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We consider a system of particles in R? performing symmetric stable
motion with exponent a, 0 <« < 2, and branching at the end of an
exponential lifetime with offspring generating function F(s) =s + (1 -
s)'*P, 0 < B < 1. (This includes binary branching Brownian motion for
a =2, g=1) It is shown that, for an initial Poisson population with
uniform intensity, the system goes to extinction if d < a/B and is “per-
sistent” (i.e., preserves intensity in the large time limit) if d > a/B. To this
purpose a continuous-time version of Kallenberg’s backward technique for
computing Palm distributions of branching particle systems is developed,
which permits us to adapt methods used by Dawson and Fleischmann in
the study of discrete-space and discrete-time systems.

1. Introduction. Kallenberg (1977) presented a method of ‘“backward
trees” which allows to compute the Palm distributions of the nth generation
of a branching particle system, and to establish criteria for ‘“persistence,” i.e.,
conservation of intensity in the limit n — ». Kallenberg’s method has been
extended by Liemant (1981) to spatially inhomogeneous branching mecha-
nisms in discrete time, and it has been successfully applied by Dawson and
Fleischmann (1985) to establish persistence criteria for a class of branching
random walks (in discrete time and random environment) on the lattice Z¢.

Since Kallenberg’s construction of backward trees relies on the generation
scheme, it is not directly applicable to continuous-time branching systems,
where usually at each time individuals of different generations are alive.

In the present paper, we develop the method of backward trees for a class of
continuous-time branching models, whose fluctuation limits have been studied
by Dawson, Fleischmann and Gorostiza (1989). These models are parametrized
by d, a and B, where d is the dimension of the Euclidean space in which the
particles (or ‘“‘individuals”) live, a € (0, 2] is the exponent of the symmetric
stable motion which each individual performs for an exponentially distributed
lifetime (at the end of which it branches) and B8 € (0, 1] is the parameter of the
(critical) offspring distribution, which has moment generating function F(s) =
s + 3(1 — §)'*# and thus is in the domain of normal attraction of a stable law
with exponent 1 + B.
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Using the above-mentioned continuous-time version of the backward tech-
nique (Theorem 2.3), we then follow the program of Kallenberg (1977) and of
Dawson and Fleischmann (1985), obtaining persistence criteria analogous to
theirs. In particular, it turns out that the system whose initial distribution is
Poisson with uniform intensity is persistent if and only if d > a/B (Theorem
2.2), a fact which in the special case (@ =2, B =1) of particle systems
performing binary branching Brownian motion is already known: Dawson and
Ivanoff (1978), Theorem 7.1, show persistence for d > 3, and nonpersistence
in dimensions d = 1,2 follows from Theorems 4.1 and 4.2 of Fleischman
(1978), which yield, in particular, that in these cases the random numbers of
particles in a bounded region are not uniformly integrable in the large time
limit.

Our methods presumably can be extended without much difficulty to the
case of offspring distributions in the domain of normal attraction of a stable
law with exponent 1 + B.

Questions of persistence also naturally arise in the study of ‘“measure
branching processes,” also called ‘“Dawson-Watanabe’’ processes and ‘super-
processes,”” which are scaling limits of branching particle systems of the type
considered in this paper. We refer to Dawson (1977) and recent work of
Dynkin (1989), in the case of offspring distributions with finite second mo-
ment. In Remark 3.2 (Theorem 3.3) we will show the relevance of our results
to the ‘‘historical process” of the branching process [see Dawson and Perkins
(1990)].

2. The model and the main results. Consider the following branching
dynamics in continuous time on R?: An individual starting at time 0 in x € R?¢
moves according to a symmetric stable process with exponent a € (0, 2], i.e.,
according to the transition density p,(x,y) = p(x —y) whose characteristic
* function is given by

[Rdeix'ypt(x) dx = exp(—tlyl*), yeR%

We will refer to this process, for short, as the ‘“basic process,” and we will
assume that its paths are right continuous with left limits a.s. (for a = 2 it is
Brownian motion with variance parameter 2 on R?). At the end of an exponen-
tially distributed lifetime (with parameter V'), this individual is replaced by a
random number N of “new”’ individuals, all of them then obeying (indepen-
dently) the dynamics just described, starting at the parent individual’s final
position. The distribution of N is assumed to have moment generating func-
tion

(2.1) F(s)= Y pyst=s+1(1-s)'"*

k=0
for some B € (0, 1]. Hence the branching is critical in the sense that E[N] =
Y%_o kp, = 1. With B = 1, we have p, = p, = 3, which is the classical exam-
ple of binary branching. For general B, the distribution of N is in the domain
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of normal attraction of a stable law with exponent 1 + B, and thus, for 8 < 1,
it has finite moments only of order less than 1 + .

In the way described above, an initial individual at site x gives rise to a
random population at time ¢ > 0, described by a random counting measure
X7. [Existence of X} is referred to in Dawson, Fleischmann and Gorostiza
(1989), and it also follows from the construction in the proof of Proposition 3.1
below.] For any g: R - R,, bounded and continuous, the expected value
E{X}, g) = El [g(y)X}(dy)] can be computed as follows. By a standard re-
newal argument (conditioning upon the first branching), we find that E{ X}, g)
satisfies the integral equation

E(Xf,g) = e "T,g(x) + E[N][ Ve VT, E(X,_,, 8)(x) ds,

where T,h(x) == [p,(x,y)h(y)dy, and h: R? - R, is measurable. Since
E[N] = 1, the (unique) solution of this equation is E{ X}, g) = T,g(x). Thus
the intensity measure 7,(x, ) of X (i.e., the expectation of the random
measure X[) is given by

m(x,dy) =p,(x,y)dy.

The distribution of X will be denoted by «¢,,, and the kernel 7, will be called
the intensity kernel of the branching dynamics «’.

For an initial population ® = *,_;8, of individuals (here and below, &,
denotes Dirac measure supported by x), we put X=X, , X5, where
(X[, < ; are independent, and we write k(e for the distribution of X,*. If ® is
random and has Poisson distribution with Lebesgue intensity measure (de-
noted by A), the resulting random population X,* will be simply denoted by
X,. Note that the distribution P, of X, is infinitely divisible; its canonical
< measure [cf. Kallenberg (1983), page 50, or Liemant, Matthes and Wakolbinger
(1988), page 18] will be denoted by P.,.

Since A is invariant with respect to the kernels r,, it follows [see Liemant,
Matthes and Wakolbinger (1988), 1.5.2] that X, has intensity measure A.
Hence a general argument [cf. the proof of Proposition 2.3.1 in Liemant,
Matthes and Wakolbinger (1988)] shows that for any measurable g: R¢ - R,
the Laplace functionals Ee ¢*»£> are increasing in ¢, and thus, by relative
compactness, X, converges towards a ‘“steady state” X, (having a distribution
P,, which is invariant with respect to «(y, for all ¢ > 0).

Convergence of X, can also be proved by the following specific calculation.
The Laplace functional of X, is given by

(2.2) Ee= %08 = exp{(A, Ee~X:8> — 1)},

A renewal argument shows that, for g: R > R, continuous and with compact
support, h(x,t) == Ee ¢*i:€> gatisfies the integral equation

h(x,t) = e ViT.e 8(x) + [‘Ve-VSTsF(h(~,t — 8))(x) ds,
0
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and therefore & satisfies the equation

oh

= = (8, = VA +VF(h),  h(x,0) =e™6@,
where A, == —(—A)%/? is the infinitesimal generator of the semigroup (T,).
Since F(s) — s = 3(1 — s)'*#, the latter equation can be rewritten as

oh 14 .
(2.3) i A h + E(l —h) ", h(x,0) =e &™),

Hence % satisfies the integral equation
h(x,t) = Te #(x) + gjotTt_s(l —h(-,s))™P(x)ds.
Substituting into (2.2), we obtain
Fo—(X08) — exp{()t,e—b’ -1+ g[;( A, (1= h(-, )" ds},

from which the above-mentioned increase in ¢ of the Laplace functionals is
immediate. Moreover, it follows that the Laplace functional of the steady state
X, is given by

V ©
(2.4) Ee (¥=8 = exp{()t,e‘g -1+ Efo <A,(1 - h(-,s))1+ﬁ> ds}.

(Note that the finiteness of the integral on the right-hand side is implied by
the previous argument.)

Since the random populations X,, ¢ > 0, all have intensity measure A, their
limit in distribution X, has an intensity measure p such that p < A. A is
called persistent if the intensity measure of X, equals A. [We avoid in this
context the term ‘“‘stable’” which is used in Liemant, Matthes and Wakolbinger
(1988) and some earlier publications, in order to prevent confusion with the
stable motion process.]

The following dichotomy holds.

Either A is persistent or X, = & a.s.
(i.e., either the system preserves its intensity, or it goes to extinction in the

large time limit; here and below & denotes the zero measure on R9).
Moreover, the following proposition holds.

PRroPOSITION 2.1. A is persistent if and only if, for somet > 0, the branch-
ing dynamics k' has a nontrivial steady state Y with locally finite intensity
measure.

+(By ““nontrivial” we mean that P[Y = 7] < 1.)

Proor. One direction of this equivalence is obvious: Just take Y := X_. To
show the other direction, let u be the intensity measure of the steady state Y.
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Since there holds for all Borel sets B ¢ R¢,
#(B) = [p(dx)m(x, B) = (u*o)(B),

where o = 7,0, - ), it follows [see Deny (1960), Section 6] that u = cA for
some constant ¢ > 0. In fact, c is strictly positive since Y is nontrivial. Thus,
together with u, also its multiple A is the intensity measure of a steady state
for k’ [see Liemant, Matthes and Wakolbinger (1988), 2.3.10], which implies
that X, has intensity measure A by Liemant, Matthes and Wakolbinger
(1988), Theorem 2.3.6. O

It is now a natural question to ask for which of the model parameters
d, a, B the measure A is persistent. The same question has been studied by
Dawson and Fleischmann (1985) for similar models in discrete space and
discrete time, with analogous meanings of the parameters « and B. Their
results suggest that A should be persistent (and hence X, would be non-triv-
ial) if and only if d > a/B. The qualitative content of this criterion is the
following. Because of criticality of the branching, dying out of the population
goes along with “large clusters of individuals’’ occurring in the course of time
with some small probability. Now, small B is in favor of large clusters, whereas
large d and small « are in favor of transience of the motion, a fact which tends
to spread out clusters over the space and therefore counteracts the effect of
large clusters.

In fact, we will prove Theorem 2.2.

THEOREM 2.2. Lebesgue measure A is persistent if and only if d > a/PB.

REMARK. Since E(X,,g) = —(d/du)E exp{—(X,, ug},-o, denoting
h (x,t) == Ee™*/:&) we see from Theorem 2.2 and (2.4) that
0 if d >

d .
(28) o [ (A1 = hg(,9)) "7 ) dslumo = .
V()t,g> ifd <

®W|IR ™R

On the other hand,
d
2;(1 - hug(" S))1+B lu=0 = 0.

Hence from our results it follows that interchange of derivative and integrals
in (2.5) is possible if and only if d > a/B. This interchange depends on the
asymptotic behavior of the solution of the nonlinear equation (2.3); however,
an analytic approach to this problem seems difficult. [It can be shown that
equation (2.3) has a unique global solution, and A (x, ¢) € [0, 1] for all x and ¢;
see El Karoui and Roelly-Coppoletta (1989).]
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The proof of Theorem 2.2 relies on a characterization of the Palm distribu-
tions of P,, using a continuous-time version of Kallenberg’s (1977) “method of
backward trees,” which is established in Theorem 2.3 below. Recall that the
Palm distributions of a measure H on a population space M (where H is
assumed to have locally finite intensity measure Aj) are a family (H,), cga of
distributions on M obeying

[(@, )g(@)H(d®) = [h(x) [¢(®)H (d®)Ax(dx)

for all measurable A: R? > R, and g: M — R,. If H is concentrated on the
populations with no multiple points, then H, may be thought of as the
distribution of the population ® under H, conditioned to contain an individual
3, [cf. Kallenberg (1983), Section 12.4].

THEOREM 2.3. For all t > 0 and all x € R?, define the random population
Y,. by

Zg
Y,.= [ (Z XF5 | u(ds),
[0,¢]

i=1

where u is a random Poisson configuration on R, with intensity V, (W}) is a
random path of the basic process starting in x, Z,, s > 0, are random numbers
with ProblZ, =k]=(k + Dp,,y, R=0,1,..., X, s>0, we RY, i=
1,2,..., have distribution «(,,, and all these random objects are independent.

Then the random population 8, + Y, , has distribution (P), for A-almost
all x € R4,

Intuitively, Y, , may be thought of as the population of an individual 6,’s
relatives, stemming from the random ancestral line (W) and the random
branching times s in the support of u.

3. Proof of Theorem 2.3. The ‘“clustering theorem” [Matthes, Kerstan
and Mecke (1978), Theorem 4.3.3] implies

(3.1) P = [ito(() N{ONA(dx),

and therefore E has A as its intensity measure. Hence, by the definition of
Palm distribution, for all f, g: R* - R, continuous with compact support we
have

[ Je= @0 f(2)(P) (d®)A(dx) = [e® X, £YP(dD)

= <A, Ee_<Xirg><Xt" f>>'
TH{IS, in order to prove Theorem 2.3, it suffices to show
(3.2) (A, Be= X082 X, f)) = (A, Be=® *Ye8)f(-)),
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as this implies the equality of the Laplace transforms of (P,), and 5, + Y, , for
A-almost all x.

We will present two proofs of (3.2). The first one relies on the ‘‘backward
technique” [Kallenberg (1977), Liemant (1981) and Liemant, Matthes and
Wakolbinger (1988)], which has been developed to compute the Palm distribu-
tions of random populations with branching dynamics in discrete time, and
which we adapt to the continuous-time model by means of an approximation.
The interest of this proof is its use of the known backward technique and its
intuitive content. Since this proof is long we will only outline the main steps.
The second proof deals with the continuous-time model directly, employing the
Feynman-Kac formula.

Both proofs will use the basic fact

(3.3) AMdx)m,(x,dz) = AM(dx)p,(x,2)A(dz) = A(dz)m,(z,dx).

FIrsT PROOF OF (3.2). By the definition of Palm distribution and (3.3), we
have

(A, Be=Xe:8X X, )) = [ [e=<®&Xd, fi,(d®)A(dx)
= [ [ [e=®®f(2) (k) (d®) (%, dz) A(dx)
= [ [ [e= @& f(x)(xi,)) (d®)m (%, d2) A(dx),

and therefore (3.2) is immediate from Proposition 3.1.

ProposITION 3.1. Let t > 0 and z € R%. Define, for x € R?, the random
population Y7, as Y, , in Theorem 2.3, but with (W) replaced by a random
path (W7F?) of the basic process starting in x and conditioned to be in z at time
t. Then 8, + Y/, has distribution («l,), for A-almost all x € R%.

ProoF. 1. In order to apply the backward technique, we study the
space-time evolution of generations up to time ¢, by distinguishing in each
generation a motion step and a branching step. For the motion step, for each
(w, s) € R? x [0,¢t] we define the random element m(w, s) == (w +
W, A t=sy (s + n) A t), where 7 is exponentially distributed with parameter V,
(W,) is a random path of the basic process starting from the origin and 7, (W,)
are independent, and we put 7, ., := distribution of 8, - This means that
in a motion step 7, the time coordinate of an individual increases by an
exponentially distributed increment, but not beyond the time horizon ¢,
whereas the space coordinate changes according to the basic process. As to the
branching step, we define

5000 ifs=t¢,

0
w =
(w,s) :
) Prdrsw,s) ifs <t
k=0
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Thus, in a branching step , an individual with time coordinate less than ¢
produces a random number of offspring at the same time and place, whereas
an individual with time coordinate ¢ remains unchanged. Further, we desig-
nate by y the composition of the two “clustering fields”’ = and o, i.e.,

Y(w,s)( ) = Ewm(w,s)( : ) .

For a population ® = X ;, 8, on R? x [0,¢] we define y{g) == v, as the
convolution * ;_; v, and we put, forn =2,3,...,

W) = [V ve(dY), v =)
The corresponding intensity kernels are defined by
Iy, ) = [@()¥hNdD);

they are in fact the kernel powers of J, = JI!. Due to the criticality of w,
J,((w, s),- ) is just the distribution of the random element m(w, s).

2. Let ®, be the random population on R? x [0, ¢] which arises after n
steps of the dynamics vy, starting with 8, ;). Since each motion step increases
the time coordinate by an exponential random variable until the time horizon ¢
is reached, and since any individual with time coordinate ¢ does not change
anymore, it is clear that for almost all (®,) there exists a (random) positive
integer N and a population @, concentrated on R? X {¢} such that ®, = @, for
n > N. Writing ®! = ®,((-) X {#}), n = 1,2,...,», we observe that &, in-
creases towards @, and that ®/ has distribution «,,.

3. Denoting by P, the distribution of ®,, we compute now the Palm
distributions (P,),, ,, * € R?. Due to the backward formula [Liemant, Matthes,
and Wakolbinger (1988), 1.9.4, or Liemant (1981), Theorem 8.2], (P,)
arises by coining out successively:

—the positions of the mother, grandmother, ...,
—the populations of the sisters, aunts, grandaunts, ...,
—the populations of the cousins, second-degree cousins, .. .,

of the individual 8, ,. More precisely, the corresponding steps consist in
forming

—a random sequence (yy, ..., ¥,_1) with distribution
m;—d—yn_)']y(yO)dyl)Jy(yhdy2) v (Vu1:Bn)s
where y, == (2,0) and y, = (x, 1), .

—random populations ¥; distributed according to (y(yj_l));,j, j=1,...,n,
which are independent given yy,...,¥, 1 where HJ', stands for the reduced
Palm distribution H,(® - 4,) € (*)), .

—random populations x; with distribution y([(f,J‘)“, j=1,...,n — 1, which

are independent given ¥,,..., ¥, ;.
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The backward formula states that &, ,) + x; + -+ +x,_; + ¥, has distri-
bution (P,), .
4. The random sequence (y,,...,y,_;) can be realized as

((2,0), (Wg,t2),..., (Wg, t2), (=, t),...,(x,2)),

where (W) is a random path of the basic process starting from z and
conditioned to be at x at time ¢, ¢} <t} < --- <¢* are the points of a
Poisson process with intensity V on [0, ¢] conditioned to the event {v < n}, this
Poisson process being independent of (Wz*). [The point (x, ¢) appears n — 1 — »
times in the sequence.]

The random population ¥; equals 6yj a.s. if the time coordinate of y; is ¢. If
the time coordinate of y; is less than ¢, then V¥, arises as Z jayj, where Z; is a
random number with Prob[Z; = k] =(k + 1)p,,,, £ =0,1,.... This is a
consequence of the following fact:

Let 7 be a probability distribution [in our case the distribution of m(w, s)
for fixed (w, s)], and let, for m-almost all y, (p}),_ 1, ... be a probability on the
nonnegative integers with finite mean m,,. Then a family of Palm distributions
of ‘

Q= X pidusm(dy)
is given by
Q, = (my)”};; kp}8ys,-
Indeed,
J<@, m)g(®)Q(de) = [ ¥ pia(ko,)kh(y)m(dy)

= fh(y)(my)'l}; kplg(k8,)Ag(dy).

5. From the two preceding steps we infer that (P, )iz, 1) 18 represented by the
distribution of

v Zj
Yor = O,y T E Z q)r:’z":;',i’
Jj=1i=1
where y, ;= (Wtjf,x, t7), ®} denotes the kth generation population in the
system with dynamics y starting with the single individual 6, and Py ,,
i=1,2,..., are independent copies of ®}.

The sequence of random populations Z;=16ynj converges in distribution
as n = @ to [io 48wz 5m(ds), where u is a random Poisson configuration on
R, independent of (W7?*). Since the distribution of u is invariant with respect
to‘the time reversal s — ¢ — s, this random population has the same distribu-
tion as [, 18wz, s u(ds), which in turn equals [i, 48wz ,_su(ds) in dis-
tribution, where (W;**) denotes a random path of the basic process starting
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from x and conditioned to lead to z at time ¢, since for any s the distributions
of W/ and W/ coincide.

On the other hand, for any fixed y = (w, t — s) € R X [0, ¢] the sequence of
random populations ®}((-) X {¢}) converges in distribution as & — « to the
random population X with distribution «(,, (see the argument in step 2).

Hence we infer that the sequence of random populations Y7 :=
Y7™((+) X {t}) converges in distribution as n — « to the random population
3, + Y7, defined in the proposition.

6. Finally, by using the fact that ®! increases towards ®: [and hence
JI*(0, 2); dx X {t}) converges to 7z, dx)] the Palm distributions of P, (step
3) and dominated convergence, we have for all g, f: RY > R, continuous
with compact support,

Ee=Xt.8)(XZ, f>

Ee™(*8X®L, f)
lim B[e=%0 [ [ 1,(s) £(x),(ds, ds)]

n—o

lm}° fEe FELOF(x)IIM((0, 2), dx X {t})
= [ EeC:*¥iwf (x)m (2, dx),

which, by the definition of Palm distributions, proves that &, + Y;?, has
distribution (x(,),. O

SECOND PROOF OF (3.2). Let
J(x,t) == Ee <Xi:&X(X* f).
The renewal argument shows that j satisfies the integral equation
J(x,t) = e VT e 5 )(x) + [ Ve TL(j(- ¢ = ) F(h(-,t — 5))(x) ds,
0
where F is given by (2.1) and h(x,t) := Ee ¢X/&> gatisfies (2.3). Hence
F'(s)=1- 11 + B)A - s)?, and j solves the equation
aj 8
o =<Aa—V),~+‘c~[1—%(1 +B)(1 = h)*]
= A, =3V +B)(1-R)Pj,  j(x,0) = e EDf(x).

This is a linear equation for j, and its solution is given by the Feynman-Kac
formula [e.g., It6 (1969)], .

i) = Elexp(~ 1V + B) [ (1 = h(WE,, )" ds)e e07(wp),

where W7, ¢ > 0, denotes the basic process starting from x. By reversing the
time and using the basic fact (3.3), we have that the left-hand side of (3.2) is
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given by
A, J(,8)) = <A,E[exp{—%V(1 +B) fot(l - h(W,,s))’ ds}]s‘g“’f(')>.
Therefore, to complete the proof, we must show that
A, f(-)Eexp{-(6.+ Y, ,8)})
= <A, E[exp{—%V(l + B)/Ot(l - h(W,,s))" ds}]e—g<'>f(-)>.

This amounts to computing E exp{—(Y, ,, g)}, which is straightforward due
to the explicit structure of Y, , Denotlng by E' the conditional expectation
given the path of the basic process starting from x, and conditioning on the
number of Poisson points in [0, ¢] (independently and uniformly distributed on
[0, t]), we have

Ee~Yex8) — Eexp{ f Z (X ,g>,U«(ds)}

ZE u([0,1]) = n}

{ J Z<X ,gm(ds)}
[0,¢

xe VE(Vt)" /n!

o 1 Zs "
-z E(;[‘E'exp{— > <Xs%",g>}ds) eV (V)" /n!
n=0 0 i=1
ZS
= Eexp{—Vt + Vf E'exp{— Y (Xs‘f}x,g>} ds}
0 i=1

=)

£l
I

=]

Vt+V/;)[ -3(1 +,B)(1—h(Wx s))ﬂ] ds}

% V(1 +B)f (1 - h(Wz, s))Bds} o
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REMARK 3.2. From the second proof we have
(1 FC) [ @ (P).da)
= (3 E|ee(-1v1 4 ) [0 - hOW,0)) ds) o7
0

We will show that this result can be used to derive a representation similar to
that of Theorem 2.3 for the (stable) measure branching process, which agrees
with the corresponding result for the ‘‘historical process” obtained recently by
Dawson and Perkins (1990).

The measure branching process is a scaling limit of the particle model we
are studying. The appropriate scaling is the following: Each particle has mass
1/n, the lifetime parameter is n”V, and the initial Poisson distribution has
intensity measure nA. Then the mass process X,* converges in law as n — o
to the measure branching process X; for each ¢ [see Dawson and Ivanoff
(1978) for B = 1 and Mélérd and Roelly-Coppoletta (1989) for 8 < 1].

Introducing this scaling in the formula above, we have

(1 1) fe@o(FF).(a0) )
(3.4) = <A,E[exp{—§nBV(1 + B) fot(l - (W,,s))" ds}

Xe‘g")/”f(')] >,

where H"™(x,t) := n(1 — h™(x, t)) satisfies [see (2.3)]
oH™"
at

Since H"(x,0) - g(x) as n — =, then [see, e.g., Henry (1981), Theorem
3.4.1], H*(x,t) » H(x,t) as n — o uniformly for ¢ in bounded intervals,

where H(x,t) satisfies
o0H v ..
(35) —3[ = AaH - EH B) H(x’O) =g(x),

and the right-hand side of (3.4) converges by dominated convergence:

<A, Blexp(~4v(1+ ) [ (n(1 = w2(W,, )’ dS}e‘g"’/”f(')D

4
=AH" - E(H")”ﬂ, H™(x,0) = n(1 — e €®/m),

N <A,Eexp{—§V(1 +B) fOt(H(WS',s))Bds}‘f(‘)> as n — o.

On the other hand, convergence in law of X to X; means weak conver-
gence of P to Py, the distribution of X;’, and since the intensity measure is
preserved in the limit (direct verification), then by Kallenberg (1983), Theorem
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10.4 and Lemma 10.8, (P '), converges weakly to (P°°)f as n — « for each f:
R? - R, continuous with compact support, f# 0, where (P") and (P” )
denote the randomizations of the Palm distributions by f [Kallenberg (1983)
Section 10.3]. This implies that the left-hand side of (3.4) converges,

(1, £ f (@) a0) ) > (1, 7C) fe @0 (FF) (do))

as n — .
Thus we have proved Theorem 3.3.

TuEOREM 3.3. For all t > 0, the Palm distribution (PF), of the canonical
measure of the measure branching process X; has the following representation
through its Laplace functional:

[ e ®0(FF).(49) = Bexp{ ~ V(1 + ) [/ (H(Ws,))" ds)

for A-almost all x € R?, where W7, ¢ > 0, is the basic process starting from x,
and H is the (unique, global) solution of the nonlinear equation (3.5).

Note that in the particle system the breakoff of mass from the trajectory of
the basic process takes place at the time points of the Poisson measure u,
whereas in the scaling limit the breakoff of mass goes on continuously in time.

4. Several characterizations of persistency. Using Theorem 2.3, we
can prove the following criterion [which is an analog to Kallenberg’s (1977)
persistency criterion for discrete-time models; see also Liemant, Matthes and
Wakolbinger (1988), Section 2.4].

PROPOSITION 4.1. A is persistent if and only if for A-almost all x € R? the
random population

Y= lim ¥, = [ (Z X7 |u(ds)
’ [w) 8,1

is locally finite a.s. [i.e., for almost all paths (W), Poisson configurations
and random numbers (Z,)].

(The ingredients building up Y, , have been defined in Theorem 2.3.)

ProOF. By 3.3.6 and 10.1.1 in Matthes, Kerstan and Mecke (1978), persis-
tence of A is equivalent to the following uniform integrability condition on the

canonical measures P;:

(4.1) lim sup[ ®(B)P(d®) =0

m—oo 50 {®(B)>m}
for all bounded Borel sets B ¢ R€.
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By means of Theorem 2.3 we get

'/;cD(B)>m)q)(B)P‘(dCD) B f lB(x)(Pt)x({q)(B) > m})A(dx)

= [ P[Y,.(B) = m]A(dx).
B
Now suppose that Y, , is, for A-almost all x, locally finite a.s. Then we have

sup [B P[Y, .(B) = m]A(dx)

t>0
sf P[Y, (B) = m]A(dx) >0 asm — o,
B

by dominated convergence, and hence the validity of (4.1), i.e., persistency of A.

Conversely, assume that A is persistent, i.e., P, has intensity measure A.
Writing H,: = [k(q,(-)H(d®) for any distribution H, and expressing the Palm
distribution ((P,),:), by the backward formula [Liemant, Matthes and Wakol-
binger (1988), 1.9.1], we get

(P, = (P ), = [(((R) o * (), ) mlx, dy),

i.e., (P,), arises, for any ¢ > 0, as the distribution of a superposition of the
random population Y, , and some other random population. Thus we have

P[Y,.(B) zm] < (P.)(®(B) = m)

for all ¢, m > 0 and bounded Borel sets B c R%.
Hence

P[Y, .(B) 2 m] = lim P[Y, (B) = m] < (P.),(®(B) = m)
t—>
for all m > 0, which implies that Y, , is locally finite a.s. O
The following lemma is, within the class of models considered in this paper,
a continuous-time analog to Theorem 3.1 of Kallenberg (1977) and Lemma

7.4.1 of Dawson and Fleischmann (1985).

LEMMA 4.2. A is persistent if and only if for all bounded Borel sets B c R?
f (kéw (P(B) > O))Bp(ds) < for Il-almost all (W,)
[0, ) § .

and almost all Poisson configurations u.

Q[Here and below, Il stands for the measure [II_(-)A(dx) on path space,
where I, x € R¢, denotes the distribution of the basic process (W,*) starting
in x.]
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Proor. 1. For any fixed realizations of u and (W,), it follows from the
Borel-Cantelli lemma that the number of summands (L%, X:}'}) (B) con-
tributing to the sum [, (X%, XX B)u(ds) is finite a.s. if and only if the
sum

Zs
f[o °°)P[( gl XSYV;)(B) > O}u(ds)

converges. Proposition 4.1 thus yields that A is persistent if and only if this
sum is finite for II-almost all (W,) and almost all u.
2. For any s > 0 and w € R? one has
Z, w k-1
P[(Z Xsu,ji)(B) > 0] =) kka[( > X:,)i)(B) > 0}
i=1 k=1 i=1
1- ¥ kpu(P[X2(B) =0])"
k=1
1-f(P[Xy(B) =0])
1+

—2—(1 - P[X¥(B) = 0])°

1
- —;—B(Kg (®(B) > 0))".

w)

Combining steps 1 and 2, we arrive at our assertion. O

COROLLARY 4.3. A is persistent provided that the following finiteness condi-
tion holds:

(4.2) f[ )(ns(ws, B))? u(ds) <« for I-almost all (W,) and almost all w,
0,
for all bounded Borel sets B c R,

Proor. This is immediate from Lemma 4.2, since
(W, B) = ki, (®(B) > 0). O

PRrOPOSITION 4.4. Condition (4.2) holds if and only if d > a/P.

ProoF. 1. Let B be a ball in R¢ centered around the origin and put
M, := 7,0, B). By symmetry, unimodality and scaling properties of p,
sup m,(x,B) =M, =m,(0,s"/*B).
xeR?

By continuity of p,, this implies the existence of some constants ¢, C > 0 such
that ~

(4.3) cs™¥/* <M, < Cs %/ forall s> 1.
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2. The condition d > a/pB is equivalent to
/ sPi/ey(ds) < » a.s.
[0, =)

Indeed, writing u = £7_, 8,, where 0 = #, < ¢, < ¢, < ---, and putting 7, ==
t; — t;_,, we have :

12
© o i —Bd/a ® 1 1 i —Bd/a
thfﬁd/“=2(27j) =~1iﬁd/a(_~’27j) )
i= i=

i=1{j=1 Lij=1

which by the strong law of large numbers is finite if and only if Bd/a > 1.
3. Now assume that d > a/B. Steps 1 and 2 imply, for any ball B c R¢
centered around the origin,

f (M,)Pu(ds) < o a.s.,
[0, »)

which clearly yields (4.2).

4. Conversely, assume the validity of (4.2). Let B be the unit ball in R%, and
choose a starting point x for the basic process such that (4.2) holds true for
almost all (W*) starting in x. Moreover, we choose x so close to the origin of
R< such that for all s > 1,

E[w,(W;, B)] = [ m(x,dy)7,(y, B) = my,(x, B) = 3M,,.

Henceforth, we will tacitly restrict ourselves to s > 1, and will write & =
(W7, B). »
Since, by (4.3),

c2—d/a

M, > c274/ag=d/a > C

M, = const. M_,

there exists some 8 € (0, 3) such that
E[¢,] = M, > 26 M.
By Markov’s inequality,
(1-8)M,P[¢, <6M,]
=(1-8)MP[M, - &2 (1-8)M,] <E[M, - ]
< (1-25)M,.

Hence
1-26
1-6

From this estimate and from one more application of Markov’s inequality, it

>0

P[¢, > 6Ms] >1-
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follows for almost all Poisson configurations u, all 2> 0 and ¢ > 1 that

8 (8M,)’u(ds) < [ Plé >3M,](5M,)u(ds)
[1,2] [1,2]
#:I
B B
<k +P[fu’t](§s) >k#] [M(Ms) w(ds)

(recall that by definition M, is an upper bound for £,). This chain of inequali-
ties implies

P[/ (&)°u(ds) <k
[1,¢]

< /[mE[(gs)”]uws) =E[ [[Lt]<§s)‘*u(ds)

k
f[l,t] (Ms)ﬁl/«(ds)A ‘

Suppose now that fll,m)(Ms)Bp(ds) = o for a set Y of configurations u having
nonzero probability. Then the limit ¢ — « yields, for almost all u € Y,

P[[ (£)%u(ds) <ku] = 518,
[1,00)
and the limit 2 — « leads, for almost all u € Y, to
P[ [, (£)°u(ds) - wu] > 0.
[0, )

This, however, contradicts condition (4.2). Hence we have derived

f (M,)Pu(ds) <o as.,

[0, )

-which by steps 1 and 2 implies d > a/B8. O

/-L] > §l+B —

Together with Corollary 4.3, the preceding proposition shows that A is
persistent if d > a/B. The converse (and hence the complete assertion of
Theorem 2.2) is established by Proposition 4.4 together with the following
result:

ProPosITION 4.5. If A is persistent, then condition (4.2) holds.

The following section is devoted to the proof of this proposition, thus
completing the proof of Theorem 2.2.

5. Completion of the proof of Theorem 2.2. In the whole section, we
will assume that A is persistent, and write @ for the limiting distribution P..

Lemma 5.1.  For A-almost all x € R?, the random population Y. . (defined
in Proposition 4.1) is distributed according to the reduced Palm distribu-
tion @,
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ProOOF. Since we have weak convergence of P, towards @, as well as
convergence (even coincidence) of the corresponding intensity measures, we
get from Kallenberg (1983), Lemma 10.8, for any continuous A&: R? > R, with
compact support and any continuous, bounded g: M — R,,

Jr(2) [8(9)Q.(d®)A(dx) = [ [h(x)g(®)P(dx)G(d®)

lim [ [h(x)g(®)®(dx)P(d)

hm[jh(x)g(q))( ), (dP)A(dx)

lim [h(x)E[g(5, + ¥, .)]Mdx)

= [h(x)E[g(5, + Y..)]A(dx),

where we have applied Theorem 2.3 and Proposition 4.1, respectively, in the
last two steps. O

The proof of Proposition 4.5 will be accomplished by considering, in addition
to the clustering fields «(,,, other clustering fields 7{,) which arise by displacing
all individuals of the random population X? independently of each other with
respect to some symmetric probability measure v. To give a motivation for this
procedure, which is borrowed from Dawson and Fleischmann (1985), let us
mention the following: A statement like that of Lemma 5.5 below, with «(,, in
place of 7(,,, would perfectly serve to prove Proposition 4.5. To derive this

_statement, one would need an analog of Lemma 5.4, again with «(,, in place of

" 7¢,y- This, however, is difficult to prove, since the backward formula yields only
an expression for (K(Wt)) when x is the starting point of the basic process.
Hence, in order to ‘““decouple” the ‘“‘conditioning point” x and the starting
point of the basic process, one uses an additional randomization, which is
achieved by an independent v-displacement of individuals at final time.

Thus we fix in the following a symmetric probability measure » on R?,
which is also supposed to have a bounded, continuous and strictly positive
density with respect to A; e.g., v == 7,0, - ).

Let T, denote the clustering field which corresponds to ‘‘independent
v-displacement,” i.e., for any measurable set F' of populations and z € R? one
has

(T)(F) =v({y:8,,, €F}).-

Together with @, also the clustered measure QT has intensity measure A.
We now compute the Palm distributions (QT) by the backward formula

[Liemant, Matthes and Wakolbinger (1988), 1.9.1]. The “dual kernel” D

figuring there is given by D(z, B) :== v(B — 2), since A(dz)v(dy — z) =
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Mdy)v(dz — y) due to the symmetry of v. Hence

(QT”)x = [V(dy)(Q-a!c—y)Tv *((Tu)(x—y))x

= 55x* [V(dy)(Q-a!c—y)T.,'

Introducing, for any population ®, a random population ®” which is
distributed according to (T, )4, i.e., obtained by displacing all individuals in ®
independently of each other according to », we thus infer Lemma 5.2 from
Lemma 5.1.

LeEmMA 5.2. For A-almost all x € R?, the random population
8, + (Y.,)

[where the point y is random with distribution v(-— x)] has distribution
(Qr,),. A fortiori, the random population (Y, )" is a.s. locally finite for
A-almost all y € R,

Next, let us fix z € R? and ¢ > 0, and calculate the Palm distributions
((k(,))r,).- Now, the dual kernel D(x,dy) figuring in the backward formula
[Liemant, Matthes and Wakolbinger (1988), 1.9.1] has density

(%) = p(y —2)p(x —y)
Y (p.*P)(x - 2)

(since the density of » with respect to A is p,). Hence we obtain, for A-almost
all x,

((to)r,), = [A(dg ) (((kEo)s) 5, *(TI), ) ()

- 55x*f/\(dy)g(x,y)(("f»)!y)n'

Noting that, for fixed x, g(x, - ) is also the conditional density of the starting
point ¥ of the basic process conditioned to be at z at time ¢ [where y has prior
distribution »(- — x)], we arrive at

((xt)z,).= P[(¥.,)" € ()IWy = 2] A-almost all x, A-almost all z,

where (W,?) is the basic process with starting point y distributed according to
v(-— x). .

Using the abbreviation

(k&o)r, = 7y

and exploiting the Markov property of (W), from the preceding formula we
obtain Lemma 5.3.
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LEmmMma 5.3. For each t > 0 and A-almost all x

(5.1) (vtwn).=P(¥.,) € ((W),..] as.,

where (W) is the basic process with starting point y distributed according to

v(— x).
From this we are able to deduce Lemma 5.4.

LemMa 5.4. For any sequence (t,) with t, — », all bounded Borel sets
B c R? and A-almost all x
lim liminf(’r(tﬁ,t )) (®(B) <k) =1 for H-almostall (W,).
ProOF. Lemma 5.3 guarantees that (5.1) holds for A-almost all x € R¢ and

all n > 1 (with ¢, instead of ¢). Thus we get for A-almost all x € R? and all
k=1,

(rfgy) (®(B) < #) = P[(%,,)(B) < H(W)...

> P[(Y.,)"(B) < kl(W?),20],

where (W) is the basic process with starting point y distributed according to
v(- — x).

By the martingale convergence theorem, the right-hand side tends, for
n — o, a.s. toward

P((Y.,) (B) <kIE.|, where F, = () o((W?),.,)-
0

t>

Hence

khm hmlnf(f(wy ) (®(B) <k) = P[(Y ) (B) < ooIF] a.s.

Due to Lemma 5.2, the right-hand side equals 1 a.s. We have thus proved
the statement of the lemma for almost all paths of the basic process having
initial distribution »(: — x); since this initial distribution is mutually abso-
lutely continuous with respect to A, the proof is complete. O

LeEmMMA 5.5. For all bounded Borel sets B C R?, any sequence (¢,) with
t, = ®, and Il-almost all paths (W,) of the basic process, there exists a number
k = k(W,), B) such that for all sufficiently large n € N

kf(t%)@( B) >0) = m, (W, ,B).

Proor. Clearly we may assume A(B) > 0.

‘1. Let J/(z, - ) denote the intensity measure of 7/,,. Writing f(z, - ) for the
density of J/(z, - )/J!(z, B) with respect to Lebesgue measure on B, we note
that for II-almost all paths (W,) there exists some m > 0, depending on (W),
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such that f(W,,x) > m for all ¢ > 1 and x € B. Indeed, recalling that v has
density p, and putting g,(z,x) == (p/(z, - )* p)(x) = p,, (2, %), for z € R?
[which is the density of J!(z, - )], we have
pt+1(z,x) pt+1(zay) !
= ———dy| .
B Py+1(2, %)

(5.2) flz,x) = =
J Pz y) dy

In the case a =2, for Il-almost every Brownian path (W,) there exists a
positive constant ¢ such that |W,| < c(1 + t3/4) for all ¢ € R,. Then the ratio

Pesi(Wo,3) /e (W, x) = exp{(IW, — yI? — W, — xI?) /2(¢ + 1)}

is uniformly bounded for all £ € R, and x,y € B. The result then follows
from (5.2). In the case a < 2 there exist positive constants K; and K, such
that for all v € R? with [v] > 1,

(5.3) Kl < py(v) < Kylv| ™47

This follows from the well-known representation of the symmetric stable
process of exponent « on R¢ (starting in 0) as a standard Brownian motion on
R? with an independent random change of time given by a one-sided stable
process with exponent a /2, and the tail behavior of the completely asymmetric
stable distribution [e.g., Prokhorov and Rozanov (1969)]. The scaling property
of p, together with (5.2) and (5.3) imply that f,(z,x),t>1,x €B,z€ R% is
uniformly bounded away from 0.
2. Next, we note that for all z € R? and ¢ > 1,

Ji(2,B) = [m(z,dx)v(B - x) 2 wa,(z, dx)v(B — x)

= [ 7(z,dx) [ py(z = x)M(d2) = Cm(z, B),
B B
for a suitable constant C not depending on z and ¢ (since p, is bounded away

from 0 on B — B).
3. Forall I e N, ¢t > 1 and II-almost all paths (W),

lT(tW,)(q)(B) >0) > [q)(B)T(tW,)(d‘D)l(qu)sz)
= fBJ:(W’t’dx)("(tW¢>)x(q)(B) <l

> mCa W, B)fBA(dx)(T('wt;)x(CD(B) <1,

whete we used steps 1 and 2 in tﬁe last inequality.
4. Since A-a.e. convergence on B implies convergence in A-measure on B,
we infer, for Il-almost all paths (W,), from Lemma 5.4 the existence of a
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suitable number [ = [((W,)) such that the set
B, = {x € Blliminf(rf, ) (®(B) <1) < é}

has measure A(B;) < A(B)/2. For this number [, it follows by Fatou’s lemma
that

lim inf fBA(dx‘)(T{vthn))x(Q(B) <)

n—oo

> liminf fB\B /\(dx)(f(‘gvtn))x(fb(B) <)

n—ow

> [B\Bl)t(dx) lim inf (7ggvtn))x(q>(3) <) > A(f) .
Together with step 3, this yields
, A B)
lT(thn)(<D(B) >0) > mC—4—‘n'tn(W,n, B)
for sufficiently large n. Hence
41
mCA(B)

is a possible choice to guarantee the assertion of the lemma. O

k:=

REMARK 5.6. The same calculation as in the proof of Lemma 4.2, step 2,
shows, for any bounded Borel set B c R%, any s > 0 and w € R?,

({fl(xzi)")<3) > 0] - 2B

Since we know from Lemma 5.2 that

Zs
(Yow) (B) = [ E (X5 (B)u(ds) <=

for Il-almost all (W,) and almost all p and (Z,), we infer from the
Borel-Cantelli lemma that

f[o )(“'(SW,)(‘D(B) > 0))ﬂ,u(ds) < o
for I-almost all (W,) and almost all . Due to Lemma 5.5, this implies
[, (m(W., B))Y h(ds) <=,
[0,

for IT-almost all (W,) and almost all u, which is condition (4.2).

Having shown that condition (4.2) is a consequence of the persistency of A,
we have thus proved Proposition 4.5, and also completed the proof of Theorem
2.2.

8,(®(B) > 0))°.

w)

P
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