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A COMPOUND POISSON CONVERGENCE THEOREM

By Y. H. Wanc

Concordia University

In 1971, Simons and Johnson showed that the classical theorem of
binomial to Poisson convergence is actually stronger than in the usual
sense. Their result was proved valid also for the distributions of sums of
independent, but not necessarily identically distributed, Bernoulli random
variables by Chen in 1974. Here we show that their result is indeed true for
a much larger class of random variables. The limiting distribution is
generalized to a compound Poisson distribution.

1. Introduction. Let X,,,...,X,, be n > 1 independent random vari-
ables (r.v.’s) taking values in the set of nonnegative integers and define

S, =X? X, If for each n, X,; are identically distributed Bernoulli r.v.’s
with p, = P(X,; = 1), it is well known that
(1) lim P(S, =k) =eA*/k!, Ek=0,1,...,

if np, > Aasn -
Simons and Johnson (1971) showed that if np, = A, then the pointwise
convergence (1) can be strengthened to

(2) lim Y k(k)P(S, = k) — e~*A*/k)| = 0,
no® -0

for all nonnegative functions & with £ _, A(k)e A% /! < .

The convergence (1) for nonidentically distributed Bernoulli r.v.’s was
established by von Mises (1921). [See Wang (1988) for a simple combinatorial
proof.] Chen (1974) pointed out that (2) also holds for the nonidentically
distributed case provided that ©7_, p,;, = A and max,_;_, p,; = 0 as n > =,

In this paper, we show that (2) is also true for a much larger class of r.v.’s
and the limiting distribution is generalized to a compound Poisson distribu-
tion.

2. The theorem. Denote p,;(k)=P(X,,=%k), p,;,=1-p,0), A, =
Yl ppyfori=1,...,n,n=12,...,k=0,1,2,....

THEOREM. If A, = A + O(1/n) for some real A > 0, p,(k)/p,; = a(k) are
independent of i and n for all k > 1 and max,_; _, p,; = 0 as n - , then

3) lim f h(R)IP(S, =F) — P(Y=‘k)| =0,
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for all nonnegative functions h with ¥5_o h(R)P(Y = k) < o, where Y has a
compound Poisson distribution with parameter A and compounding distribu-
tion {a(k); £ =1,2,...}.

Proor. It follows as a special case of Theorem 7 in Wang (1989) that
(4) lim P(S,=%k) =P(Y=Fk) forallk=0,1,....
Thus, by virtue of the Lebesgue dominated convergence theorem, to establish
(8) it is sufficient to show that there exists a constant S > 0 such that
(5) P(S,=k) <SP(Y=F) forall kand n.

Denote A,; = (p,,;/A,)A. Since a compound Poisson distribution is additive,
for each integer n there exist independent Y,; (compound Poisson), N,;
(Poisson) with parameters A,; and identically distributed r.v.’s Z;;, Z;,, ...
with P(Z,; = k) = a(k), such that

N,

Y, = Zm Zij’ Y= an Y,
j=1 i=1

and {N,;} and {Z, ;} are independent.

Now for i = 1,2,...,n,
(6) P(Y,;=0) =P(N,;=0) =e i > e *P(X,; =0).
Fork>1landi=1,2,...,n,
(7 P(Y,;=k) 2 a(k)P(N,; = 1) =e "i(A/A,)P(X,, = k).

Letting C, = max(In(A,,/A), 0), we can combine (6) and (7) as

P(X,,=k) <e**P(Y,, = k).

" Fori#jandall k=0,1,...,

k
P(Ryi 4 Xy =B) = L P(Xy = m)P(X,, = k- m)
0

ezcn+)‘ni+’\an(Yni + YnJ = k).
It then follows by induction that
P(S,=Fk) <e"»**P(Y=~%) forall k and n.

By assumption A, = A + O(1/n), there exists C > 0 such that n > n,
implies |n In(A,,/A)| < C. (5) can thus be obtained by letting S = Ke®**, for
some appropriate constant K. O

IA

An interesting example is as follows: Let
P(Xni=0)=1_rni, Osrni<1,
P(Xni-__k):(l_qn)qr}i_lrni’ Osqn<15k=1’2’~"'
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If g, =q for all n and A, = A + O(1/n), where A, = L?_, r,;, then our
theorem says that the distribution of S, converges in the sense (3) to a
compound Poisson distribution with parameter A and geometric compounding
distribution {1 — ¢)g*~%; £ =1,2,...}.

If r,; = q, for all i, then it is well known that

P(S, =k = ("TET A -a)"eh k=01,
and the pointwise convergence (1) holds, if ng, - A as n — . Now let
0<A<1, g,=A/n and h(k) =k!. Then YT3_, h(k)e "\t /k!l=¢e""/
(1 — A) < «. Rewriting,

f h(k) (" +l’: - 1)(1 —A/n)"(A/n)* - e‘W’/k!‘
k=0

(8) w
=e™ E a’n(k))‘k’
k=0

where a,(0) =1 —e*(1 — A/n)" and
E-1
er(1-a/m)" I +i/m) -1
i=0
Since lim, ., a,(k + 1)/a, (k) = lim, (1 + k/n) = », the series (8)

diverges to infinity for all n > 1. In this case, the ratios p,;(k)/p,; =
(1 —A/n)XA/n)*"! are not independent of n, hence our theorem is not

applicable.

a,(k) =

3. Discussion. Let {Y,: n =1,2,...} be a sequence of discrete r.v.’s
taking values in D c{0,+1,+2,...}. Denote {f,: n=1,2,...} and {F,:
n =1,2,...} its corresponding probability density function (pdf) and cumula-
tive distribution function (cdf), respectively. Let Y be a discrete r.v. also
taking values in D, with pdf f and cdf F. The statement that the distribution
of Y, converges to that of Y can be defined in one of the following modes:

(a) lim f,(k) = f(k) foreach k € D.
(b) lim f,(k) = f(k) uniformly in D.
(c) lim sup|F,(k) — F(k)l = 0.
no® EeD
(d) lim sup|P(Y, € A) - P(Y e A) =0.
n—® A;D
(e) lim Y If,(k) — (k) =0.
no® keD
(f) lim sup |E(g(Y,)) - E(g(Y))i = 0.
T gl
@) lm T h(R)(k) ~ F() =0,

for all nonnegative functions 2 with L, . p A(%) f(k) < .
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In the problem of binomial to Poisson convergence, all the modes have been
used at one time or another with Y, = S,. There seems to have been a
misconception among researchers in the field that one mode might be stronger
than another. We hope the following proposition will clarify relations among
them.

PROPOSITION. Among all the modes of convergence, (g) is the strongest
while all the others are equivalent.

Proor. It is evident that (d) = (¢) = (b) = (a). It follows from Remark 1
in Wang [(1989), page 41] that (d), (e) and (f) are equivalent. Hence to show
(a)-(f) are all equivalent, it is sufficient to show (a) = (e). To this end, define
B, = {k: f,(k) <f(k)} and d, (k) = 2(f(k) — f,(k)) if k£ € B, and equal to 0
otherwise. Then

Y Ifu(k) —f(R) =2 X (f(k) —fu(k) = XL d.(k).

keD keB, keD

Since d,(k) <2f(k) for all & and n, then, applying the Lebesgue domi-
nated convergence theorem to the series ¥ ,.pd,(k), we conclude that (a)
implies (e).

Hence all the modes from (a) to (f) are equivalent.

If we let h(k) = 1 for all k, then (g) is reduced to (e). Therefore (g) implies
all the others. The example in Section 2 with r,;=q, =1/n, 0 <A <1,
shows that (g) is stronger than (a) and hence is the strongest. In that example,
E(h(S))) = .

Here is another simpler and more general example. Let f be a pdf defined
on {0,1,2,...}, with f(0) > 0 and finite first moment u. Define h(k) =%
and f,0) =01 - 1/n), f(n)=Ff(n)+f0)/n and f(k)=[f(k) for
.all other k. Then f, is a pdf for all n with finite first moment p + f(0) and

S—olf (k) — f(R)| = 2f(0)/n. But XL%_, h(R)If (k) — f(R) =f(0) >0 for
alln. O
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