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HYPERCONTRACTION METHODS IN MOMENT
INEQUALITIES FOR SERIES OF INDEPENDENT
RANDOM VARIABLES IN NORMED SPACES!

By STaNistAw KWAPIEN AND JERZY SZULGA

Warsaw University and Auburn University

We prove that if (6,) is a sequence of i.i.d. real random variables then,
for 1 < g < p, the linear combinations of (,) have comparable pth and
gth moments if and only if the joint distribution of (8,) is (p, ¢)-hypercon-
tractive. We elaborate hypercontraction methods in a new proof of the
inequality

(E”Z} X,.”p)l/p < CP(E le X,

where (X;) is a sequence of independent zero-mean random variables with
values in a normed space, and C,=p/Inp.

1/p
+ (Esupux,.up) )
i

1. Introduction. A method of comparing moments of sums of random
variables that we are dealing with stems from the theory of hypercontractive
semigroups.

We shall use a convexity-type inequality

p/q
(/S(lef(s,t)lqu(dt)) V(ds))

1/p

(1.1)

1/q

T

which holds for every positive measure space (S, .”, u),(T, Z,v), and any
measurable function f(s,¢) whenever 0 < ¢ < p < ». (1.1) can be easily seen
since, substituting g(s,¢) =[f(s,t)|? and r = p/q > 1, we have

r 1/r
([S(ng(s,t)u(dt)) v(ds)) = sup [ngg(S,t)/.L(dt)'h(s)v(ds)

Jslh() v(ds) <1

</ {sgp fg(s.0) 'h(S)V(dS)}u(dt)

1/r
- [ fg. 0w ucan,
T\'S
where 1/r + 1/r' = 1. A
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For a couple of random variables X and Y with values in a Banach space F
let us write X <, , Y if, for every x € F,

(Ellx + XIIP)"? < (Ellx + Y19)"7.

If ¢ < p and (X,,Y)) and (X, Y,) are independent random vectors with values
in F2 andif X; <, , Y;,i = 1,2, then

i
X+ X, <,, Y+ Y,.

To see this, we put E; = E[+|X,, Y;], and using the inequality (1.1) combined
with Fubini’s theorem, we infer that

(Ellx + X, + X,IP)" = (E,Eyllx + X, + X,II7)"7”

1/,
< (B Byllx + ¥, + X,17)77)

< (B Efllx + ¥, + X,/17)77)
< (ByEjllx + Y, + X,)19)"7

= (Ellx + Y, + Y,lI7)".

Thus, for a sequence of independent couples of random variables such that
X;<,,Y,i=1,...,n, we have

n n
Z Xi <p,q Z sz
i=1 i=1

' In particular, if there is a constant o such that 0X; <, , X;,i=1,...,n, we
" obtain a comparison inequality for moments
q) 1/q

p\ 1/p
) <ot

This justifies the following definitions [introduced by Krakowiak and Szulga
(1988)]. A real random variable 6 € HC(p, g, F, o) if oy6 <, , y0 for all
y € F, or equivalently,

E E

L X

i=1

n
XX
i-1

(1.2) (Ellx + oy0l?)? < (Elx + y6[9)*? forall x,y € F.

We shall write § € HC(p, q, F) if § € HC(p, q, F, o) for some o > 0.
Therefore, the preceding argument shows that wheneéver (1.2) holds, and if
(6,) is a sequence of independent copies of 6, then

o\ 1/P : 7\1/a
(1.3) (E“Zyiﬂl-” ) S(T—I(E ) forall y, e F.
i

Z ¥:9;
12
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Moreover, the same argument yields

o p\ 1/p
Ely, + X b Yiy,..i0i, 7 by, )
k=11<i;< - <i
(1.4) q\ 1/q
<|E|yo+ X o7* by Vi, 0, 0 0, ) )
k=1 1<iy< -+ <iy
for all {y; . ;}CF. This method can be traced to Nelson (1966, 1973) who

proved that (1.4) holds if 6 is a centered Gaussian random variable, F = R and
the hypercontractivity constant o = /(¢ — 1) /(p — 1) . For a two-point sym-
metric random variable, (1.2) and (1.4) were proved by Bonami (1970) and
Gross (1973) with the same constant o, from which Nelson’s result follows by
CLT. Borell (1979) observed that these results can be carried over to an
arbitrary normed space F. Later on, Borell (1984), and then Krakowiak and
Szulga (1988), extended the discussed inequalities to a larger class of random
variables.

In Section 2 we shall prove, in particular, that (1.2) holds in every normed
space F (respectively, for F = R) if and only if (1.3) is fulfilled in all normed
spaces F (respectively, for F = R) and we shall characterize the underlying
distribution of 6.

In Section 3 we shall apply hypercontraction methods in a simple proof of

the inequality
py\1/P 2\ 172 1/p
) <C, ) + (EsupllX,17) )
12

(1.5) (E”ZX (E“ZX

where (X,) is a sequence of independent random variables with values in a
Banach space F with EX;=0,i=1,2,..., and C, = p/In p when p — .
Inequality (1.5) is due to Johnson, Schechtman and Zinn (1985) when F = R,
and to Talagrand (1989) when F is a Banach space.

As an immediate consequence we obtain the condition
(1.6) Eexp{aWIn , W} <o or ET(1+aW) <,
where W = sup,[|S,ll, X,’s are uniformly bounded and « - sup;||X;ll. < 1.
Talagrand (1989) proved (1.6) by employing isoperimetric-type inequalities.

2. Linear combinations of independent random variables. In the
sequel, (6,) is a sequence of independent copies of a random variable 6.

THEOREM 2.1. Letp > 1 and 6 be a real symmetric random variable. Then
the following conditions are equivalent:

(1) 8 € HC(p, q,R) for some (equivalently, for abl) q € (1, p).
(ii) For each (equivalently, for some) q € (0, p) there is a constant C > 0
sugh that for every sequence (a,) of real numbers

(E|Z astal) " < (BT asai]') .
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(ii1)) For each s > 0 there exists K > 0 such that
E(1t81” — 1) < KE(It6]* A 1),
forall t < s.

THEOREM 2.2. Let p > 1 and 0 be a symmetric random variable. Then the
following conditions are equivalent:

(i) 6 € HC(p, q, F) for some (equivalently, for all) q € (1, p) and for
every Banach space F.

(ii) For each (equivalently, for some) q € (0, p) there is a constant C > 0
such that for every sequence (x,) of vectors in an arbitrary Banach space F,

(FIEwl)” < c(sIE xol) "

(iii) For each s > 0 there exists K > 0 such that

E(Ito|” — 1) < KP(|t6] > 1),
forallt < s.

Proor oF THEOREM 2.2. The equivalence of (ii) and (iii) is known and can
be found, for example, in Vakhania, Tarieladze and Chobanyan (1987), Theo-
rem 5.1 and Remark 1. Implication (i) = (ii) is explained in the Introduction.
Thus, it is enough to prove (iii) = (i), i.e., that (1.2) holds. Without loss of
generality we may assume that |[x||=1. Put ¢ = Iyl and let o <
1(EI81)'/9 /(E|017)'/P. Since

(Ellx + oy6l?)""? < 1 + ot( El6IP)"7,
(Ellx +y017) " = t(El6|) " ~ 1,

the inequality (1.2) is fulfilled if ¢ > 4/(E|6|7)/2 =: C. So, assume that ¢ < C
. and let (iii) hold for all # < C/2 with a constant K. Since s — Ellx + syd|” — 1
is a convex symmetric function vanishing at 0, we have, for 40 < 1,

(2.1)  Ellx + oy8l” — 1 < 40(Ellx + y8/4]” — 1) < 40(A + B),
where
A=E(llx + y0/4/” — 1) Lyyey<y and B= E(llx +y6,/41° — 1) L 05 -

Since

a? + b? a? + b7
LARA AP ( - )
for0<a,b<2 a+b2>2, where C, ,=[p(p — 127 — 2]/[q(qg — 1)29 — 2],
we infer that

lx +y8/401” + llx — y6,/41I”
A=F ( ) B ) Liyon <

(2.2),

<C

p,q

lx +y6,/41 + llx — y0,/4[l°
9 -1 ]l(nyous4)

<C, E(llx +y6ll7 — 1).
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Since (1 + x/2)? < x? for x > 2, then (ii) yields
B <E((1+1t0/4)" — 1)1 ,5 4

(2.3) <E(lte/21” — 1) < KP(lto/2] > 1)
= KP(lly8ll > 2) < KE(llx + y8l? — 1)
because

lx + 6117 + llx — yoll7
Lyyop> 2y < 2 -1 as.

Combining (2.1), (2.2) and (2.3), we obtain the estimate
Ellx + oy0ll” — 1 < 40(K + C, ,)E(llx + y8ll? — 1).
Therefore, for o < (4(K + C, )", we get
(Elx + oy6ll”)"? = (Elx + oy6l” — 1 + 1)*?
< (Ellx +y81°)'" < (Elx + y0117) "7,
because E|lx + y6||? > 1. This completes the proof of Theorem 2.2. O

RemMARk. The implication (iii) = (ii) follows also from Krakowiak and
Szulga (1988), Theorem 3.12.

Proor oF THEOREM 2.1. We proceed almost identically as in the proof of
Theorem 2.2, except for the following differences. Equivalence of (ii) and (iii) is
known, and belongs to Dacunha-Castelle (1970).

To show (iii) = (i), we may assume that x =1 and y = ¢ > 0. The only
modification is to use condition (ii) of Theorem 2.1 (instead of that of Theorem
2.2) in the proof of a counterpart of (2.3). If K is such that (ii) of Theorem 2.1
holds for ¢ < C/2, then

E(I1t6/21” — 1) " < KE(Ito /2 A 1) < C,KE(I1 + ¢6 — 1),
q

because 1 A (u/2)? < Cq((ll +ul?+ 11 —-ul’/2 - 1) for every u € R, where
C, is a positive constant [C, < (4q(q — 1)~'].
We repeat the final argument with o < (4(KC, + C, ,))"'. O

If 6 is such that N(x) = P(|8] > x) is a regularly varying function with an
exponent p, > p, then 6 fulfills conditions (iii) of Theorems 2.1 and 2.2 and
thus 6 € HC(p, q, F) for each ¢ € (1, p) and every Banach space F. If p > 2
and E|0|” < », then § € HC(p, q,R) for each q € (1, p). For a random vari-
able 0 with the tail distribution N(x) = P(|6] > x) = (x log x)~2, we check
that 6 € HC(2,¢,R) and 8 ¢ HC(2, g, ¢,) for all q € (1,2), where ¢, is the
space of all real null sequences with the supremum norm.

The question, whether, in a fixed normed space, hypercontractivity of a
random variable with parameters p and q, 1 < ¢ < p < », and comparability
of pth and gth moments of linear combinations of independent copies of 6 are
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equivalent, is open. It seems plausible that hypercontractivity of a random
variable would depend on its distribution and, as well, on a geometry of the
underlying normed space. Some information may be found in Krakowiak and
Szulga (1988). Namely, if 1 < ¢ < p and F is a two-convex normed space, then
a random variable § € HC(p, q, F) if and only if § € HC(p, q, R). Therefore,
in this case, we can use Theorem 2.1, so the answer to the problem is positive.

The obstacle to carry over the results on hypercontractivity to the case
when g < 1, is that it can be E||x + y8||? < ||x||?. For example, if £62 < « and
q <1 then 6 ¢ HC(p, q, R). Examples of hypercontractive random variables
with parameter g < 1 refer to a-stable distributions [see Szulga (1990)]. We
shall show that if ¢ < 1 then hypercontractivity is an absolute feature of a
random variable regardless of a norm.

ProposITION 2.3. Let 0<qg <1, g <p and 6 be a random variable. If
0 € HC(p, q,R, o) for some o > 0, then 8 € HC(p, q, F, o) for every normed
space F.

Proor. Ferguson (1962) [independently, Herz (1963)] proved that any
two-dimensional normed space can be embedded isometrically into L,, and
hence, by Lévy integration, it can be embedded isometrically into L, for ¢ < 1.
Therefore, for fixed x,y € F, and p > 0, there is a probability measure u on
R2 such that

1/q
llux + vyl = (f lua + vb|'u(da, db)) forall u,v € R.
RZ

Assume that 6 € HC(p, ¢, R, o) with ¢ > 0. Then we have

p/q\ /P
(Ellx + ooyl?) P = (E(lea + o0b|%u(da, db)) )
R
1/q
< ([ (Ela + o0b1”) " u(da, db))
RZ

1/q
< [ Ela + 6b|%u(da, db)
R2

= (Elx + 6yl17)"/?,

where we use the fact that (E([f")Y") < (J(Ef)")'/" for r <1 and f=> 0 [cf.
(1.1)]. This completes the proof. O

Since a Hilbert space can be embedded isometricall& into each L, the same
argument yields the following proposition.

‘i?ROPOSITION 24. Let 0 <q <p <wand 0 be a random variable. Let H be
a Hilbert space. Then 6 € HC(p, q, H, o) provided 6 € HC(p, q, R, o).
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3. Hypercontraction and Talagrand’s inequality. The result below
is crucial for what follows.

LeEmMA 3.1. Let p > 4. If o is such that
(3.1) (1+0't)p—pt0'sl+(g——l)tz+tp, t>0,
then for every s > 0 and every random variable 0 such that E6 > 0 we have

(3.2) (E((a() +38)%+ 1)”/2)2/p <E(8+s)2+ (E1VI0/")*".

Proor. Fix p > 4 and arandom variable 8 with ¢ = E > 0. Put a = E|6|”,
b = E62 Observe that since 1 V |x|? > 1 + |x|? —x2 > 0,

(3.3) E1vI]6P>1Vv (1+a-0b).
We shall show that
ox? 20xs ) e o 2x? 20 |x| . p/2
+ + + +
s2+1 s2+1 s2+1  s241

(3.4)

polx| poxs
+ = ,
Vs2+1 s°+1
for every real x and s > 0. Indeed, for A > 1, A + © > 0 and v > |u|, we have
pv
2

[in our case A =1+ o%x?2/(s®> + 1), u = 20xs/(s®> + 1)], and v =
20|x|/ Vs? + 1]. (3.5) can be easily derived since u — (A + u)?/? — pu/2 is
an increasing function for u > 0, and since, for 0 < u < A,

g(u) = (A+u)”?-(A-u)"?>pu.
The latter inequality follows since g(0) = 0, and because

u
(3.5) (A +u)"? - % < (A+0)"%

g:(u) — g((A + u)p/2—1 + (A _ u)P/Z—I) 2pAp/2—1 > p.

Therefore, using (3.3) and (8.4), it is enough to prove that

2/,
olé| ) i polé| N pocs d )
R —— + — —
s?+1 Vs? +1 s?+1
<2s¢+b—-1+1V (1+a-0)>*7,
or, denoting ¢t = 1/(s? + 1) and using assumption (3.1), to check that

(s2+ 1| E

’ (1+ (p/2-1)bt + atP/? + cpa-st)z/p -1
St(ZSC‘.'b“1+1\/(1+a_b)2/p).
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In general, to prove an inequality of type (A + Dc)?/? < Rc + V, where all
entries are positive numbers, it suffices to check that (2/p)DA%?/P~1 < R, and
to prove the inequality for ¢ = 0, i.e., A>/? < V.

Applying this argument to our case, we first examine the inequality

(2/p) -post(l + (p/2 — 1)bt + atp/r")z/p—1 < 2st,
and find it obvious even for o < 1, and then we handle the case when ¢ = 0. In
other words, it suffices now to prove that, for 0 < ¢ < 1,
g(t) = (1 + (p/2 — 1)bt + at?/2)*”
<1+(b-1+1v(1+a-0)*P)t=1+Wt.
It is easily seen that g”(¢) increases on (0, ) which, in turns, means that g(¢)

is at first concave and then eventually becomes convex. Thus, to prove that
gt) <1+ Vt, 0 <t < 1, it suffices to check that

1° g(0) <1, 2° g'(0) <V, 3 g(l)<1+V.
1° and 2° are satisfied since g(0) =1, and g'(0) = 2/p(p/2 — Db <b < V.
Condition 3° reads
(bp/2 +A?P <b+1VAYP, b,A>0

(here A =1 + a — b), and the latter estimate follows from Bernoulli’s inequal-
ity. This completes the proof of Lemma 3.1. O

The constant o is of order In p/p when p — «. Indeed, the inequality (3.1)
holds trivially for ¢ > 1/(1 — o). Consider (3.1) for ¢ < 1/(1 — o). Using the
fact that (1 + a)? <e®? and that a ~ (e®” — pa — 1)/a® is an increasing
function for a > 0, it is enough to assume that exp{po/(1 — o)} < p/2 which
is satisfied if

Y < In(p/2)/p
T 1+In(p/2)/p°

COROLLARY 3.2. Let p and o be as above. Then for any zero-mean random
variable X taking values in a normed space F, the following estimate holds:

1/p 1/2
(EQlx + oXI? + 2)") 7 < (Ellx + XIP + (Ee? v 1X1P)*7) 7,
for every x € Fand t > 0.

Proor. By homogeneity, we may consider only the value ¢ = 1. Since
lx + o Xl < o(llx + XII = llxll) + llxll,
it is enough to apply Corollary 3.2 with 6 = ||x + X|| — l|lx|l, s = [lx|l. O

THEOREM 3.3. Letp >4 and C, = 1 + p/In(p/2). Then for every sequence
(X;,i=1,...,n) of independent zero-mean random variables taking values in
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a normed space F the following inequality holds:

gl <ol

+(E(IX NPV (EIX,_ P v (-~ v EIXIP) -+ ))) 7).

Proor. Define inductively functions
ho(t) =t,  h,(t) = (Elh,_()” VIX,IP)7",  n=1.
Denote S, = X 7_,. We shall prove that

(36)  (E(lx+ 08, + ,:2)"/2)1 < (Elx + 8,17 + h2(1)) "7,

from which the theorem follows by setting ¢ = 0 and x = 0.

The case n = 1 is contained in Corollary 3.2. Assuming that (3.6) holds for
n, we shall show (3.6) for n + 1. Denote E' = E[:|X,,,] and E" =
E[‘|X,,..., X,]. Using Fubini’s theorem and (3.6), we have

(E(le +08, +aX,, I+ t2)p/2)1/p
= (E”E'(”x +08, +0X, I+ tz)p/z)l/l’

< (E”(E'le +8, +0X, %+ h%l(t))p/z)l/p.

We estimate the latter quantity from above by
1/2

({1 + 5, + 0X, 7 + 120)) )

1/2
< (BENx + 8, + X, + (E"h,,(t)p VX, . 17)*7)

= (Ellx + 8, + B2,4(1)) "

using (1.1) in the form (E"(E'|Z|? )”/2)1/‘7 < (E'(E"|Z|?)?/P)'/2 where Z =
(lx + S, + X, > + h2(#))'/2, and then applying Corollary 3.3. This com-
pletes the proof. O

REMARK 3.4. The bound 4,(0) < (E supl|| X,/ )1/ P yields (1.5). Talagrand’s
result involving the L;-norm,

N

follows from Hoffmann-Jgrgensen’s inequalities (1974).

o\ 1/P 1/p
) < KCP(E"Z X,“ + (E sqpllXillp) ),
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Let S be a sum of independent uniformly bounded random variables.
We conclude this section by proving existence of ‘‘gamma-moments,”
ET( + «al|S|D. The ideas and methods belong to de Acosta (1980).

By Stirling’s formula, I'(1 + x) = 27) ?exp{x Inx — x — 1/21n x},
it is readily seen that ET(1 + BW) < » for all 0 < B < a if and only if
EePW W < o for all B < a. Also, any of the above conditions are equiva-

lent to

(3.7) j°°1n texp(BtIn }P(W > t)dt <®, B <a.
1

ProOPOSITION 3.5. Let (X,) be a sequence of independent zero-mean random
variables such that || X;|| < M. Suppose that S = ¥;X; converges a.s. and
denote W = sup,, |l ?_, X;|. Then ET(1 + aW) < o for every a < 1/M.

Proor. Let S = XX, converge a.s. Fix ¢ > 0. Since the series S con-
verges also in L, [Hoffmann-Jgrgensen (1974)], then we can write X, = X +
X/, where | X, <e/4, I£,;X/llzs <e/4 and L ;P(X;} # 0) < ». Denote the
corresponding series and suprema by S’, S”, W’ and W", respectively. For large
D, the inequality (1.5) implies an estimate for |[W]||,,

IWll, < 2p/In p(IS"llz + supllX/l) < ep/In p.
13
Then, by the Chebyshev inequality, P(W' > t) < (ep/(¢In p))?. This, after
changing the variable ¢ = eep/In p in (3.7), yields ET(1 + a'W’) < « for
a' <1/ee.
On the other hand, ET(1 + a"W") < » if a"M < 1. To see this, put p; =
P(X! #+ 0), m = ¥;p;, and check the bounds

ET(1+a'W") <1+ [ Et“Vedt
1
<1+ [TTI(1+p,(t5™ = 1))e dt
1 i

<1+ e"”f exp{mt*™ — t} dt < .
1

Since the function I'(1 + x) is convex then for a = a’a”/(a’ + a") we have

”

ET(1+ a(W + W") < ——ET(1 + a'W")
a +a

+ ET(1 +a"W") < .

!

a +a”

To gomplete the proof, it suffices to take @ < 1/(M + ec) and then choose ¢
small enough. O
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