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L? ESTIMATES ON ITERATED STOCHASTIC INTEGRALS

By Eric CARLEN AND PauL KREE

Princeton University and University of Paris VI

For a continuous martingale M, let (M, M) denote the increasing
process. Let Iy, I;,... denote the iterated stochastic integrals of M. We
prove the inequalities of Burkholder—Davis—Gundy type,

Ay <M, MV <ULl < By, <M, M2,

wherein A, , ~In B, , ~ —(n/2)lnn as n — ». Our proof requires the
sharp consta.nt b, in Burkholder-Davis-Gundy inequalities [Ml||, <
by IKM, MY,

In the Appendix we prove sup,, . 1(b,/ \/_ ) = 2. We apply our inequality
to the study of the LP convergence of the Neuman series L I,(¢) for
exponential martingales.

1. Introduction. Let (M,, %, P) be a bounded and continuous martin-
gale with M, = 0 and with increasing process (M, M );. Consider the corre-
sponding sequence of iterated stochastic integrals defined inductively by

(1) I(2) = jo‘fn_l(s) dM(s),

with I,(¢) = 1 and I,(¢) = M,
Our main result, which we prove in Section 2, is an analog for iterated
stochastic integrals of the Burkholder-Davis—Gundy (B.D.G.) inequalities

) a | <M, MDY, < 1M, < b, <M, MY,

where the right side holds for p > 1 and the left side for p > 1.

THEOREM 1. For all n > 1, all t >0 and all continuous and bounded
martingales,

(3) A, <M, M2 <L), < B, L|[<M, M2,

where the right side holds for p > 1 and the left side for p > 1. Putting
a,=1+y1+p!
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we have

1 n/2 n
@) B, = —(pm)" "},

-1
(5) Ap’n={1+V1+—‘/§-;) forn =2,
aj

| 2(np)” 2Vn — 1 ol
(6) =B, ,(a,) [(rf_p;)!pn_plaz+—————(pn)/] forn > 2.

!
n.ap

REMARK 1. Note that since (8) holds with the same constants for all
bounded martingales, the usual truncation argument can be used to show
these inequalities hold for all continuous martingales with well defined in-
creasing processes such that the right sides of these inequalities are finite.

ReEMARK 2. Note that for n = 1, the right side of (2) follows from the sharp
B.D.G. inequalities
(1) M, < 2P KM, MY,  p=1.

It is known [2] that (7) holds for p > 2 for some C in place of 2. Using a result
of Davis [3], we prove in the Appendix that 2 is the best possible p-independent
choice of C.

REMARK 3. Consider how the constants A, , and B, , depend on n. By
Stirling’s formula,

(ap‘/;;)n

-1/4
B,,~ —W—(an) .
Again by Stirling’s formula,
nn+1 n5/2en
(n—2)! - V2r

Therefore, comparing (5) and (6), our bounds are the best possible up to a
geometric factor. Put differently,

n
(8) lnAn,P~lan,P~—§lnn as n — .

The rapid decay in n of the constants B, , is crucial for our applications
discussed in Section 3. For example, the Neumann series for

(9) Z, =1+ [’zs dM,
0
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has the sum

(10) L I(2) = exp(M, — 5{M, M),)
n=0

and converges a.e. by a theorem of Doleans-Dade [4]. We will give sufficient
conditions for the L? convergence of this series. We also give necessary
conditions of essentially the same form: see Theorems 2 and 3. In fact, one
motivation of this work was to develop effective methods for the direct
treatment of the Neumann series.

Iterated stochastic integrals for continuous martingales are closely related
to Hermite polynomials and Wiener’s chaos decomposition, which we will
briefly discuss in Section 4.

2. Proof of Theorem 1. We first inductively prove the right side starting
with n = 1, which is just sharp B.D.G. (7). We will use the Kailath—Segall
identity [9]

1
(11) In= ;{In—lM_In—2<M’M>}’
valid for n > 1 and also for n = 1 with the convention I_; = 0, which can be
established inductively by making two stochastic integrations by parts. First,
by Hoélder,
(12) ”In—lM”P < ”In_lllpn/(n—l)”M”pn-

The choice of Hélder exponents here is crucial: (I,_,)?"/""! and MP™ have
the same homogeneity in M. Sharp B.D.G. (7) gives

(13) 1M pn < 2vpr |[<M, MY2,,,.
Therefore,

(14) ”In—lM”P < 2Vpn ”In—lllpn/(n—l)” <M’ M>1/2”pn’
Next apply Hélder to the other term in (11):

(15) ” In—2<M’ M> ”p = ”In—2”Pn/(n—2)”<M’ M> ”pn/2'

Again, appropriate Holder exponents are determined by homogeneity. Combin-
ing (14) and (15) we have

1
”In”P = ;{”In—1”pn/(n—1)”<M’ M>1/2“pn2\/ﬁ

(16) .
L, allon jn-| <M, MY

Now we are ready to prove inductively that for n > 1,°

p

1 n
Iy < — (pn)" ag]| <M, M2,

Supposing it has been established for all Lebesgue classes L” and all powers of
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iteration less than n, we show it holds for all p at n. First,

1
;2Vpn ”In_lllpn/(n—l)

1 1 n (n—1)/2
— ‘/ _ n—1
n2 bn (n_ 1)‘(pn_ ].(n 1)) apn/(n—l)

IA

(17)
x| <m, MV

1 2 _ 1,2 n—1
= —(pn)"*2a; KM, MY,
where we have used the fact that «, is monotone decreasing in p. Second,
p
1 n—2
(n-2)/2 n-—
L —2llpn sn—2) < rz)!(ﬁn) a2 (M, MY,

Therefore, inserting the last inequality and (17) into (16),

n—1

1 2 1
. n/2 n n/2
I, < H(Pn) ap(a—p +— p_af,)IKM’ M) lpns2-
This proves the right inequality in (3) since the quantity in the parentheses is
dominated by 1. We now pass to the left. We will use the following identity for
iterated stochastic integrals of a continuous martingale:

n (n—m)!
(18) 1,1, ,=1:,- Y (n—‘)I,f_m(M,MY"_I, VYn>2.

m=1

Note that each term in the sum above is positive. Retaining only the first and
the last term in the sum, we immediately obtain

<M,M>n_l
(19) Wﬁ(n— l)If—l_nInIn—m Yn>2.

To prove (18) inductively, we first note that it reduces to the Kailath—Segall
identity (11) when n = 2.

Next, multiply (11) through by I, _, to obtain

1
I, ,= ;{I,L_IMI,L_2 —12_(M, M)}
- But again by 1), MI, _, =(n — DI,_, + I,_;{ M, M), so that
1 1

(20) I1, o= ~{(n = DIZy — BoXM, MO} + I, T, (M, M).

Now suppose (18) is established with n replaced by n — 1. Applying this to the
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last term in (20) yields

1
LI, ,= ;{(n - 1)13—1 - 13—2<M’ M>}

L] W (n-m - 1)' m-1
m=1 ¢
1 nl(n—-—m-1)!
ST I VL TR
m=1 :

which is clearly equivalent to (18).
Having established (19), we integrate both sides against d{M, M ) to obtain

(M, M);
— < (n - I, L) - njz (8)I,_,(s) d{M,M),.
Hence
>n/2
\/n_
where of course the asterisk indicates the maximal process.
We may now estimate L” norms using the Minkowski and B.D.G. inequali-

ties:

1 Layn 1 »
(22) W||<M,M> lop < VR =1 a_p”I"”” +Vn | (LFLe o M, M)

(21) <V = 1<, IYY? + Vo (Lx(¢) 17 ,(£){ M, M),)"?,

Next, by Schwarz,
E(IFL3 (M, MY)"? < (EL#?)"*(E(I (M, M),
So

p
-1

1/2

1/
) N2 1 oM, M|,

@) [tz a0, <
For n = 2, this gives us the quadratic inequality

1
77 KM MYV?; < —||12||,, + V2ILI <M, M)z,
which implies (6) for n = 2.

For n > 2, we will again obtain a quadratic inequality, but first we must
apply the right inequality of (3), after first applying the inequalities of Holder
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and Doob:
1L oM, MY, < Lol | <M, MY,
L Iy [¢ o
(24) r 1

(np)(n—2)/2

<
“p—-1(n-2)!

X (VTP 1) 0,

where we have used the fact that the constants p/(p — 1) arising in Doob’s
inequality and, again, the constants @, are monotone decreasing in p.
Let us use D, , to denote the constant in the right side of (24). From (22),

(23) and (24) we have the inequality

1 12" 1
W||<M’M> lnp <V =1 a_p”I"”"

(25) L2
p 1/2 1,2\ /2
+Vn Py D, LI <M, MYY2,

Solving this quadratic inequality leads, with simple estimates, to (6).

3. Application to exponential martingales. We use the following no-
tations. For any integer 2 and any ¢ > 0, @(%,¢) denotes the chronological

domain
Q(k,t) ={(¢;, - ty)) ER¥O<t; < -+ <¢, <t}
-and J(k, t) denotes the following Stieltjes iterated integral on that domain:

(26) J(hot) = [ [ dCH My o dCML M,

Note that
<M, MYY2|2 = RUE[J(R,2)].

In this way, Theorem 1 enables us to dominate L? norms of iterated stochas-
tic integrals in terms of expectations of iterated Stieltjes integrals. To do this,
for any real s, we denote by [s]] the smallest integer greater than or equal to s.
We then have the following theorem.

THEOREM 2. Let M be a continuous martingale such that for some p > 1
and some finite t > 0,

27)” limsup{E[J([%”,t)]}“m/zn_1 <k,
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where

(pe,) %

28 k 2
( ) p_e

Then the Neumann series (10) converges in L.

Proor. Since [|1,(¢)ll, is an increasing function of the time ¢ > 0, we need
only show that [I,(#)ll, is dominated for large n by the terms ¢ of a
convergent geometric series. In fact, using Theorem 1,

n/2

”In(t)“P =< Bp,n”<M’ M>1/2“:n = Bp,n” <M’ M>”pn/2

o\ 2/2p(n/2)1171
< B, (KM, M2 /3)

I R

Using (8) and Stirling formula we have for arbitrary ¢ > 0 that for n large
enough,

IL(Dll, < (1 +¢)" 5

p

E[J([pn/2]],t)] lpn/zn-l) n/2

Then by (27), for ¢ sufficiently small we have domination by a convergent
geometric series. O

Following the same pattern, we obtain the following converse to Theorem 2
for p > 1. For any real s we denote by [[s] the largest integer less than or
< equal to s.

THEOREM 3. Let M be a continuous martingale such that for some p > 1
and some finite time t > 0,

n lpn/2]7!
im sup — |, >R,
(29) I elJ([|2 ; K,
where
(30) K,= 2ea§.

Then the Neumann series (10) diverges in L?.

It is an interesting question to determine when the expectation of &M =
exp(M — (M, M )/2) is 1. We have just obtained sufficient conditions for the
L? gonvergence of ¥ I, to £M. Therefore it is interesting to have sufficient
conditions such that EI, = 0 for n > 0. We have the following result closely
related to [8].
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ProPOSITION 1. For any n > 1 and any t > 0, suppose E[{M, M):"?] is
finite. Then E(I,) = 0. In particular, if for some A > 0,

(31) Elexp(MM,M);)] <, V¢,
then
(32) E(I,(¢))=0, VYt>0andn>O0.

Proor. For some constant c}, we have for 0 < s < ¢ [see (37)]

I(s) = X cp(M,)*(M, M) P
k=0

= LX)l < T lepl(Mx)" (M, M0,
Hence combining Hélder with B.D.G.,
E[IL;(¢)]] < CE[{M, M»"?].
Hence {I,(s); 0 < s < t} is an equiintegrable local martingale, i.e., a martingale

and (32) follows. O

ReEmARkS. Novikov [7] has given examples of continuous martingales M
such that E[&€M] < 1 but such that (81) holds for all A < é For such M, the
Neumann series clearly does not converge in L!, even though €M and all the
terms in the Neumann series belong to L!. The LP? convergence of the
Neumann series implies E[£M] = 1, but not vice versa; hence, the interest of
Theorems 2 and 3 giving, respectively, sufficient and necessary condition for
this L? convergence.

Note the following weaker but convenient forms of these criteria.

ProposiTION 2. (a) Suppose that for somep (1 < p < ©) and all ¢,

(33) E[exp(A{M, M),)] < o,
where
(34) A> kL

Then we have L? convergence of the Neumann series for all t and E[£M] = 1.
(b) Suppose that for some p with 1 < p < 2 we have for some t > 0,

E[exp(/\<M, M)t)] = °°:
where ‘
A <K,

Then the Neumann series ¥ I,(¢) is not convergent in LP.



362 E. CARLEN AND P. KREE

In fact (33) means

S ME[J(k, 0)] < o;
0

hence, by the theory of entire series A < R, where
R~! =limsup E[J(k,t)].

In view of (34), (27) is satisfied. By Theorem 2 the Neumann series converges
in L?. Hence E[£M] = 1 by Proposition 1. Proof of part (b) follows the same
line.

Now we give an example.

PROPOSITION 3. Let b = b(x, t) be a measurable function on R? X R, such
that for some g > d vV 2 and all ¢,

b(x,t) =b'(x,t) +b"(x,t),
where b" is uniformly bounded on R? X R, and where {b'(-,t), t > 0} is a

bounded subset of LY(R?). Denoting by (B,, %, P) an R valued Brownian
motion and considering the martingale

Mt=f0tb(Bs,s)st

for any t > 0 and any p > 1, there exists a constant C = C(¢, p, b) such that
for all n,

Cn
(n(l-a)+1)’

a =

Q|

(35) E[J(n,t)] <
. and so the Neumann series converges in L? for 1 < p < o,

Portenko [8] has proven a related result, however, assuming more regularity
on the drift (g > d + 2) and only proving E(€M) = 1. Our method for
estimating E[J(n, t)] is Portenko’s.

Proor.

E[J,(8)] = E[v%(B, , -+ b%(B, ,s,)|ds; - ds,
[J.(8)] /Q,,(t)[ (B, s1) (B., )] sy
(36) = E[bz(Bsysl) U bz(Bsn—l’sn_l)
Q)
XE{b%(B, ,s | _}ds, - ds,.

Since b = b’ + b" we have
b%(B, ,s,) < 2b*(B, ,s,) + 2b"*(B, ,s,).
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Hence

” 2
_+ 202,

)

|E{6*(B,,, s.)1%, }|. < 2| E{6%(B,,. s.)I, }

But by Hélder’s inequality, the heat kernel p, on R¢ is L*-smoothing and for
any f € LP(RY),

Ip, * fllo < (2t) "4/ ?Pp'=4/27 f]| .

Therefore, applying this to f= b2 with 2p = ¢ and putting « =d/q, 7, =
277(81’ - 3j—1) for j=2,...,n and B = p'~¢/?P

| E{62(B,,, 5017, )| < Bra(lblly)”.

oo (1o,
XS

(18"le)* < D(11®'ll,,,)*s ™ for 0 < s < £.

Since ¢ is given, introducing

we have

Hence finally
| Eo?(B.,, 5,015, . < 2(8 + DY) 7
Hence substituting in (36) and putting v = 2(8 + D),

E[J( TZ, t)] S ny (t)E[bz(Bs,,’ S) T b2(BsnA1’ Sn)](”b,“PO)2Tn_a dTl T dTn'

Computing the multiple integral with the new variables 7;, the new domain of
integration is @,(¢) ={(r, --- 7,), £7; < 2w}. Hence by an induction argu-
ment,

E[I(n,1)] < (v(1811,,)%) Ji(2)
with
Ji(t) = [ lemﬁ—ﬂ e rTadr, e dr
((2m)'°T(1 - )"
M(n(l-a)+1) °

This proves (35). But for any 8 > 0 and, as is well known in the particular
case where B =1,

np\"? A
'(nB+1) ~'(_e_) V2rnB asn — o,

Therefore in the present case, Theorem 2 can be applied since the lim sup
arising in (27) is zero. Hence the proposition follows from Theorem 2. O
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4. Connection with Hermite polynomials. Our proof of Theorem 1
uses identities closely related to Hermite polynomials

H,(x,t) = t"?h, (¢ ?x),

where
d\"
= - n R _x2/2 x2/2
h,(x)=(-1) [(dx) e ]e .

The well-known correspondence is
(37) I(t)=H,(M,{(M,M),)/n!
For example the Kailath—Segall identity (11) corresponds to the classical

recurrence relation
H(x,t) 1[ H, ((x,t) H, ,(x,t)
n! =;[x (n—1)! _t(n—2)!}
and (18) corresponds to the identity

Hn(x!t)Hn—Z(x! t) Hn—l(x’t)2 - Hn—m(x’t)2 m—1

X

nl(n — 2)! (=112 Zoal(n-m)!

which appears to be new. Hence for any continuous and bounded martingale,
the Kailath-Segall identity and (11) can be viewed as chaos identities. A sort of
chaos decomposition is behind Theorem 1.

In the very particular case of the scalar Brownian motion (B,), we have

H n( B 124 t )
| L) = ———.
Denoting y the unit Gauss measure on the line, we have

1/p
1.l = syl /n = 3 [, ()1 dy(x))

Since the bracket of B is ¢, Theorem 1 gives us

b

1/p
nlA, , < (flhn(x)l” dy(x)) <n!B, ,.

In fact, Hélder’s inequality and Nelson’s hypercontractivity inequality [5]
provide better upper bounds.
The lower bound may be of interest.

APPENDIX
Let b, be the best constant in the B.D.G. inequality for a given p > 1, ie,
(A1) b, = sup{IlM, I,/ I M, MYI,),

where the supremum is taken over all continuous bounded martingales M and
all times ¢.
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THEOREM A.

bP
(A2) sup — = 2
p=1 VP

This clearly implies (7).

Of course Davis [3] has identified the best constants for all p as certain
zeros of certain special functions. Theorem A provides explicit information

which is sharp for large p.

Our proof proceeds in two parts. We first show b, < 2/p for 1<p<2.
Using an It6’s formula argument due to Novikov [7] and Zakai [10]. The second
part is more substantial and is based on Davis’s work. We reduce the estima-
tion of zeros of special functions to an eigenvalue estimation problem which we
solve. Let & and C denote arbitrary positive constants. Fix ¢ and p with £ > 0
and 1 < p < 2. Then by Itd’s formula,

(6 + C(M, M), + M2)*"* — 5072

- c%j‘(a + C(M, M), + M2)”*7'd(M, M),
0

1
- 5[‘{1;(5 + C(M, MY, + M2)?~ V2
0

+p(p — 2)(5 + C(M, M), + M2)"** M2} d(M, M),

is a martingale. Now, take the expectation. Since p < 2, the last term in the
braces is negative. Therefore

E[(s + C(M, M), + MP)"*] - 572
C+1 p

< j(a + C(M, M), + M2)P* 7 d(M, M),

Now since p/2 > 0 and p/2 — 1 < 0, we can drop the C{M, M ), term on the
left in the parentheses and drop the M? term on the right. We get

E[(a + Mtz)”/z] <8P/ 4 ! Cr/2E[(M, MYP?].

We can make & tend to zero using dominated convergence. The optimal value

of C is found to be (2 — p)/p at which

_\p/2-1
C”Cp/z_ﬁ(i_ﬁ) _
p

C . p
This function of p decreases from the value 2 at p = 1 to the value 1 at p = 2.
Therefore b, < 2\/; for 1 < p < 2. Now suppose p > 2. By the result of Davis
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[3], b, is the largest zero of the solution to
2

1
(43) @+ (5= () -0

with rapid decay as x tends to +. Let y, denote this solution normalized so
that 4

]:y,,(x)zdx =1

and is positive on (b,, +). Let V,(x) denote x2/4 — (p — 1/2), i.e., (x2 —
c2)/4, where ¢, = 2(p + 3)'/2 Let W ,(x) be the linear function tangent toV,
at the turning pomt cprie., c(x —c )/2 Since V, is convex,

(A4) W,(x) < V,(x) forall x.
Consider the Sturm-Liouville operator

d2
(A5) H, = - 3—5 + VVP

defined on (b,, +), with Dirichlet boundary conditions. Let E, denote the
least eigenvalue and let z, denote the corresponding normahzed positive
eigenfunction. Of course, z, is a shifted and scaled Airy function; the scaling
depends on c,, and the shift depends on b,,.

By the Raylelgh Ritz variational pr1n01ple

E, < Oo(u’(x)2 + Wp(x)u(x)z) dx
b,

for any normalized smooth function u of rapid decay with u(b,)=0. In
particular, y, is a function of this type and so

E, < [ (yy(2)® + Wy(x)3,(x)?) da
bp
< [ s + Vi)

= f 75(2) (—yp(x) + Vy(x)y,(x)) dx =

by (A3), (A4) and an integration by parts.
But E, is directly related to the eigenvalue A, of the Airy differential

operator
d2

(A6) - W +x

on R, with Dirichlet boundary conditions. As is well known [1], A\, = 2.3 - - -,
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and we will use A, > 1 for example. In fact we will show
-1/6
(A7) by<c, = Ao(p+3) "
From (A7) the bound b, < 2y/p clearly follows. To establish (A7) we use the
affine transform
x = bp + (p + %)_1/657

taking (A5) into (A6). In detail, let z,(¢£) also denote z,(c, + (p + )~ 1/%¢).
With the new variable ¢, z, satisfies

d2
de?
with A, = E, — 2" p + 3)" "3, — c,)c,.

Since z,(x) is by definition the ground state of (A5), z,(x) has no zeros.
Therefore, z,(£) also has no zeros, hence is the ground state of (A6). There-
fore, A, = A,. Since E, < 0, this implies (A7).

By switching the roles of z, and y, in the variational argument one sees
that

- p
z, + &z, = ANpz

b, = 2p'/2 + O(p~V/°)

and hence the equality claimed in (A2) holds. That is, one uses shifted Airy
functions as trial functions in the variational calculation of the lowest eigen-
value for
d2
- 33_6—2 + Vp(x)

on [bp, «]. We know the lowest eigenvalue is zero because we have a positive
function which is an eigenfunction with zero eigenvalue. But if a, is too small,
our shifted Airy trial function gives a negative result. We will not provide
further details, since the main interest is in the inequality &, < 2Vp .
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