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MINIMAX-OPTIMAL STOP RULES AND DISTRIBUTIONS
IN SECRETARY PROBLEMS

By TuEODORE P. HiLL! aND ULRICH KRENGEL

Georgia Institute of Technology and University of Gottingen

For the secretary (or best-choice) problem with an unknown number N
of objects, minimax-optimal stop rules and (worst-case) distributions are
derived, under the assumption that N is a random variable with unknown
distribution, but known upper bound n. Asymptotically, the probability of
selecting the best object in this situation is of order of (logn)~!. For
example, even if the only information available is that there are somewhere
between 1 and 100 objects, there is still a strategy which will select the best
item about one time in five.

1. Introduction. In the classical secretary problem, a known number of
rankable objects is presented one by one in random order (all n! possible
orderings being equally likely). As each object is presented, the observer must
either select it and stop observing or reject it and continue observing. He may
never return to a previously rejected object, and his decision to stop must be
based solely on the relative ranks of the objects he has observed so far. The
goal is to maximize the probability that the best object is selected. This
problem, also known as the marriage problem or best-choice problem, is well
known, and the reader is referred to Freeman (1983) and Ferguson (1989) for
a history and review of the literature.

Suppose now that the total number of objects is not known, but is a random
variable N taking values in {1,2,...,n}, where n is a known fixed positive
integer. How should the observer play in order to guarantee the highest
probability of selecting the best object, what is this probability and what is the
worst distribution for N? The main goal of this paper is to determine these
minimax-optimal stop rules, values and distributions as a function of n. For
example, if n = 5, the strategy ‘“‘stop with the first object with probability
26/'75; otherwise continue and stop with the second object with probability
26,/49 provided it is better than the first object; and otherwise stop the first
time an object is observed which is better than any previously observed object”
is minimax-optimal. This strategy will select the best object with probability at
least 26/75 for all distributions of N (< 5), and that probability is best
possible. Conversely, if N has the distribution P(N = 1) = 13/75,
P(N =2)=2/75, P(N =5) = 60/75, then no strategy will select the best
object with probability greater than 26 /75, so this distribution is also mini-
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max. (It is assumed that, given N, all N! orderings are equally likely, and that
if an object is rejected and no more objects remain, the game is over and the
best object has not been selected.)

A number of results are known for the general situation where the number
of objects N is a random variable. Presman and Sonin (1972) derive optimal
stop rules when N has a known prior distribution and mention the necessarily
complex form (‘“‘islands”) of optimal stop rules for certain prior distributions.
Irle (1980) gives a concrete example of such a prior for which the optimal stop
rule has these islands and sufficient conditions for existence of simple “non-
island” stop rules. Abdel-Hamid, Bather and Trustrum (1982) derive necessary
and sufficient conditions for admissibility of randomized stop rules.

Extensions to the situation where the interarrival times of the objects are
continuous random variables with known distributions have been studied by
Presman and Sonin (1972), Gianini and Samuels (1976) and Stewart (1981).
More recently, Bruss (1984) and Bruss and Samuels (1987) derive surprising
and very general minimax-optimal strategies in this same context and even for
more general loss functions. In contrast to the minimax-optimal stop rules
derived in this paper, which are based on knowledge of a bound for N, those of
Bruss and Samuels are based on knowledge of the distributions of the continu-
ous i.i.d. interarrival times; in this sense our results complement theirs.

This paper is organized as follows: Section 2 contains notation, results for
the classical secretary problem and basic results concerning randomized stop
rules; Section 3 contains the statements of the main results and examples;
Sections 4 and 5 contain the proofs of the minimax-optimal stop rules and
distributions, respectively; and Section 6 contains remarks and asymptotics.

2. Preliminaries. A well-known equivalent formulation of the classical
secretary problem is the following. R;, R,,..., R, are independent random
“variables on a probability space (2, &, P), where n is a fixed positive integer
and P(R; =i)=j ' forallie{1,2,...,j}landall j €{1,2,...,n}.If 7, de-
notes the stop rules for R, R,,..., R,, then the value of a stop rule ¢ € g,
(given that there are n objects) is

V(¢IN=n) =P(R,=1land R; > 1forall j > t);

that is, V(¢{|N = n) is the probability of selecting the best object using the
stop-rule strategy ¢, given that there are n objects. The goal is to find a ¢
making V(¢|N = n) as large as possible, and the solution to this problem is well
known [cf. Ferguson (1989) and Freeman (1983)] and is recorded here for ease
of reference. Throughout this paper, s, = 0, and for j > 1, s; = Yi_a L

DEeFINITION 2.1. For each positive integer n, &, is the nonnegative integer
satisfying

Sp—1 = Sp,—12 1>s, 1 =8,
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PROPOSITION 2.2. The stop rule £, € 9, defined by £, = min{min{j > k& ,:
R; = 1}, n} is optimal, that is,

V(,|N=n) = sup V(¢IN =n).

te 7,

In other words, given that there are n objects, the optimal strategy is to
observe the first %, objects without stopping and then to stop with the first
object, if any, that is better than any object previously seen. It is well known
that n/k, » e as n - «, and the next example records a few typical values
of n.

ExampLE 2.3. ky=ky=0,ks=k, =1, ky=kg=Fk;=2and kg=Fky =
k10=3.

Next, the above notations will be generalized to the setting where the
number of objects N is a random variable and randomized stop rules are
allowed. (In the classical setting of a fixed known number of objects, it is clear
that randomization does not help, that is, £, is also optimal among the larger
class of randomized stop rules.)

For each positive integer n, II, denotes the set of probabilities on
{1,2,...,n},s0p €11, is of the form p = (py, py, - .., p,), where p;, > 0 for all
iand X7_;p;, = 1.

N is a random variable with distribution .~(N) €11, R,,..., R, are as
above and independent of N and 7, denotes the set of randomized stop rules
for R,,..., R,, that is, t € 9, means that {¢ = i} is in the o-algebra gener-
ated by R, U, ..., R, U;, where U;, U,, ... areiid. U[0, 1] random variables
which are independent of the {R,} process and of N. In other words, the
observer is allowed to base his selection rule not only on the observed relative
ranks, but also on an independent event, say flipping a coin or using a random
number generator. Clearly the only stop rules which are of interest (for the
goal of selecting the best object) are those which never stop with an object
which is not the best seen so far, so every ‘“reasonable” ¢ € 7, may be
described by ¢ = (q1,95,-..,¢,) €[0,1]*, where ¢, is the probability that
t=1, given that R,=1 and ¢>i — 1. Accordingly, it will be assumed
throughout that only such stop rules are used, so .7, is essentially [0, 1]*. The
stop rule ¢ = (g4, 9y, --.,q,) describes the selection strategy ‘‘stop with the
first object with probability g, (i.e., if U; < q,); otherwise continue observing
and if the second object is better than the first, stop with probability ¢, (.e.,
U, < q,); otherwise continue,...”” [see Abdel-Hamid, Bather and Trustrum
(1982)]. To relate this to the classical problem, Proposition 2.2 says that if
N = n, then an optimal stop rule is (0,...,0,1,...,1), where %, zeros precede
n + k, ones. [Formally speaking, the above stop rules (q,...,q,) are not
forced to stop by time n, but since stopping with a relative rank less than 1 is
worth nothing, it is easily seen that forcing a stop by time n changes nothing.]
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DeFINITION 2.4. For ¢ = (qy,...,9,) € J, andp = (p,, .. ,pn) e I, the
value of using ¢ given that the distribution of N is p, V(tIp), is given by

V(tlp) =P(t<Nand R,=1and R, > 1
Vie{t+1,t+2,...,N}|.Z(N) =p).

(Recall the assumption that if the observer rejects the jth object and N = j,
then he loses.)

The next leixlma is found in Abdel-Hamid, Bather and Trustrum (1982) and
is recorded here for completeness. (For notational convenience, the product
over an empty set is taken to be 1.)

Lemma 2.5. Fort =(qy,93,...,9,) € I, and p=(p,,...,p,) 11,
1

V(tlp)—Ep, quzl (1-m 'q,,)-

Proor. Using ¢, the probability that all of the first m objects will be
rejected, r(¢, m), is
r(¢,m) =(1-¢)(1-q5/2) - (1 -q,/m)

and if N =j, the probability of Wlnmng with this rule ¢ is V(¢IN =j) =
JTXi_1q;r(¢,i — 1). Since V(tlp) = 7-1p;V(tIN = j), this yields the desired
equa.llty m|

3. Main theorems and examples. Recall that s; = ©7_,i"! and %,
the “cutoff”” for the optimal rule in the classical secretary problem w1th n
‘objects (Definition 2.1 and Proposition 2.2).

DeFinNiTION 3.1. Let a; = 1, @y = 1/2 and, for n > 2,
Sp-1 " Sk, -1

" (n—k )/ ko + (Su1— Sp,—1)8s,

(See Table 1 for a,, n = 3,4,5,10.)

Recall also that .7, is the set of randomized stop rules for n objects, IT is
the set of probab111t1es on {1,...,n} and V(¢|p) is the probability of selectlng
the best object using ¢, given that the distribution of the number of objects is
p- The following three theorems are the main results of this paper.

a

THEOREM A. sup,. s, inf,cp, V(p) =a, = inf, cp, sup,c &, V(p).

REMARK. Although each of the terms in the definition of a, has a natural
probabilistic interpretation (e.g., s, — s ; is the expected number of relative
rank 1 candidates occurring between the ith and jth candidates), the authors
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know of no intuitive explanation why «, should be the minimax constant
appearing in Theorem A.

THEOREM B (Minimax-optimal stop rule). If t* =(qf,...,q¥) € T, is
defined by

- -1 .
qF = (et = s;-1) forj=1,...,k,,
1 fork, <j<n,
then V(t¥|p) > a, forall p €11,.

THEOREM C (Minimax-optimal distribution for N). IfP* = (pf,...,p¥) €
I1, is defined by

a,(j+17! forj <k,
pjf = an(l = (8p-1— sk,,—l)_l) forj =k,
0 fork,<j<n

(soforn <2, p¥=1and forn>2, p¥=na,lk,(s,_, —s, _DI™"), then
V(t|P¥) <a, forallte ,.

[Verification of the above expression for p* and of the fact that ¢* € [0, 1]
is left to the reader; this requires only elementary algebra applied to the
definitions of a,, £, and s,. For example, to show ¢* < 1, the monotonicity
of the {s;} implies that it is enough to show that a, < (1 + s, _;)”", and using
the definition of a, and s; this is equivalent to (&, — 1)(s,_; — s, _;) <n —
k,, which clearly holds.]

Table 1 lists the minimax values {a,}, and the minimax-optimal stop rules
and distributions for several values of n.

REMARKS. Irle’s (1980) example of an ‘“‘unpleasant” distribution, that is, a
distribution for which no stop rule of the form (0,0,...,0,1,1,...,1) is
optimal, is p = (0, 0.895, 0.001, 0.001, ..., 0.001, 0.1) € II, for which he calcu-
lates the value of the optimal stop rule (0,1,0,1,1,1,1, 1) to be approximately

TaBLE 1
nk, a, tE=(qfy...,q) Pi = (p¥y.e..,p¥)
10 1 @ @
20 1 1,1 0,1
31 2 (3,1,1) (3,0,8
41 5 (%,1,1,1) - (%,0,0,%
52 % %,%,1,1,1) (%2,%,00,%
10 3 0.278* (0.278%,0.386%,0.478%,1,1,...,1) (0.139%,0.092%0.068%,0,0,...,0,0.698*)
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0.482. Comparison of this value with those in Table 1 suggests that such
island distributions are far from being worst-case (i.e., minimax-optimal),
although a direct proof of this is not known to the authors.

It should also be observed that the minimax-optimal distribution for N is
not one of the other ‘“‘naive-guess” distributions such as N =n or N uni-
formly distributed on {1,2,...,n} or N = 1 with probability p and = n with
probability 1 — p. As far as the authors know, this P}* is a new distribution on
n points.

Clearly Theorem A follows from Theorems B and C. No direct proof that
supinf = infsup is known to the authors; although V(¢|p) is linear in p and
IT,, is convex and compact, V(¢|p) is neither convex nor concave in ¢, and
known generalizations of the classical minimax theorem of game theory do not
seem to apply. (The results in this paper may also be interpreted as a zero-sum
two-person game as follows. Player I picks the distribution of N, and player II
picks the stop-rule or selection-strategy ¢; if ¢ selects the best of the N objects,
then player I pays player II one dollar; and otherwise no money changes
hands. The constant «, then represents the value of this game.)

4. Proof of Theorem B. The conclusions of Theorems B and C are
trivial for n = 1 and easy for n = 2, so for the remainder of this paper, n will
be a fixed integer strictly bigger than 2, and to simplify notation, & = %,
I =9, and II =1I,. (Observe that n > 2 precludes the degenerate cases
where %k = 0; see Example 2.3.)

LEMMA 4.1. Suppose {a,}; are real numbers, and j and E are positive
integers satisfying n > j > k. If both

(1) (ay+ - +ap) k= (ay+ - +a))/j
and
(2) a,>a,,,; foradlme{k+1,k+2,...,n},

then (a; + -+ +a;)/j=(a; + -+ +a,)/n.

Proor. If j = n, the conclusion is trivial, so assume j < n. Then condi-
tions (1) and (2), respectively, imply

(ar+ - +ay)/j=(ap+ o +a;)/(J — k)
2 (a1 + r +a,)/(n—J),
so(a; + -+ +a;)/j=(a; + - +a,)/n. O

PROPOSITION 4.2.

sup inf V(¢lp) = max min V(N =j).
te 7 PEIl t=(q,..., q,)E€ET:q,=1Vi>k je(l1,2,...,k,n}
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Proor. Since V(t|p) is continuous in both ¢ and p, and since 7 and II are
compact, the sup and inf are attained. Moreover

(3) 1nf V(tlp) man(tIN J)s

since V(¢|p) is linear in p, and II is the set of all probabilities on {1,2, ..., n}.

The proof of the optimality of the backward induction procedure implies
that if ¢ is any stopping time for an adapted sequence of o-algebras 9‘"1 c%C

© C & and t* the optimal stopplng time, then V(¢) = V(¢) if ¢’ is obtain-
ed from ¢t by stopping at time i on an arbitrary .%-measurable subset
of {t>i,t* =1i}. Hence, by Proposition 2.2 replacmg an arbitrary ¢ =
Q.- ,qn) €7 by t=(q,.--,q4,1,1,...,1) € J results in at least as
high a probability of selecting the best object for any given (deterministic)
number of objects (< n), that is,

(4) V({IN =j) = V(¢tIN =j) forall j <n.

Together, (3), (4) and the compactness of .7~ imply

(5) sup inf V(tIp) max min V(¢IN =j).
te 7 PEI t=(q1,..-,9,)E€T:q;=1Vi>k j<n

To complete the proof of the proposition, it is enough to show that for all
t=(qy...,qp1,...,1) € T,andforall je{k+1L,k+2,...,n—1}

(6) V(¢IN =j) > min{V(¢IN = &), V({IN = n)}.

Fix ¢ =(qy,...,4s 1,...,1) €[0,1]* and define real numbers {a;}; as fol-
lows: a; = ¢; and a; = q,H‘m 1@ -mq,)fori>1.
Since g; = 1 for all i >k and q; €[0,1] for all j,

(7 a,>a,,, forallm>EFk.

By Lemma 2.5, VN =j)=(a; + -+ +a;)/j for all je {1,2,...,n}). To
establish (6), suppose V(¢|N =j) < V(¢IN = k), that is,

(8) (a;+ - +ap)/k=(ay+ - +a;)/j.
By (7) and (8) and Lemma 4.1 (with & = &),

V(tIN=j) =(a; + - +a;)/j = (a; + -+ +a,)/n=V(IN =n),
which establishes (6). O

LemMa 4.3. Forallt=(qy...,q: 1,1,...,1) € F,

V(¢IN=n) = kn'l[(sn_1 - sk_l)(l - kil (j-+ 1)"'V(tN =j))

Jj=1

—($p_1 = 831 — DV(IN = k)]
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Proor. First it will be shown that

J j—-1
[T(1-mg,)=1- ¥ (m+1)"'V(tIN = m)
(9) m=1 m=1
- V(¢N =j) forall j<k.
The proof of (9) is by induction on j. For j =1,(1 -¢,) =1 - V(tIN = D by
Lemma 2.5. Assume that the equality in (9) holds for all j < £ and calculate

E+1 k k
[1(-m"g,) = TT(1-m"q,) = (k+1) gy I1 (1 -m'q,,)
e
=1- Zl(m +1)"'V(¢N = m) — V(¢IN = £)
(10) m=1
~ V(N =F + 1) + E(k + 1) 'V(#IN = k)
k
=1- Y (m+1)"'VEIN=m) - V(N =£ + 1),
m=1

where the second equality in (10) follows by the induction hypothesis and the
fact (from Lemma 2.5) that

k
V(tIN=k+1) =(k+1) gy TT (1 —m™Yq,) + k(k + 1) 'V(IN = b),
m=1

which establishes (9).
Since q; = 1 for all j > k, Lemma 2.5 and the definition of {s ;) imply that

k i—1
V(HIN = n) = n—l[z 0. T1 (1-m™q,,)
B (11) i=1 m=1 .
+k(8n7_1 - Sk—l) 1:[1(1 - m_lqm) .

But % ,q;T15,1(1 — m™1g,,) = kV(|N = k) (Lemma 2.5 again), so (9) (with
J = k) and (11) yield the desired equality. O

Heuristics. Although a direct calculus-based proof of Theorem B should be
possible, the proof given below is greatly facilitated by Proposition 4.2 and
Lemma 4.3, which both also serve as heuristics for the structure of the
minimax-optimal stop rule. For example, Proposition 4.2 says that any general
stop rule can be replaced by a stop rule with ¢, = 1 for all i > &, and that with
such stop rules, the critical values occur when N =j for some j in
{1,2,...,k,n}; that is, if N=j € {k + 1,...,n — 1}, the observer’s probabil-
ity of selecting the best object is at least as high as the minimum of the other
possible values for j. (Incidentally this also suggests why the minimax-optimal
distribution in Theorem C places no mass on {k + 1,...,n — 1}. For fixed ¢ of
the form known to be optimal (i.e., g; = 1 for all i > k), Lemma 4.3 implies
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that V(¢IN = n) is a decreasing function of V(¢|N =j) for j < k. Together
with Proposition 4.2, this suggests via a ‘“Robin Hood principle” (shifting
mass to decrease the maximum and increase the minimum) that the extremal
case occurs when VN = 1) =V(@N =2)= - =V(N =k) = V@N = n).
Solving this set of %2 equations for the 2 unknowns gq,,...,q, leads to the
minimax-optimal stop rule in Theorem B. Once the correct extremal stop rule
is guessed, of course it is then much easier to prove directly that it is in fact
optimal, without justifying the derivation of the guess.

Proor oF THEOREM B. By (6) it suffices to show that
(12) V(t#N =j) =a, forj=1{1,2,...,k,n}.

To establish (12), first check by induction that ¢ *T17, (1 - m~'¢%) = a,, for
all j < k, so Lemma 2.5 implies that V(¢*IN = j) = «,, for all j < k. To check
that V(¢*IN = n) = a,,, use Lemma 4.3 and the fact that (s,_, —s,_,) =
k7 la,(n — kX1 — a,s,)"! to calculate

V(t¥IN = n) = n-lk[(s,,_l - sk_l)(l - ankil(j + 1)‘1)
j=1

J

_(sn—l — Sp-1 l)an]

£

= n_lk[(sn—l - sk—l)(l —a,
J

= n"k[a, b (n — k)1 - a,5,) (1 - a,s;) +a,] =a,. O

5. Proof of Theorem C. As mentioned above, Proposition 4.2 suggests
that any minimax-optimal (worst-case for the observer) distribution places no
masson {k + 1,...,n — 1}, and again a Robin Hood principle leads to a guess
which has break-even values for each j in {1,2,..., k, n}. For example, clearly
pf¥ < a,, since otherwise taking ¢ = (1,1,...,1) yields V(¢|P}) > a,. As was
the case for the optimal stop rule, once a worst-case distribution P* has been
guessed, the check that it is in fact minimax is then much easier. Thus most of
the work was hidden in the heuristics which generated the guess for P}*.

FORMAL ARGUMENT. It is enough to show

(13) V(tIP}) <a, forallt=(qy,...,q;,1,1,...,1) € F,
since by (4), V((qy,...,9,)Ip) < V({(qy,...,93,1,...,1)p) for all {q;} €[0,1]
and all p € I1.

[In fact, it will be seen that (13) holds with equality throughout, which says
intuitively that against P*, all “reasonable’ stop rules, i.e., all stop rules with
q; = 1 for all i > k, select the best object with the same probability.]
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Fix t = (qy,...,9%,1,1,...,1) €[0, 11" and calculate

k-1 J i-1
V(tIP¥) = an( L (G + D)L a1 (1 -mq,)
Jj= i=1 m=

k i—1 k
+k 'Y g, TT(1-m7g,)+ ¥ (1- m‘lqm)) '
i=1 m=1 m=1

k—1k—1 i—1
= an( L X -0G+D eIl (A-m"g,)
k i—1 k
+h7! glqingl(l -m7q,) + I1(1- m‘lqm))
k i—1
= an( gl(i‘l - k‘l)qiﬂl(l -m7q,,)
k i—1 k
+h7! EIQL'"!:II(I -m7q,) + TT(1- m‘lqm))
k i—1 k
“e| £ 7 T (= m7,) + 1T (1= m0,)]
k i—1 i—1
= an[Z {(i—IQi - I (1 -mg,)+ T1(1- m‘lqm)}

+ ”ill (1- m‘lqm)}

where the first equality follows by Lemma 2.5, the second since L*2{T/_; =
L*2!2%Z! and the third since the first summand disappears for : = k. This

completes the proof of (13) and the theorem. O

6. Asymptotics. Since II, can be viewed as a subset of II,, , ;, Theorem A
shows, indirectly, that the sequence {« } is nonincreasing. A direct check using
the definition of @, and general observations about %, (e.g., &, is either k&,
or k, + 1) shows that in fact the {a,} are strictly decreasing in n.
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Since s, ~ log n and &, ~ ne”! (where a,, ~ b, meanslim, . a,/b, = 1),

it follows easily that

a, ~ (logn)™*,
_ln’

. {(logn —logj) "' forj<e
q; -1,

1 for j > e
and
((j+1)logn)™" forj<eln,
pF~<0 fore™'n <j <n,
2(log n) ! for j=n.

In particular, lim, . «, = 0, in contrast to the well-known classical result
that for the deterministic case N = n, the probability of selecting the best
object (using an optimal strategy) decreases monotonically to e~! as n — c.
The optimal “stoppmg-probablhtles” {g}} are nondecreasing, which is also
intuitively plausible, since if it is optlmal to stop with a certain probability at
time i (given R; = 1), then at later times with even more information accrued
it should be optimal to stop with at least as high as probability if a rank 1
object is observed.

The following alternative possible derivation of the asymptotic result «,,
(log n)~! has been given by Samuels (1989). Since the expected number of
relatively best ones (‘““records’’) will be about log N, this suggests that the rule
stop with probability 1/log n at each of the first log n records will succeed with
probability about 1/log n no matter what the distribution of N is. (A formal
derivation using this approach seems to require more information about the
.actual distribution of the number of records than just its expectation.)
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