e™**?} < —log PS,, <n,g(A)} ~ nyR(Ay)
(4.37) m2 log
< < —=2
3u; 3

ik

so that for large m,

P(S,, <e**?} > 3r; 12,
Since there are at least w,, of these we can select just enough so that
(4.38) 1< Y P(S, <e**? <2

where the sum is for fixed m. We discard any remaining u;,’s. We do this for
each m and arrange the u, ’s that we have kept in order. We will now think of
this sequence and the accompanying n, and A, sequences as determined
without changing the notation. Note that the m is still being suppressed.
Next, we will show that

m2

(4.39) n,G(e**?) = —.

123

&

For the upper bound, use (4.5) to obtain
P(S,, <e"**?} < exp(—n,G(e**?))
and use this in conjunction with (4.37). The lower bound takes more work. We
will need the following estimate for g [recall the definitions in (2.1) and (2.11)]:
g(A) ~ fxe""‘ dF(z) <A7TIM(A™Y) +A71G(A7Y) ~AIG(A 7Y

~AT1Q(ATY) =A7R(A) as A > 0.

We have used (2.13) as well as the fact that when G is slowly varying, then
M(x) = o(G(x)) and K(x) = 0(G(x)) as x — »; see Lemma 2.5 of Pruitt
(1981). Thus we have for an appropriate constant C,

(4.40) e 2~ n,g(A,) <CnpA;'R(A,) ~ 3
roU

i
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by the definitions of A, and n,. Now if we take N < 2lir; , then by (4.35)

) G(eik+2) N G(eik_j+1) ) N )
i, +2) — _ — ipr—NY o — . . i,—N
G(e'**2) G jl:[o G ) G(er ) jl:[o(l u;,_;)G(e*N)
>(1- euik)N+1G(eik‘N).

Now if we take

tog || + 1
= |log 3ui + ’
k
3u;, 1
ip—N ip"k _
¢ =¢ Cm < Ak
and so G(e** V) > G(A;'1). This N is small enough since by (4.32)

Cm? Clogr,
log 3u,, < log(—3—) ~ry, .

then by (4.40)

Finally, for large %,
(1- euik)N+1 ~(1- euik)N > exp(—Neu;, — Nezu?k) >e %(1 + o(1))
since u; logu; — 0and u; log m <1 by (4.33). Thus
G(e**?) > cG(A;1)
for an appropriate ¢ and then using
G(A™H) ~Q(r7Y) =R(})

and the definition of n, and A, completes the proof of (4.39). Next we need to
compare G(e'*) and G(e'*-1). First, for v € E,,, we have

w =1-u,<1- m’ .
G(e”) v log ry, |
Since we have at least u,, of these between i,_; and i, by (4.36)
G(e¥) m2 At m2r}/?
(4.41) m < (1— logrkm) sexp( m),

and so these ratios go to 0 as m — «. This also gives us information about the
n, sequence. By (4.39), (4.32) and (4.41)

n, u;  G(e'- 1) m? m2ri/2
~ k-1 - exp m -
ny_q u; G(e') log Tk, 2logry,

123

as m — . If u; happens to be the first of the u’sin F,, then the first factor
in the above estlmate should be (m — 1)2/log Tk, _ but thls is asymptotically
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even larger by (4.31). Now we are ready to define our B8, sequence. We let
B,=¢e* np<n<n,,,.

This is valid, at least for large &, since we have shown that the n, sequence
increases and the i, sequence increases by definition. Now we can complete
the proof. We have

P(S,, <e™**? > n,Ple* <X < e** Y P(S, ; <e'
> n,G(e™)u, P(S,, <e™}=m?P(S,, <e'
by (4.39). Thus by (4.38)
% P(s, <e'} <Cm™2 % P(S, <e+*?} <2Cm~2,

where the sums are over those k with a fixed m. Since the bound is still
summable on m, we have, with probability 1, for all % sufficiently large and
np<n<n., :

S,28,, 2B, =B,
For the upper bound, we use
Y P(S,, -8,  <e*?>Y P(S, <e*?>1
k k

by (4.38), where again the sums are for m fixed. Now summing on m will give
a divergent series so that we have with probability 1,

S,,— S, <e*"? io.
By truncating at e’* and using a first moment estimate, we obtain
n,_e'*M(e')
elk
G(e'r) m?  G(e')
Gle™) ~ u,,_, G(e™)

m2ri/? o (logr, ) 1
m < m —_—
2log r, 4

P(S, >e'} <n, ,G(e™) + ~n,_,G(e')

Np-1

=n,_,G(e'1)

<logr, exp( - - —
3

m

by (4.39), (4.32) and (4.41). As before, the bound is even better in the case of
the first term in the mth block. Now when we sum on % there are at most u,,
terms so the sum over % for m fixed is bounded by
(log r,em)3 2 Cc
ry/? mt = m*
for an appropriate constant C, and so we can still sum on m. This means that
with probability 1, S, < e’ for all large k. Thus we have

S, <e**?+er=p (e +1) io. as.
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and this proves that

. o Sh
1 <liminf— <e?+1 as.
This is enough since the lim inf is constant a.s. by the Hewitt—Savage zero—one
law and then the constant value of the lim inf may be incorporated into the
normalizing sequence.
It remains to consider the case where G is not slowly varying. This is

equivalent to

lim inf G(x) -

—_— [e o]

T M(x)
by Lemma 2.5 of Pruitt (1981) and it is easy to see that this is in turn
equivalent to

lim inf RV < oo
A0 Ag(A)
Then we choose a sequence A, so that
(4.42) R(A,) < iR()x _,) and M <C.
k? B Ax8(Ag)

Then we define n, by
n, = max{n: —log P{S, <ng(A,)} <logk}.
Since g(A,) < EX, the probability will approach 0 by the weak law and so n,

is well defined. Also since A, decreases, n, increases. We define the norming
sequence S, by

Bn=1,8(7;) forn,<n<n,,,.
We will prove that ,
S
(4.43) liminf — =1 aus.

[}
n— n

For the lower bound, define vy, by g(y,) = (1 — £)g(A,). Then by the general-
ized mean value theorem and (4.42),

= g(1y) —&(v) _ g(1) —&(v) R(v) — R(A,)
g(Az) R(v:) — R(Xy) &(A)
_ V(&) R(yi) —R()Ap)
&V(EL) g(A)
R(y) — R(Ay)

<C ,
R(A)
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where A, < ¢, < v,. Thus
R(y) 2 (1 +eCTHR(Ay).
Next we observe that by the definition of n,,
P(S,, 1< (n, +1)g(r,)} <k
and so tends to 0. By (2.9) we have
npR(A,) ~ (ny + 1)R(A,) - .
Then by (2.10)
(4.44) nyR(A,) ~ —log P(S,, .1 < (n; + 1)g(1,)} > log k.
This means that for large 2 and 6 < eC™ !,
n,R(v,) = (1 +eC Hn,R(A,) > (1 + 8)log k.
Then by (2.8)
P(S,, <(1-¢)B,} =P(S,, < (1-¢e)n,g(A)} = P(S,, < n,8(v))
< exp{—n,R(v,)} <k~ O+
This means that for all sufficiently large # and n, <n <n,,,
§,28,, >0 =B, =(1-¢)B,.
For the upper bound, first note that
P(S,, =S, ,<B,} = P(S,, <B,} k7",

andso S, — S,  <B,, io.as. by Borel-Cantelli. Thus we will be finished if
we can show that Sn.s / B,, — 0 as. We truncate at A, ' and let T,,_, denote
the sum of the truncated variables. Then

ET,, . = nk—l’\k_lM(Ak_l) <n,_1e8(A) = (nk—l/nk)eBnk'

Since

nyR(A,) ~ —log P(S,, <n,g(A,)} <logk,
we have by (4.44) that
(4.45) n,R(A,) ~ log k.

This means that by (4.42)

Nyp_1 ng_1R(A,_1) R(A) R(A) 1
(4.46) ng B nyR(Ay)  R(A4-y) R(Ak 1) <_2
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and so ET,, = o(B,,). Then, for large £,
P(S, . >2B,) <n,_.G(A\;!) + P(T, _ - ET,  >c¢B,,)

np-1

nk—l)‘k_zK()‘k_l)

2n2
£ ny

<n,G(AgY) +

nk—lK(AI;I)
Eznzk()‘kg()\k))z

Ng_1
= 0(n,_1R(\)) + O(Z,jm)

n,_,logk log %
_o( = )—o( 2 )
where we have used (2.13), (4.42), (4.45) and (4.46) at the last three steps.

Since this gives a convergent series, we have S, _/B,, — 0 a.s. This is what
we needed to complete the proof. O

<ny4G(A;7) +

There is a nicer version of this last result if one assumes somewhat more
than just that G is not slowly varying. Instead of assuming that
lim inf G(x)/M(x) < « as above, we assume that the lim sup is finite. This
assumption is valid in the stochastically compact case but is more general.
Thus we obtain a result that is less precise than the corollary to Theorem 1
but under weaker assumptions. Since the proof is fairly short, we will give it.
Note that it is possible to prove this liminf result even though we do not
necessarily know that the strong probability estimate in (2.16) is valid here.
The proof is similar to the classical proofs of the law of the iterated logarithm
such as that in Feller (1968).

THEOREM 4. Assume X is nonnegative and nondegenerate. Suppose G(x) =
O(M(x)) and define B, = ng(A,), where A, is the solution of R(A,)) = n™lIn.
Then

liminf— =1 a.s.

Proor. Since
(4.47) rg(A) ~ExXe X >e IM(A7Y),
the assumption and (2.13) yield
(4.48) R(A) = 0(rg(nr)).

(Actually, this is equivalent to the assumption relating G and M.) Take
C>1 so that R(A) < Cag(r) for all A <1, and define vy, by
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R(y,) = (1 + eC"YHR(A,). Then by the generalized mean value theorem,
g(2,) —&(v) _ 8(1) —&(v) R(v,) —R(A,)
8(A,) R(y,) — R(A,) 8(A,)
V(&) R(3) - R(A)
£.V(£,) g(1,)
R(3,) ~R(A,) _
R(A,)

Thus g(y,) = (1 — &)g(1,). Now take p € (1,1 + eC™!) and let n, = [p*].
Then n,., ~ pn, so that

<C

ln,,, 1ln, 1

R(A = ~— =—R(a,.).
( nk”) Ny p ny P ( k)
This means that A, <v,,  andso .
1-—¢ 1—¢
B., =n:8(A,,) >n,g(v,, ) > T:__—gnk+1g(Ank+1) = T3P
Also,
(1-e)g(r,,) <g(v,,) <&(r,, )
so that by (2.8),

P(S,, < (1~¢)’B,,..} <P(S,, < (1-2)"(1+¢)B,,)
<P{S,, < (1-)n,g(A,, )}
< P{ < nkg(Ank_l)}
< exp{—nkR(/\nk_l)}.

Then since

nkR(Ank_l) ~ Pnk—lR()‘nk_l) =plin,_, ~plogk,

we will have for all sufficiently large k and n, <n <n,,,

Sn = Snk P (1 - 8)3Bnk+1 = (1 - S)SBn‘

Since ¢ is arbitrary, this proves that the liminf is at least 1. For the other
bound we need to space the subsequence more. Take a € (1,p) and let
= [exp(k*)] and v, = [pm,]. Then

Um,  lv,
m, ~ Pv—k =pR(1,,) <R(v,,)

and so A, <7, This means that
g(An,) >28(v,) = (1-28)z(Ar,),
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which leads to
P(S,, = Sp,_, < (1~ £) By} = P{S,, <mug(1,)},

and since by (2.10)
v, alogk
—log P{S,, <m,g(a,)} ~m,R(4,,) = T

we will have S,, - S, <(1- £)"'B,,, i.0. a.s. Thus we will be finished if
we show that S,, /B, — 0 as. As above, we truncate at A, andlet T,
denote the sum of the truncated terms. Then by (4.47)

ET,, . = mk—l)‘;th(A;zt) = O(mk—lg(Amk)) = O(Bmk)
since m,_,/m, — 0. By (2.13) and (4.48), this leads to
P{S > 2¢B,,,} < mk_lG(A;t) +P(T,, - ET,  >¢B,}

mp—1

1

mp—1

mk—lAr:zzK()‘;z},)

= mk—lQ(A;‘Li) + 2232
mp
my_1
< R(A +Co————
<Cmy_, ( mk) C, miR(’\mk)
my_,llm,
1 mk ’
which is summable. O
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