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Starting at x in a Polish space X, a player selects the distribution o of
the next state x; from the collection I'(x) of those distributions available
and then selects the distribution oy(x;) for x, from I'(x;) and so on.
Suppose the player wins if every x; in the stochastic process x;, xo, ... lies
in a given Borel subset A of X, that is, if the process stays in A forever. If
{(x,y): vy € I'(x)} is a Borel subset of X X P(X), where P(X) is the natural
Polish space of probability measures on X, and if 0 < p < 1, then a player
can stay in A forever with probability at least p if and only if the player
can stay in A up to time ¢ with probability at least p for every Borel stop
rule ¢. A similar result holds when the object of the game is to visit A
infinitely often.

1. Introduction. A random version of Konig’s lemma was proved by
Purves and Sudderth [17] in the general finitely additive setting of Dubins and
Savage [5]. In the gambling theory of Dubins and Savage, the state space X is
an arbitrary nonempty set and probability measures are finitely additive and
defined on all subsets. The theory permits the treatment of interesting prob-
lems while avoiding many issues relating to measurability. Our main result
(Theorem 1.2) is a Borel-measurable (hence, more constructive) version of the
generalized Konig’s lemma of [17]. Quite unsurprisingly, the major new diffi-
culties in the proof revolve around problems of measurability, which are
surmounted through the methods of effective descriptive set theory.

Let X be a nonempty Borel subset of a Polish space and let P(X) be the
collection of countably additive probability measures defined on the Borel
subsets of X. Equip P(X) with its usual weak topology so that it, too, has the
structure of a Borel subset of a Polish space [see, for example, Chapter II of
Parthasarathy [15] for information about the weak topology on P(X)]. An
analytic (Borel) gambling house T on X is a mapping which assigns to each
x € X a nonempty set I'(x) € P(X) and such that the set

F'={(x,y) eXXP(X):yeTI(x)}

is an analytic (Borel) subset of the product space X X P(X). A player in the
house I starts at some initial state x and chooses a measurable strategy o at
x, which means a sequence o = (0, 0y,...), where o, € I'(x) and, for n =
1,2,...,0, is a universally measurable mapping from X" to P(X) such that
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0, (%4, Xg, ..., x,) € T'(x,) for every (x,x,,...,%,) € X" In case each o, is
analytically measurable from X" to P(X) (i.e., o, is measurable when X" is
endowed with the o-field generated by analytic subsets of X" and P(X) is
given its usual Borel o-field) and o,(x, x,,...,x,) € I'(x,) for every
(%1, x5,...,%,) € X", we say that o is an analytically measurable strategy at
x. Every measurable strategy o determines a probability measure, a.lso de-
noted by o, on the Borel subsets of

H=XXXX:--

This probability measure can be regarded as the distribution of the coordinate
process h;, h,,..., where h; has distribution o, and A,,; has conditional
distribution o,(x,, x,,...,%,) given h; =x;, hy =x,,...,h, =x,. It is not
hard to verify that if o is a probability measure on the Borel subsets of H
induced by a measurable strategy at x, then o is already induced by an
analytically measurable strategy at x. For x € X, let 2(x) be the collection of
all measurable strategies o at x. In the sequel, we shall frequently regard
2(x) as a set of probability measures on H, viz., the probability measures
induced by measurable strategies at x.

Let g: H - (—x,©) be a bounded, upper analytic function, that is, a
function such that for every real number c, the set {g > ¢} is analytic. The
properties of such functions that will be used in this paper may be found in [1],
[7] and [12]. Now regard g(h) as the payoff for a player who experiences the
history & = (hy, h,,...). The optimal reward operator M assigns to each such
g the function Mg on X defined by

Mg(x) = sup{og: o € 3(x)}.

We will follow de Finetti’s convention of identifying a set B with its indicator
function 15. We write M(B) for M1z when B is an analytic subset of H.
- Let now I' be an analytic gambling house on X and A a Borel subset of X.

Define
A*={heH:h;eA,i=1,2,...},

A"={he€eH:h, €A, i=1,2,...,n},
for n=1,2,....

THEOREM 1.1. If T'(x) is finite for every x € X, then
M(A*) = inf{M(A"):n > 1}.

This result can be viewed as a random form of Konig’s lemma. Indeed, it
reduces to K6nig’s lemma if every probability measure available in T is a point
mass.

To state our main result, we first introduce some notation and terminology.
For h,h' € H and for a natural number n, we write h =, h' if h, = h/,
t=1,2,...,n. A mapping 7 from H to N U {x}, where N ={1,2,...}, is
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called a stopping time if
7(h)=neN and h'=, h imply 7(h') =n.

A stopping time 7 is Borel if for each n € N, the set {r < n} is a Borel subset
of H. A stop rule is an everywhere finite stopping time. For a stop rule ¢, let

A= (h € H: h € A™W},

THEOREM 1.2. For every analytic house I' and Borel set A C X,
M(A*) = inf{M( A*): t a Borel stop rule}.

This result is the Borel analogue of Theorem 2 in [17]. To state our final
result, let

{Ai.o.} = {h: h; € A for infinitely many i}.

THEOREM 1.3. For every analytic house I' and Borel set A C X,
M({Ai.o0.})=inf{ M({7 < »}): ra Borel stoppingtime and {Ai.0.}C {1 < }}.

This is, of course, the Borel analogue of Theorem 3 of [17].

We now fix some notation in respect of strategies and stopping times.

Suppose o is a measurable strategy at x and p € X™. We define a measurable
strategy o[ p]l at (p),,, the mth coordinate of p, as follows:

(e[p])o =0.(p)
and, for n > 1,

(0-[p])n(x17 x2’ R xn) = o-m+n(px1x2 T xn)7
where px;x, --- x, is the element of X™*" obtained by catenating p and
* (x1,%9,...,%,). It is easy to verify that the measures (induced by) o[pl],

p € X™ are a version of the conditional o-distribution of (&, 1, %,,,9,...)
given (hy, hy, ..., h,,) =p. If 7 is a Borel stopping time and 7(h) < , we
write h_ = h (h) for h_,y; set p.=p(h)=(hyh,...,h,) and o[p]=
olp.Xh) = o[p.(R)]

If BC H and p € X™, then Bp will denote the set of 2 € H such that
ph € B, where ph is the element of H obtained by catenating p and h.
Similarly, if 7 is a Borel stopping time and 7(h) < », we write Bp, for the
function (Bp,)(h) = Bp,(h).

If 7 is a stopping time and x € X, define 7[x] on H by

r[x](h) = 7(xh) — 1.
Then either 7[x] is again a stopping time or is identically equal to zero.
There is a natural way to associate with every stop rule an ordinal number
Jj(@), called the index of t, by setting j(0) = 0 and requiring that
J(#) = sup(j(¢[#]) + 1: x € X},
for every stop rule ¢. This terminology is due to Dellacherie and Meyer [4], but
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J(#) is familiar to students of Dubins and Savage as being the structure of the
finitary function &, (see [5], pages 14-15 and [11], Proposition 4.1) except in
the case when X is a singleton.

This is how the rest of the paper is organized. In Section 2 we establish an
integration formula for the optimal reward operator M. Section 3 deals with
the optimality equation which arises out of the problem of staying in a set
forever and contains the proof of Theorem 1.1. Sections 4 and 5 contain the
proofs of Theorem 1.2 and 1.3, respectively. In Section 6 we take up the
regularity properties of the optimal reward operator M and extend Theorems
1.2 and 1.3 to the case where A is an analytic subset of X. Section 7 reconciles
the countably additive setting of the present paper with the finitely additive
framework of [17]. In particular, we prove that even if nonmeasurable strate-
gies are allowed in the context of Theorems 1.2 and 1.3, the optimal reward
operator assigns the same value to all the sets under consideration. Section 8
contains further remarks about the optimality equation introduced in Section

3.

2. Basic integration formula. We begin with a result on measurable
selections which will be used several times in this article.

LEMMA 2.1. Let Y and Z be Borel subsets of Polish spacesand let E C Y X Z
be analytic with nonempty vertical sections. Suppose u: E — [0, 1] is an upper
analytic function and set v(y) = sup{u(y,2): z € E )}, y € Y, where E, is the
vertical section of E at y. Then v is upper analytic and, for each ¢ > 0, there is
an analytically measurable selector f: Y — Z of E such that

u(y, f(y)) >v(y) —¢, y€Y.
Proor. The first assertion is clear. For the second, choose n > 1 such that
1/n <e. Let
A, ={yeY:v(y) >(k—-1)/n}, k=0,1,...,n.
Since v is upper analytic, the sets A, are analytic. Define
B,={(y,2) €eYXZ:(y,z2) €E and u(y,z)>(k—1)/n},
k=0,1,...,n.
Again the sets B, are analytic. By the von Neumann selection theorem ([14],
4E.9, page 240), for each k, there is an analytically measurable function f:
A, — Z such that (y, f,(y)) € B, for all y € A,. Define
f(y)=fk(y) inyAk_Ak+17k=O111~“7n1
where A, ;= 3. Since Y= U};_o(A, —A,,,), the function f is defined
everywhere on Y. Plainly, f is analytically measurable. Finally, if y € A, —
A, ., then ’

u(y, f(y)) =u(, () > (k-1 /nz2v(y) —1/n>v(y) —e. O
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LemMma 2.2. For each analytic set B c H, M(B) is an upper analytic
function.

Proor. Let u(x,o) = o(B) for o € 2(x). Then, for x € X,
M(B)(x) = sup{u(x,0):0 € 3(x)}.

Since u is upper analytic ([1]) and the set 3 = {(x, 0): o € 3(«x)} is analytic ([3]
or [19]), the first assertion of Lemma 2.1 implies that M(B) is upper analytic.
O

For each Borel stopping time 7 and every h for which (k) < =, define
M(B,7) = M(B,7)(h) = M(Bp,(h))(h.(h)),

which can be interpreted as the optimal return given the past up to time 7.

LemMa 2.3. If 7 is a Borel stopping time and B a Borel subset of H, then
the function M(B, 1) is upper analytic on the set {r < =}.

Proor. Let u(h,o) = o(Bp,(h)) if 7(h) < © and o € 3(h,). It is easy to
verify that u is Borel measurable on the analytic set E = {(h,0) € H X P(H):
7(h) < ® and o € (k). Plainly,

M(B,7)(h) =sup{u(h,0):0c € E,} ifr(h) < ce.

The conclusion now follows from the first assertion of Lemma 2.1 with
Y={r<x}. O

LEMMA 2.4. There is a Borel measurable mapping v: P(H) X X — P(H)
such that for each o € P(H), v(o, x) is a regular conditional o-distribution of
(hg, hsy,...) given by = x.

Proor. See Lemma 2.2 of [12]. O

For 0 € P(H) and x € X, we write o[x] for v(o, x); more generally, if
Xy, X9, ..., %X, € X, we shall write o[x,x,,...,x,] for olx[x,] - [x,]. If
o € P(H), o, will denote the marginal distribution of o on the first coordinate
of H. This notation is identical with what we introduced in Section 1 for
strategies, but it should be clear from the context which entity we have in
mind.

We are now ready to establish the basic integration formula for the optimal
reward operator M.

THEOREM 2.5. Let B be a Borel subset of H and 7 a Borel measurable
stopping time such that B C {t < «}. Then

M(B)(x) = supf M(B,7)do,
oel(x) {r<=}

forall x € X.



428 A. MAITRA, R. PURVES AND W. SUDDERTH

Proor. (i) Lemma 2.3 ensures that the integral above on the right side is

well defined.
(i) Let o € 3(x). Then

o(B) =o(B N {r<x})

= | ote1(Bp) do

< f M(B,7)do.
{r <}

Take sup over o € 3(x) to get
M(B)(x) < sup f M(B,7)do.
ge3(x) "{r <}

(iii) Let £ > 0 and fix x € X. In order to prove the opposite inequality, it
suffices to find o* € 3(x) such that

o*(B) > sup f M(B,7)do —«.
TeX(x) T <}

Let © and E be as in the proof of Lemma 2.3. An application of Lemma 2.1
yields an analytically measurable selector : {7 < ®} - P(H) of E such that

o(h)(Bp,(h)) > M(B,7)(h) — ¢/2,
for every h € {7 < «}.
Next choose ¢ € 3(x) such that
[ M(B,7)dé > sup j M(B,7)do — /2.
{7 <o} se3(x) <}
Set h* = (x*,x*,...), where x* is a fixed element of X and let
&(p,(k)) = 7(p.(h)h*).
Then define o* to be the composition of (&, 7) with & as in [5]; that is,
og" = 6y,
oX*(hy,hgy...,h,) =6,(hy,hg,..., h,)
. ifl<n<7(hy,hg....,h,,...),
il AV XUS) | R ST 3 )
if r(hy,hgy..shy,...) <n and (6(p.(R))A, i1, hrigr---hol)o €T(R,),
=g(h,)
if 7(hy, hy,... hyy...) <n and (G(P(A))Ppsss bosgs--rBnl)e € T(R,),

where g: X —» P(X) is an analytically measurable selector of I'. Then o* is
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measurable, so o* € 3(x). Finally,

o*(B) = [ _ o*lp.)(Bp,) do
>f M(B,7)do* —¢/2
{r <o}
=[ M(B,7)dé — /2
{r <o}

> sup M(B,7)do —e.

ges(x) r<e}

This completes the proof. O

3. The optimality equation. If we set B = A” and 7 = 1 in Theorem
2.5 and use the change of variable theorem, we get Lemma 3.1.

LeMMma 3.1.

M(A®)(x) = sup fA M(A™)(x") dy(x'),

yel(x)

for each x € X. Moreover, 0 < M(A”) < 1.
The optimal reward function for A®, therefore, satisfies the equation

(3.1) u(x) = sup fu(x’)dy(x'), xeX.

yer(x)

We call (3.1) the optimality equation for the ‘“staying in A forever’ problem.
We shall only concern ourselves here with solutions « of (3.1) such that
0 < u < 1; so, in the sequel, a solution u of (3.1) will be assumed to satisfy
0 < u < 1. We now show that M(A™) is the largest upper analytic solution of
(3.1). Indeed, Lemma 3.2 establishes a slightly stronger result.

LEmMA 3.2. Suppose w: X — [0, 1] is an upper analytic function such that
(3.2) w(x) < sup fw(x’) dy(x'), =xe€X.

yel(x) A
Then, for any x, € X and ¢ > 0, there is an analytically measurable (Markov)
strategy o at x, such that
o(A”) > w(x,) — &.

Consequently, M(A®) > w.
“ProoF. Let u(x,y) = [yw(x)dy(x"), for y € I(x), and let E = T. Then u

is an upper analytic function (see, for instance, [1]) on the analytic set E. By
Lemma 2.1, for each m > 0, there is an analytically measurable selector g,,:
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X » P(X) of T such that

u(x,gn(x)) > sup /w(x') dy(x') —e/2m*1,
yel(x) A

for all x € X, so that, by virtue of (3.2),
u(x, g,(x)) >w(x) —e/2m*,

for all x € X. Define a strategy o at x, as follows:

oo = 8o(%0)»
(X1, %503 %,,) = 8m(%,,), m > 1.
Then o is an analytically measurable Markov strategy at x,. Next define a
sequence of random variables S, on H as
So = w(xo),
S, (k) =A"(h)w(h,) +e(1-1/2"), n>1.

It is straightforward to verify that ¢S, > S, for all n > 1 (indeed, under o,
the sequence {S,} is a submartingale). Thus

o(A*(h)w(h,)) +e(1-1/2") 2w(x), n=21,
S0
og(A") +e(1-1/2") > w(x,), n>1,
since 0 < w < 1. Now let n — = and note A" | A”, so

og(A®) +e>w(x,y). ]

COROLLARY 3.3. M(A™) is the largest upper analytic solution of the opti-
mality equation (3.1).

We are now in a position to prove Theorem 1.1.

Proor oF THEOREM 1.1. Since A™ D A®*! and the optimal reward operator
M is monotone, it follows that M(A") > M(A"*!). Let @ = lim, M(A™). By
Lemma 2.2, M(A”") is upper analytic. Consequently, since @ is the limit of a
nonincreasing sequence of upper analytic functions, @ is also upper analytic
(7). Furthermore, 0 < @ < 1.

Again, as M is monotone, @ > M(A”). To prove the reverse inequality, it
~ suffices by virtue of Lemma 3.2 to prove that @ satisfies (2). To see this, fix

x € X. Since I'(x) is finite, there is y* € I'(x) and an increasing sequence
n, <ny < --- of positive integers such that
sup [M(A”i)(x’) dy(x') = [M(A”i)(x’) dy*(x'), i>1.
yel(x) A A
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Now putting B = A™*! and 7 = 1 in Theorem 2.5, we get
M(A"*Y)(x) = sup [ M(A™)(x)dy(x), i1,
yel(x) A
so that
M(A™)(x) = [ M(A™)(x) dy*(x), iz 1.
A

Now let { — « and use dominated convergence to obtain

Q(x) /A Q(x') dy*(x')

IA

sup fAQ(x') dy(x').

yel(x)
Thus, @ satisfies (3.2) and the proof is complete. O

4. The proof of Theorem 1.2. In this section, we set
Q(x) = inf{M(A*)(x):t a Borel stop rule}, x € X.

Since M is monotone and A” c A’ for each Borel stop rule ¢, it follows that
M(A®) < Q. So it remains only to prove that M(A®) > Q.

We first consider the case when the fortune space X is countable. To prove
M(A®) > @, it suffices to show, by virtue of Lemma 3.2, that @ is upper
analytic and satisfies (3.2) of the aforementioned lemma. Since X is countable,
@ is, in fact, Borel measurable. Now let £ > 0. For each x € X, choose a Borel
stop rule ¢, such that

M(A%)(x) < Q(x) +&.
Define a stop rule ¢* by setting
t*[x] =¢,.

Since X is countable, #* is Borel measurable on H. Moreover, for any x € X,

Q(x) < M(A™)(x) = mp /A M(A"=Y)(x') dy(x")
= sup [ M(A%)(x") dy(x)
yel(x) A
< sup fQ(x')dY(x')+e,
yeTl(x)

where the first equality is by virtue of Theorem 2.5. Letting ¢ — 0, we get
(3.2) of Lemma 3.2, and the proof is complete.

“When the fortune space X is uncountable, the proof given above runs into
difficulties. First, it is far from clear that @ is (universally) measurable, far
less that it is upper analytic. Second, the rough-and-ready method employed
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above to construct the stop rule ¢* will not yield a Borel stop rule, unless the
stop rules ¢, are chosen with a good deal more circumspection and care. To get
around the first difficulty, we shall define an upper analytic function on X,
which satisfies (3.2) of Lemma 3.2 and majorizes Q. As for the second,
fortunately, the methods of effective descriptive set theory are tailor-made for
making careful choices. The rest of this section is, therefore, an excursion into
descriptive set theory.

But first we recast the function @ into a more tractable form. So far in the
paper we have worked with the product topology on H = XV, when X is
assigned the topology under which it is a Borel subset of a Polish space. We
now introduce a second topology on H, viz., the product topology when X is
assigned the discrete topology. In the sequel, the words “clopen,” “‘open,”
“closed”” and G;, when used to qualify subsets of H, will refer to the second
topology; while the words Borel, analytic and coanalytic will refer to the first
topology.

LEMMA 4.1. Let E be an analytic subset of X and O a coanalytic, open
subset of H such that E* C O. Then there is a Borel stop rule t such that
EtcoO.

ProOF. Set O; = (E‘)° U O, i > 1. Then the sets O, are coanalytic and
open. Furthermore, O, 1 H. Hence, by Proposition 2.6 in [11], there is a Borel
stop rule ¢ such that O, = H. It follows that E* c 0. O

LemmMA 4.2. For each x € X,

Q(x) = inf{M(K)(x): K Borel, clopen and K 2 A*}.

Proor. The inequality > from left to right follows from the fact that A®
is Borel and clopen for each Borel stop rule s. In the opposite direction, the
inequality follows easily from Lemma 4.1. O

The characterization of @ above eliminates stop rules. The reason for doing
this is that Borel, clopen subsets of H admit nice parametrizations, at least for
suitable X.

Effective descriptive set theory takes place in Polish spaces which admit a
smooth recursion theory. This is made precise in the next definition.

We say that a topological space Z is Al-recursively presented if Z admits a
complete metric d and a dense sequence (r,),, , such that the relations

d(r,,r,) <p/q+1 and d(r,,r,) <p/q+1

are Aj in w*. Examples of such spaces are 2, 2°, »®, [0,1] [0, 1], etc. (see
Moeschovakis [14], pages 128-135).
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Suppose now that Z; and Z, are Al-recursively presented compact metric
spaces. Then Z; X Z, and P(Z,), the set of probability measures on Z,, are
again Al-recursively presented compact metric spaces (Louveau [8], [10]).

In what follows, our terminology and notation, pertaining to concepts in
effective descriptive set theory, are taken from Moschovakis [14].

LEmMA 4.3. Let Z be a A%-recursively presented compact metric space and
let N be a nonempty 3} set of probability measures on Z. For each subset E of
Z, let

®(E) = sup{pn*(E): p € N},
where u* is the outer measure induced by w. If P is a 3} subset of Z, then

®(P) = inf{®(B): Bis A} and B 2 P}.

Proor. The inequality from left to right being trivial, it remains to prove
the inequality in the opposite direction. Assume that P is not A} and
®(P) < a, where a is a rational in (0, 1). Now there is a function ¢ on Z — P
into the ordinals such that:

(a) The range of ¢ is an ordinal.
. (l;) For each ¢ < w$¥ (the Church—Kleene w,), the set {z € Z — P: ¢(2) < ¢}
B ?cl) The relation
z<izeze€Z-P and [2' €Por¢(z)<¢(2)]isl].
(d) The relation ‘

z<iz eze€Z-P and [2' €Pord¢(z)<¢(2)]isIIj.

The existence of ¢ can be proved by using the basic representation theorem
for II sets ([14], 4A.3) and transferring the canonical norm on the set of
ordinal codes ([14], 4A.2) to the set Z — P. Now fix such a ¢.

Now consider the set

C= {z €Z:(Ap e N)(,u({z’: 2 <iz})<1- a)}.

To see that C is 3}, imitate the computation in the proof of Theorem 2.2.3(a)
in [6]. Furthermore, C C Z — P. For, if z € P, then{z' € Z: 2' <} 2} =Z - P,
sothat u({z' € Z: 2’ <} 2}) = w(Z — P) > 1 — a for every u € N, hence z & C.
Consequently, by the first principle of separation for 3} sets ([14], page 204),
there is a Al set D such that C c D c Z — P. Now use the proof of the
boundedness theorem ([14], 4A.4) to get ¢ < w® such that D c{z € Z — P:
¢(2) < ¢). Since Z — P is not Al, it follows from (b) that the length of ¢ is at
least w$X. Consequently, since w%¥ is a limit ordinal and the range of ¢ is an
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ordinal, ¢ + 1 is in the range of ¢. So there is z, € Z — P such that ¢(z,) =
£ + 1, hence z, ¢ C. It follows that

w{z€Z-P:¢(2) <&}) =u({z€Z:2<} 2})>1-a,

for every u € N.

Set B* =Z — {z € Z — P: ¢(2) < £}. So, by (b) above, B* is Al. Further-
more, P ¢ B*, and finally, u(B*) < a for every u € N. Hence, ®(B*) < a.
Since a is an arbitrary rational in (0, 1), this establishes the inequality. O

The analogous result for capacities was established by Louveau ([10], Corol-
lary 2.5). It is not hard to see that ® is, in general, not a capacity; it lacks, in
general, the going down property of capacities on decreasing sequences of
compact sets. Lemma 4.3 can also be deduced directly from a result of Barua
on definable hereditary families of sets in his 1986 Ph.D. thesis.

We record for future use the boldface version of Lemma 4.3. The transition
to the boldface result is routine and we omit the proof.

COROLLARY 4.4. Suppose Z is a Borel subset of a Polish space and let N be
a nonempty, analytic set of probability measures on Z. Let ® be defined as in
Lemma 4.3. If P is an analytic subset of Z, then

®(P) = inf{®(B): Bis Borel and B 2 P}.

We now work in 2%, the space of sequences of 0’s and 1’s. Then, since 2* is a
Al-recursively presented compact metric space, so are H = 2 X 2¢ X
29 X +--,2% x [0, 1], P(H) and P(2* X [0, 1]) (see [8], [10]).

Following Louveau ([9], page 13), we say that the pair (W, C) is a coding of
Borel subsets of a Al -recursively presented compact metric space Y if (a) W is
a II} subset of w® X w; (b) C is a I1} subset of ®* X w X Y whose projection
. on w” X w is W; (c) the set {(a,n,y) € w* X 0 X Y:(a,n) € Wand (a,n,y) &
C} is I13; (d) for fixed (a, n) € w* X w, the section C, , = {y € Y: (e, n,y) € C}
is AY(a); (e) if @ # P C Y is Al(a), then there is an n such that (a,n) € W
and P=C, ,.

Fix a coding (W, C) of Borel subsets of the Al-recursively presented compact
metric space H. We will be interested in (@, n) € W such that C, , is Borel
and clopen. Define W* C w” X w as follows:

(a,n) e W* & (a,n) €W,
and (V h)[(e,n,h) &€ Cor (A m)(Yh)(h' =, h > (a,n, k) €C)],
and (V &)[(a,n,h) €Cor (A m)(Yh)(h' =, h > (a,n, k) &C)].

Plainly, W* is II} and if (a,n) € W, then (a,n) € W* if and only if C, , is

clopen. Set '
C*=Cn(W*xH).

Then (i) C* is II} and the projection of C* to w® X w is W*, (i) the set

{(a,n,y} €w® X X H:(a,n) € W*and (a,n, h) & C*}isI1}; (ii) @ # Pc H

is A'(a) and clopen if and only if P = C}, for some (a,n) € W*.
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Suppose now N is a nonempty, 3] subset of 2 X P(2*) and M a nonempty,
31 subset of 2 X P(H) such that whenever uwEM,_, x, €2 we have
Xg 0

po({x € 2°:u[x]eM,})=1 and pu,€ N.,,

where u[x], x € X, is a version of the regular conditional distribution of
(hg, hg,...) given h; = x (by courtesy of Lemma 2.4) and u, is the distribu-
tion of A, under u. For each Borel subset B of H, let

Y(B)(x) = sup{u(B): n € M,}, x € 2,
Finally, let A be a A} subset of 2 and define, for x € 2¢,
R(x) = inf{¥(K)(x): K Aj(x), clopen and K 2 A%}.

LEmMMA 4.5. The set {(x,a) € 2° X [0,1]: R(x) > a} is 3} in 2% X [0, 1].

Proor. Observe that
R(x) za o (Vr)(¥Yn)[(r<aand(x,n) € W*and A” C Cj*,)
- (Ap eM,)(u(C,) >r)],

where r runs through the rationals in [0, 1], and we think of 2“ as being
imbedded as a I1¢ subset of w*. Using again the proof of Theorem 2.2.3(a) in
[6], the facts recorded above about C* and W* and the hypothesis that M is

1, it is easy to verify that the condition on the right of < is 31, which
completes the proof. O

We are now ready to establish the key result which will help us prove
. Theorem 1.2 when the fortune space X is uncountable.

THEOREM 4.6. For each x € 2°,

R(x) < sup | R(x') dy(x).

‘ye

Proor. Let E = {(x,a) € 2° X [0,1]: R(x) > a}. By Lemma 4.5, E is 3},
hence sois E N (A x [0,1].

Fix xy € 2“ and & > 0 rational. Now the set {y X A: y € N, }is a 3}(x,) set
in P(2® X [0, 1]), where A is Lebesgue measure on [0, 1]. It now follows from
the relativization of Lemma 4.3 to x, that there is a A'(x,) set B c 2° X [0, 1]
such that E N (A x [0,1]) € B and

sup (y XA)(B) < sup (y XA)(EN (A ><‘ [0,1])) + /3

'yeNx0 ')'EN;,‘0
(4.1) '
= sup fR(x) dy(x) +¢e/3.

Y ENxo
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Define g: 2¢ — [0,1] by

g(x) = A(B,).
Note that g is Al(x,)-recursive, g > R on A and, from (4.1),
(4.2) sup fg(x) dy(x) < sup fR(x) dy(x) + /3.
yeN,, vEN,, A

We now define a set P € 2° X w as
(x,n) €eP o (x,n) € W*, and A*cC},,
and (Ypu € M,)(u(Cr,) <g(x) +¢e/3).
Using results from Kechris [6], it is straightforward to verify that P is a
i(x,) set. It now follows from the definition of R and the fact that g > R on
A that
(VxeA)(3 n)((x,n) € P).
Hence, by the Kreisel selection theorem ([14], page 203), there is a Al(x,)-re-
cursive function f: 2“ - w such that
(Vx €A)((x, f(x)) €P).
Define K* c H by
h € K* hl €A and (hla f(hl)’h*) € C*’
where h* = (hy, hg,...). Plainly, K* is a Al(x,), clopen subset of H contain-
ing A”. Consequently, R(xy) < ¥(K*Xx,). Choose u € M, such that

(4.3) w(K*) = R(x,) — £/3.
Now
(44) w(K*) = [ulx)(K*x) duo(x).

If x ¢ A, then K*x = &, so u[x(K*x) = 0 < g(x). If x € A and if u[x] € M,,
then it follows from the definition of K* that u[x}(K*x) < g(x) + £/3. Conse-
quently, by virtue of our hypothesis on M, we have

(4.5) mo({x € 2°: u[x](K*x) < g(x) +£/3}) = 1.
Using (4.2), (4.3), (4.4) and (4.5), we have

R(x,) —¢/3 < [2(x) duo(x) +¢/3

< sup /g(x)dy(x) +‘s/3

Y eNxo

< sup fAR(x) dy(x) + 2¢/3,

Y Equ
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where the second inequality is by virtue of the fact that u, € N, . Thus,

R(x,) < sup /R(x) dy(x) + e.
yeN.
The proof is completed by letting ¢ — 0 and observing that x, is an arbitrary
element of 2. O _

We now return to our gambling problem where we assume that our fortune
space X is 2. Recall that I is an analytic gambling house on X and that A is
a Borel subset of X.

CoroLLARY 4.7. If X = 2, then there is an upper analytic function R:
X — [0, 1] such that R > @ and

E(x) < sup [ R(x")dy(x),
yel(x) A

for every x € X.

ProoF. In Theorem 4.6, wetake N =TI, M =3 and A = A. Since I" and 3
are analytic and A is Borel, there is an @ € w® (indeed, @ can be chosen to be
in 2°) such that ' and 3 are both 3}(a) and A is AY(a) (see [14], page 160). It
is easy to verify that N, M and A satisfy the hypotheses of Theorem 4.6 except
that the definability conditions are satisfied with a parameter a. So, by
relativizing Theorem 4.6 to the parameter a, we get the second inequality of
the present corollary, if we define R as

R(x) = inf{M(K)(x): KAY(a, x), clopen and K 2 A7},

for x € X. Recall that, with our present choice of N and M, V¥ is just M. That
‘R is upper analytic follows from a relativization of Lemma 4.5. Finally, since
each Al(a, x) subset of H is a Borel set in H, the inequality @ < R is clear
and the proof is complete. O

It is now easy to complete the proof of Theorem 1.2. It only remains to
establish the theorem when the fortune space X is uncountable. By the Borel
isomorphism theorem ([15]), we may assume without loss of generality that
X = 2¢. By Corollary 4.7 and Lemma 3.2, we then have

M(A®) >R > Q.
This completes the proof of Theorem 1.2.

In the finitely additive setting of [17], a stronger statement is true (see
Theorem 2 in [17]). The analogue of this statement in the present setting
would assert that for every £ > 0, there is a Borel stop rule s such that

M(A%)(x) < M(A®)(x) + &,

for every x € X.
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We conclude this section with an example which shows that the above
statement does not hold in general. Our example is related to the basic

example of [12].

Let N ={1,2,...} and let T be the collection of all stopping times on NV,
Give N U {x} the usual compact topology and give T its topology of pointwise
convergence. Then T is a compact metric space ([4]).

In our example, the fortune space X is T' U {0}. The gambling house T is
defined as

I'(¢t) ={6(t[n]):neN} ifteT,
= {8(0)} ift =0.

It is not difficult to verify that (X, I') is a Borel gambling problem. Take the set

Atobe T, so A is a Borel subset of X.
Let ¢ = 3. Toward a contradiction, assume that 7 is a Borel stop rule on

H = X" such that
M(A™)(x) < M(A°)(x) + 3,

for every x € X.

Since M(A®)(¢) = 0 for every stop rule ¢ € T, the above inequality implies
that M(A™)(¢) < 3 for every stop rule ¢t € T. We will arrive at a contradiction
as soon as we show that there is a stop rule ¢* € T such that M(A™)(¢*) = 1.

To see this, note that, by a result of Dellacherie [2], the index j(7) < w;.
Choose a stop rule t* € T such that j(r) < j(¢*). Using the definition of index,
one can define inductively positive integers rn,, ny, ..., n, such that

J(r[e*[n ][4 [n)no]] - [ [n4][ne] -+ [m]])
<j(#*[n,][nz] - [n;]), 1<ic<k,

where £ is the least positive integer i for which the left side is zero. It follows
that

T(t*[n1],t*[n1][n2]nH’t*[nl][nz] te [nk]"") =k.

Since j(t*[n,Iny,] -+ [n,D > 0, each t*n lny]---[n;] is in T. So
M(AD)(@*) = 1.

5. The proof of Theorem 1.3. We assume that X — A is nonempty. We
define a new gambling house in which the problem of staying in A forever is
equivalent to the problem of visiting A infinitely often in the original gam-

bling house. X
" Fix an element x* € X — A and denote by 7* the time of first entrance into

A. Define a mapping ¢: H —» X by
W(h) = h.. if 7*(h) <,
=x* otherwise.
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Let
F(x) ={oy:0e3(x)}, xe€X.
Since 3 is analytic ([3]) and the mapping o — o¢~! is Borel, it follows that [

is an analytic gambling house. We will denote by M the optimal reward

operator for I. .
Let 7, be the time of rth entrance into A, n > 1, so that 7; = 7*. Define ¢:

H—H by

¢(h)=(x*7x*7) ile(h)=°°1
= (hTI,h,Z,...,th,x*,x*,...) ifr,(h) <wand 71, (k) =,
=(h,ph,,...) if 7,(h) <, alli>1.

Suppose now ¢ is a Borel stop rule and let
0(t) = ¢71(A).
We record a few simple properties of ¢ and O(¢).

LemMa 5.1. (a) If 7*(h) < o, then ¢(p.(R)R) = h_.¢(h') and
Ot)p,(h) = Ot h D).

(b) O(¢) is Borel and open.

() {Ai.o} cO@) c{r* < x}.

The proof is straightforward and is omitted.

LemMMa 5.2. M(O(2)) = M(AY).

ProOF. We prove this by induction on j(¢). For ¢t =1, O(t) = ¢ (A X
X XXX +++)=¢"1(A), so the assertion of the lemma is true by virtue of the

definition of T'. Suppose now that the assertion is true for all Borel stop rules s
such that j(s) <j(¢). Then, for any x € X,

M(O(¢))(x) = sup M(O(t)p)(h,) do
ge3(x) {r* <}
= sup M(O(t[h,]))(h,) do

ges(x) " {r* <}

sup M(A™")(h_ ) do

oe3(x) " {r* <=}

sup fM(A’["'l) dy
yef(x) A

= M(A)(x).
The first equality is by virtue of Theorem 2.5, the second is by Lemma 5.1, the
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third is courtesy of the induction hypothesis, the fourth is by the change of
variable theorem and the definition of I" and the last equality is by virtue of
one more application of Theorem 2.5. O

LemMma 5.3. M({A i.0}) < M(A).
Proor. By Theorem 2.5, for any x € X,

M({Aio)})(x) = supj M({Ai.o})(h,*)da

oce3(x) " {r* <}

= sup fM({Ai.o.})dy,
yel(x) A

the second equality being a consequence of the change of variable theorem and
the definition of T

Thus, M({A i.0.}) is a solution of the optimality equation (3.1) of Section 3.
Moreover, 0 < M({A i.0}) < 1. Hence, by Corollary 3.3 applied to the gambling
house T,

M({Aio.}) < M(A). |

LEmMMA 5.4. For every € > 0 and x, € X, there is a o* € 3(x,) such that
o*({Ai.0)) > M(A®)(x,) — «.
Consequently, M({A i.0.})) > M(A®).

ProorF. By Lemma 3.2 applied to the gambling house I, there is an
analytically measurable (Markov) strategy o at x, such that

o(A®) > M(A®)(x,) — .

Suppose 0,(x1, X5,...,%,) = g,(x,), m >1, where g,: X— P(X) is an
analytically measurable selector of I'. To complete the proof, we need to
unravel o into a strategy for the original gambling house I

Let f:3 — I be defined by

f(x10') = (xa a"»b_l)'

Then f is Borel measurable and, since 3 is analytic, it follows from the von
Neumann selection theorem that there is an analytically measurable function
f: T - 3 such that f(f(x, y) = (x,7), for all y € I'(x), x € X. Let fy(x,y) be
the second coordinate of f(x, y) for y € I'(x), x € X. Choose a measurable
strategy & at x, such that d¢~! = o,
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Now define a strategy o* at x as follows:
0'0* =6’0,

O'n*(hl, hz, ceey hn) = én(h]_, hz, ceey hn) if]. <n< ’T]_(hl, h2,. cey hn,. .o ),
= (f'Z(hrk’ gk(h'rk))[h‘rk+1’ hrk+2"' ° hn])o
ika(hl’hZ""’hn’"')Sn<7k+1(hl’h2""’hri"")
and(f‘;(hfk’gk(h‘rk))[h‘rk+1’h‘rk+2""’hn])oer(hn):
=&(h,)
ika(hl’hZ""’hn"") <n <'Tk+1(h1,h2,...,hn,...)
and (fz(h-rk’ gk(h‘rk))[hrk+1! h1k+2’ e hn])o & F(hn)’

where g: X - P(X) is an analytically measurable selector of T. It is easy to
check that o* € 3(x,).
In order to complete the proof, we will verify that

(5.1) a*({Ai.o.}) = (A,

from which it will follow that o*({A i.0}) > M(A*Xx,) — &. The second asser-
tion of the lemma is an immediate consequence of this.
Now, for each n > 1, define ¢,: H - X" by

Un(h) = (B heyy. b)) i 7 (R) <o,
= (h,, Bogsoois by %, .., x%)
if(3i)(1<i<n,r_y(h) <wand 7,(h) = »),
where 7, = 0. We claim that for each n > 1 and Borel set
ECAXAX:---xXA=A,
n times
(5.2) c*(Y;Y(E)) =o(EXXX ).
Let us first deduce (5.1) from (5.2). Putting E = A, in (5.2), we get
o*({h € H: h; € A for at least n i’s})
= o*(¥:(A,)
=o(A"), n>1.

Now let n — « and (5.1) falls out.
We prove (5.2) by induction on n. For n = 1,

o* (Wi (E)) = 6(¢"HE)) =0o(E) = (EXX XXX ).

Suppose now (5.2) is true for n = m. It suffices to prove (5.2) with n = m + 1
for sets E of the form E; XE, X --- XE,, X E,,,,, where E; is a Borel
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subset of A. Now calculate as follows:

*Wnti(E)) = [ o', )(Unbi(E)p,) do

= '/(“r <°°)E1(h11)E2(h12) U Em(h‘rm)
Xfo(hr,s &mlh,)) (¥ (E, 1)) do*

= /{T <w)E1(h11)E2(h12) cee Em(h‘rm)gm(h'r,,,)(Em+1) do*
- /AmEl(hl)EZ(hz) o Bp(h)8m(B)(Epyy) do*yt

= ,/‘;mEl(hl)EZ(hz) e Em(hm)gm(hm)(Em+1) dO’

=0(E, XE;, X+ XE,XE,  XXXXX: ")
=0(EXXXXX-).

The second equality is justified by using the definition of o*, the third by
virtue of the fact that f(h, , fz(h, 1 &mh, M) =(h, ,g,(h,)), the fourth
involves an application of the change of variable theorem and the fifth is by
virtue of the induction hypothesis. O

We can now complete the proof of Theorem 1.3. Using Lemma 5.3, Lemma
5.4, Theorem 1.2 and Lemma 5.2, we have
M({Aio}) = M(A)
= inf{M( A’): ¢ a Borel stop rule}
= inf{ M(O(¢)): ¢t a Borel stop rule}.
But by Lemma 5.1(b), each O(¢) above is Borel and open, so
M({Ai.o.}) > inf{M(O): O Borel, open and O 2 {A i.0.}}.

Clearly, if 7 is a Borel stopping time, then {r < «} is Borel and open; con-
versely, if O is Borel and open in H, then there exists a Borel stopping time 7
such that O = {7 < «} (see [11]). It follows that

M({Aio)
> inf{ M({r < }): 7 a Borel stopping time and {4 i.0.} C {7 < ®}}.

Since the inequality in the opposite direction is trivial, the proof of Theorem

1.3 is complete.

In the case of Theorem 1.3 as well, the following stronger statement, the
analogue of which is true in the finitely additive setting (see Theorem 3 of [17])
fails to hold; in general, in the present setting.
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For every ¢ > 0, there is a Borel, open set O containing {A i.0.} such that
(5.3) M(O)(x) < M({Aio})(x) +e,

for every x € X.

One sees that this may fail by considering the example given at the end of
Section 4. Toward a contradiction, assume that (5.3) holds for some Borel,
open set O containing {A i.0.} and ¢ = 1/2. Now A” C O and since 8(0) is the
only gamble available at 0, M({A i.0.}) = M(A”). Hence, by Lemma 4.1, there
is a Borel, stop rule 7 on H = X” such that A" c O. It now follows from (5.3)

that
M(A™) <M(A®) + ¢,

the impossibility of which was established in Section 4.

6. Regularity. Theorems 1.2 and 1.3 can be viewed as regularity results
for the optimal reward operator M. For instance, Theorem 1.2 states that, for
each x € X, the value at x of M on the Borel, closed set A® is the infimum of
the values at x of M on Borel, clopen sets containing A”. Similarly, Theorem
1.3 states that the value at x of M on the Borel, G; set {A i.0.} is the infimum
of the values at x of M on Borel, open sets containing {A i.o0.}. A natural
question then, is whether, given an arbitrary Borel subset B of H, the value
at x of M on B is the infimum of its values at x on Borel, open sets
containing B. We have partial answers to this question, which we now present
in this section. .

We begin by defining a new gambling problem. Let X be a disjoint copy of
X. We will denote by ¥ € X the copy of x € X. Set

X*=XUXuX2u---,
where the union above is a disjoint union and X* is endowed with the union
topology. Under this topology, X* is a Borel subset of a Polish space. In the
new gambling problem, X* will serve as the space of fortunes. Next, we define

a gambling house I'* on X* as follows, where certain measures have been
identified in an obvious way:

I*(x) =T(x) ifxeX;
I'*(p) = {yé,:v€T((p),)} fpeX",n=>1,

where (p); denotes the ith coordinate of p and ¢,: X - X n+1 js defined by
¢,(x) = px. It is easy to verify that I'* is an analytic gambling house on X*.

Let M* denote the optimal reward operator for I'* and for p € X*, let
3*(p) denote the set of measurable strategies available at p in the new
galr}dbling problem. Set H* = X*.X X* X --- . Finally, define ¢: H — H* by

¢(h) = ((hl)’ (hl’ hz)’ (hl’ hza hs)» e )
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LeEmMA 6.1. Let B be a Borel subset of H*. Then
M*(B)(%) = M(y~'(B))(x),
for each % € X.
Proor. Let o € 2(x). Then o induces a strategy o* € 3*(x) as follows:
0'0* = 0'0,
and for n > 1,
Un*(pl’ DPgs..., pn) = a'l(pn)(pn)d’p_nl lf b, = U Xi’
i=1
=oy(x) ifp,=x€X,
where 1(p,) denotes the length of the finite sequence p,. Plainly o* = oy}
so that
o(¢~Y(B)) = o*(B) < M*(B)(%).
Take the sup over all o € 2(x) to obtain
M(y~Y(B))(x) < M*(B)(%).
Conversely, let o* € 3*(x). Thus o* induces a strategy o € 3(x) as follows:
oy = og',
and for n > 1,
a'n(xl’ Xgyeeny xn) = a'n*((xl)’ (xl’ xz), ] (xl’ Xgs s xn))'n'n_-:l’

. where 7, ,; is the projection function on X"*! to the last coordinate. It is
easy to check that o¢y~! = o*; consequently,

o*(B) =a(¢~(B)) < M(y~(B))(x).
Taking the sup over all o* € 3*(X), we get
M*(B)(%) < M(y~'(B))(x). m
LEmMMA 6.2. Let C be a Borel, closed subset of H. Then there is a Borel
subset P of U5_,X" such that
C =y ().
Proor. If C =@ or C = H, take P = @ or U%_,X". Suppose then that
@+ C=+H. Let O=H — C. By aresult in[11], there is a Borel stopping time
7 such that O = {r < «}. Let S = {p(h): h € O}. Then S is a Borel subset of

U7X’ and O = ¢y~ '({h* € H*: h¥ € S for some n > 1}). Consequently, if
weset P=U?_,X"'— S, weget C=y Y(P"). O
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THEOREM 6.3. Let C be a Borel, closed subset of H. Then
M(C)(x) = inf{M(K)(x): K Borel, clopen and K 2 C},

for each x € X.

Proor. By Lemma 6.2, there is a Borel set P c U7_, X’ such that C =

Y~ Y(P*). Let x € X. Then :
M(C)(x) = M(s"(P))(x)
= M*(P*)(%)
inf{ M*(K*)(x): K* Borel, clopen and K* > P*}
inf{M(y~*(K*))(x): K* Borel, clopen and K* 2 P}
> inf{ M(K)(x): K Borel, clopen and K > C}.

The second equality is by virtue of Lemma 6.1, the third is an application of
Theorem 1.2, the fourth is yet another application of Lemma 6.1 and the last
inequality is by. virtue of the fact that ¢ is continuous when both H and H*
are endowed with the product of discrete topologies on X and X*, respec-
tively. Since the inequality in the opposite direction is trivial, we are done. O

COROLLARY 6.4. Let B be an analytic, closed subset of H. Then
M(B)(x) = inf{ M(K)(x): K Borel, clopen and K D B},

for each x € X.

ProoF. Plainly, the left side is less than or equal to the right side. For the
reverse inequality, fix ¢ > 0 and x € X. By Corollary 4.4, find a Borel set D
such that B ¢ D and

M(D)(x) < M(B)(x) + &/2.

Now the analytic set B can be separated from the analytic set D° by a closed
set, viz., B itself. So, by Theorem 3.1 in [11], there is a Borel, closed set C such
that B c C c D. Apply Theorem 6.3 to the Borel, closed set C to get a Borel,
clopen set K, containing C such that

M(K,)(x) <M(C)(x) +e&/2.
Consequently, B ¢ K, and, since M(C) < M(D),
M(K,)(x) <M(B)(x) +e&.
So
inf{ M(K)(x): K Borel, clopen and K 2 B} < M(B)(x) +e.
As ¢ is arbitrary, the proof is complete. O

We now specialize Corollary 6.4 to obtain an extension of Theorem 1.2 to
the case where A is an analytic subset of X.



446 A. MAITRA, R. PURVES AND W. SUDDERTH

COROLLARY 6.5. Let A be an analytic subset of X. Then
M(A*)(x) = inf{M(A’)(x): ¢t a Borel stop rule},

for each x € X.

Proor. It suffices to prove that M(A>) is at least as large as the right side.
Fix ¢ >0 and x € X. By Corollary 6.4, there is a Borel, clopen set K
containing A” such that

M(K)(x) < M(A*)(x) + &.
So, by Lemma 4.1, there is a Borel stop rule s such that A* c K. Hence
M(A%)(x) < M(A*)(x) + &.

The conclusion of the corollary now follows easily. O
We turn our attention now to special Borel, G; sets.

LeEmMA 6.6. Let {G,} be a nonincreasing sequence of Borel, open subsets of
H. Set G = N5,_,G,. Then there is a Borel subset P of U7_,X" such that

G =y ({Pi.o)}).

Proor. For each n, let ¢, be a Borel stopping time such that G, = {¢,, < «}.
The existence of such a stopping time is proved in [11]. Set 7, =
max{t,, t5,...,¢,} + n. Then 7, is a Borel stopping time, G, = {7, < «} and
Ty < Ther 00 G,.

Let P,={p.(h): h€G,}, n>1. Then each P, is a Borel subset of
U?_,X". We claim that the P,’s are disjoint. Toward a contradiction, assume

_that P, N P,, # & for some k, m with & < m. It follows that p,(h) = p, (k)
for some A, A' € H, hence that 7,(h) = 7,(h') = g(say). So h; = h), 1 <i <q,
and therefore, 7,(h) = 7,(h") = 7,(h), contradicting 7, <r7,. Set P =
U%_,P,, so P is a Borel subset of U?_; X".

To complete the proof, we have to show that G = ¢ X({P i.0.}). Let, then,
h € G. Observe that, since 7, <7, < --- on G, p,(h) are all distinct and
belong to P, so (hy, hsy,...,h,,) € P for infinitely many m. Conversely, let
(hy,hy,...,h,) €P forall i>1, where 1 <n; <n, < ---. Since the P,’s
are disjoint, for each i > 1, there is a unique m; such that (&, A, ..., hni) IS
P, ,thatis, h € G,, . Furthermore, since 7,,(h) = n;, the m’s are all distinct.
Consequently, & € G,, for infinitely many n, so h € G. This completes the
proof. O

THEOREM 6.7. Suppose that G is a countable intersection of Borel, open
subsets of H. Then

M(G)(x) = inf{M(O)'(x): O Borel, open and O 2 G},
for every x € X.
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Proor. As usual, it suffices to prove that the left side is at least as large as
the right side. By Lemma 6.6, obtain a Borel subset P of Uj_;X* such that
G = ¢y~ ({P i.0}). Then, for any x € X,

M(G)(x) = M(s~H({P i.0))()

= M*({P i.0.))(%)
inf{ M*(0)(%): O Borel, open and O 2 {P i.o.}}
inf{ M(y~1(0))(%): O Borel, open and O 2 {P i.0.}
> inf{ M(O)(x): O Borel, open and O 2 G}.

The second and fourth equalities are by virtue of Lemma 6.1 and the third
involves an application of Theorem 1.3. O

We do not know if the result above is true for an arbitrary Borel, G, set. It
would be true and would follow from Theorem 6.7 if a Borel, G; set could be
written as a countable intersection of Borel, open sets. We do not know if this
latter statement is true. However, we have the following extension of Theorem
6.7.

COROLLARY 6.8. Let B be a countable intersection of analytic, open subsets
of H. Then

M(B)(x) = inf{M(O)(x): O Borel, open and O 2 B},
for each x € X.

Proor. Let ¢ > 0, x € X. By Corollary 4.4, find a Borel set D such that
~BcD and

M(D)(x) <M(B)(x) +¢&/2.

Write B = N%_,B,, where each B, is an analytic, open subset of H. It
follows that U= _, B¢ N D° = D°. The sets B N D° are coanalytic. So, by the
reduction principle [7], there exist (disjoint) Borel sets C, such that C, € B; N
D¢ and U%_,C, = D°. Hence, for each n, B, is an analytic set which can be
separated from the analytic set C, by an open set, viz., B, itself. Conse-
quently, by Theorem 3.1 in [11], there is a Borel, open set G, such that
B,cG, and G, N C, = @. It follows that B=N5_,B, < N5_,G, cD.

Set G = N%_,G,. By Theorem 6.7, there is a Borel, open set O, containing
G such that

M(0,)(x) <M(G)(x) +&/2.
Consequently, B € O, and
M(0,)(x) <M(D)(x) +e/2 <M(B)(x) +e. |

An immediate consequence is an extension of Theorem 1.3.



448 A. MAITRA, R. PURVES AND W. SUDDERTH

COROLLARY 6.9. Let A be an analytic subset of X. Then
M({Ai.o})(x) =inf{ M(O)(x): O Borel, open and O 2 {Ai.o}},
for every x € X.

7. Nonmeasurable strategies. As was explained in the introduction,
this paper is a sequel to an earlier paper [17]. In fact, the two papers establish
analogous results but in somewhat different mathematical settings. The earlier
work took place in the general finitely additive framework of Dubins and
Savage [5] and imposed no requirements of measurability on either sets or
strategies. In this section, we study the relationship between the finitely
additive results of [17] and the countably additive theory of this paper.

Assume that every gamble y available in T is defined on all subsets of X as
a finitely additive probability measure. We continue to assume that y re-
stricted to the Borel subsets of X is countably additive. Thus we can evaluate
such quantities as o(A®) and oc({A i.o}) for strategies o which are not
necessarily measurable by using the Dubins and Savage definition of the
measure o as extended by Purves and Sudderth [16]. If the strategy o is
measurable and A is analytic, then these quantities have the same value when
calculated in either setting (Theorem 6.1 of [16]).

An interesting question, which was posed by Dubins and Savage [5], is
whether a gambler can do better if allowed to use honmeasurable strategies or
whether, to the contrary, measurable strategies are adequate. The next two
theorems establish (for Borel problems in which the goal is to stay forever in
an analytic set or visit an analytic set infinitely open) that a gambler can
without loss restrict attention to measurable strategies.

Denote by I'” the optimal reward operator when both measurable and
nonmeasurable strategies are allowed.

THEOREM 7.1. If X is a Borel subset of a Polish space, T an analytic
gambling house on X and A an analytic subset of X, then

I*(A*) = M(A~).
Proor. Plainly, I'*(A*) > M(A®). For the opposite inequality, we claim
that for any Borel, clopen set K,
I'(K) =M(K).

The claim is easily established by induction on the structure of K (see [5] for
the definition of structure) and the formulas

I"(K)(x) = sup [T*(Ex)(x) dy(x),

yel(x)
M(K)(x) = sup. JM(Ex)(2") dy(),

where the first is proved in [17] and the second is a special case of Theorem 2.5
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of this paper (see, also, Theorem 6.4 in [20]). Consequently, we have
I'’(A”) <inf{I'*(K): K clopen and K 2 A%}
< inf{I'*(K): K Borel, clopen and K > A%}
= inf{ M(K): K Borel, clopen and K D A%}
=M(A"),
where the last equality is by virtue of Corollary 6.4. O

THEOREM 7.2. Under the same hypotheses as in Theorem 7.1,
I“({Ai.o.})) =M({Ai.0}).

Proor. Again it is obvious that T”({A i.0.}) > M({A i.0.}). The proof of the
inequality in the opposite direction is similar to the proof in Theorem 7.1,
except that we use Corollary 6.9 instead of Corollary 6.4 and verify the
equality

I*(0) = M(0),

for any Borel set O.
To prove this, consider the gambling problem (X*, T'*) of Section 6.

©

Use the proof of Lemma 6.2-to find a Borel subset S of U?_, X’ such that
O =y Y({h* €H*: h* € S for some n > 1}).
The above equality then becomes
r**({h* € H*: h* € S for some n > 1})(%)
=M*({h* € H*: h* € S for some n > 1})(X),

- for every % € X.

But this last equality is true, because it concerns a leavable, analytic
gambling problem of the type considered by Strauch [18] (see also Sudderth
[19]) with utility function u equal to the indicator of S, where it is known that

measurable strategies are adequate. O

For an interesting consequence of Theorem 7.2, the reader is referred to
Monticino ([13], Theorem 4.2).

8. The optimality equation (continued). As in Section 7, we will
assume in this section that we have an analytic gambling house I" on a Borel
subset X of a Polish space, where each gamble y is defined as a finitely
additive probability measure on all subsets of X. Consequently, we are able to
admit nonmeasurable solutions of the optimality equation of Section 3, since
the integral fudy is well defined for any gamble y and any function u:
X — [0, 1]. Using the results of Section 7, we now sharpen Corollary 3.3. As in
Section 3, we consider only solutions u of the optimality equation which
satisfy 0 < u < 1.
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THEOREM 8.1. Let A be an analytic subset of X. Then M(A™) is the largest
solution of the equation

(8.1) u(x) = sup fu(x’) dy(x'), x e X.
yel(x) A

ProoF. It is proved in [17] that T(A®) is the largest solution of (8.1). Now
use Theorem 7.1 to complete the proof. O

There is also an optimality equation for the visiting A infinitely often
problem. Consider the equation

(8.2) u(x) = supf u(h,)do, xeX,

oe3(x) " {r* <=}

where u: X — [0, 1], 7* is the time of first entrance into A and 3(x) is the set
of all strategies (including nonmeasurable ones) available at x. We then have a
result analogous to Theorem 8.1.

THEOREM 8.2. Let A be an analytic subset of X. Then M({A i.0}) is the
largest solution of (2).

Proor. From [17], we know that I'*({A i.0.}) is the largest solution of (2).
But, by Theorem 7.2, M({A i.0}) = I'({A i.o}), so we are done. O
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