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The Brownian density process is a distribution-valued process that
arises either via a limiting operation on an infinite collection of Brownian
motions or as the solution of a stochastic partial differential equation. It
has a (self-) intersection local time, that is formally defined through an
operation involving delta functions, much akin to the better studied inter-
section local time of measure-valued (“‘super’’) processes. Our main aim is
to show that this formal definition not only makes sense mathematically,
but can also be understood, at least in two and three dimensions, via the
intersection local times of simple Brownian motions. To show how useful
this way of looking at the Brownian density intersection local time can be,
we also derive a Tanaka-like evolution equation for it in the two-dimen-
sional case.

1. Introduction. Let II* be a Poisson point process on R¢ of intensity A,
i.e., the number of points of IT* in a Borel set A ¢ R? is a Poisson random
variable with parameter A|A|, (| | denotes Lebesgue measure), and the num-
bers in disjoint sets are independent. Since the probability that any two points
of II* lie exactly the same distance from the origin is 0, we can order them by
magnitude, and shall denote them by X3, X2,... .

Let X!, X2, ..., { > 0, be a sequence of independent, R?-valued Brownian
motions, with initial values given by X}, XZ,..., and let o!,02,... denote a
sequence of independent Rademacher random variables. (P{oc’ = +1} =
P{oi= —1} = 1) The two sequences and II* are assumed independent
of one another except for the fact that II* determines the initial values of the
X*.

For ¢ € /4, = #(R?), the Schwartz space of infinitely differentiable func-
tions on R? decreasing rapidly at », let 7} be the .//-valued random process
defined by

(1.1) () = A2 Y ai( XY,
i-1

Received May 1988; revised September 1989.

1Research supported in part by U.S.-Israel Binational Science Foundation (86-00285) and Air
Force Office of Scientific Research (USAFOSR 87-0298 and 89-0261).

2Research supported in part by Rothschild Postdoctoral Research Fellowship and Office of
Naval Research (ONR N00014,/89/J/1870).

3Research supported in part by U.S.-Israel Binational Science Foundation (86-00285) and
Israel Office for Absorption of New Scientists.

AMS 1980 subject classifications. Primary 60J55, 60H15; secondary 60G60, 60G20.

Key words and phrases. Brownian density process, random distributions, intersection of
random distributions, intersection local time, Tanaka formula.

192

Q]
Institute of Mathematical Statistics is collaborating with JSTOR to digitize, preserve, and extend access to Qﬁv
The Annals of Probability. IKGRE

L ®
www.stor.org



INTERSECTION LOCAL TIMES 193

[If one were to think of the random signs as signed particles moving through-
out space according to independent Brownian motions, then 7}(1,) would
describe the average net charge in the set A at time ¢, if only it were true that
indicator functions belonged to ./;.]

The A — » behavior of 7} has been a subject of some considerable interest,
and the most complete results can be found in Walsh (1986), where it is shown
that n} converges in distribution in the Skorohod space D([0, 1], ) to the
solution of the stochastic partial differential equation (SPDE)

v w
— R + . ,

(1.2) at 27"
770=H7

where I1, a Gaussian white noise on R? is the weak limit in ./ of
A~Y2Y oip(X(), and W is an R%valued Gaussian white noise on R? X R,.
Equation (1.2) should be understood in the weak form developed in Walsh
(1986): i.e., for every ¢ € 7,

n(#) =} [m(8¢) ds + ['[ (Vo(x),W(dx,ds)).

The solution 7, of (1.2) is called the Brownian density process. The SPDE is
not quite as forbidding as it at first seems. It is easy to see that 7, satisfies a
similar equation by simply applying It6’s formula to (1.1), and then to obtain
(1.2) by a formal passage to the limit. The Brownian density process seems to
have been originally introduced into the probability literature by Martin-Lof
(1976), and studied in depth, for the case d = 1, by Itd (1983). By choosing
different values of the initial state 7,, the resulting Brownian density process
corresponds to different centerings in functional central limit results of the
kind we have just described.

There is another, perhaps mathematically less demanding, definition of the
Brownian density process, based on the fact that it is Gaussian. We shall give
this in the following section, and rely on it heavily for moment calculations.

We have two main aims in this paper. The first is to establish that the
Brownian density process has an intersection local time up to dimension 3.
The second, and more important, will be to try to understand what this local
time represents, and how it is related to the individual Brownian motions that
go toward making up (1.1). As a consequence of the latter, we shall obtain a
Tanaka-like formula that describes the temporal evolution of the intersection
local time of 7m,. While this result is of considerable intrinsic interest, it is
mainly included to show how much one can do, easily, from the understanding
we shall develop.

To describe our results, we start with the intersection local time of 7,. Note
first, however, that for a test function ¢ € .4, we shall take the liberty of
writing

5 n:(¢) = n(¢(x))

= [ $()n(2) dx = [$(x) () d.
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Let ¢ = ¢(x,y) be a test function in #,. Our first task will be to show
that

(14) (0, xn)($(x,9)) = [Rdfwcb(x,y)ns(x)m(y) dx dy

makes sense, and yields a (2d)-dimensional tempered distribution. This is
reasonably straightforward. ‘

Now let 6(x) = 6,4(x) denote the Dirac delta function on R?. We then have
to show how to make mathematics out of the following expression, which we
shall call the intersection local time process corresponding to the Brownian
density process, and show that it exists as a .#/-valued stochastic process on
[0, 1]):

(15)  W(9) = [‘duf"dvf [ (n,®n)(5(x~)(x)dxdy.

The switch from the regular product of distributions in (1.4) to the ®
product in (1.5) is not accidental. Making mathematics out of (1.5) with the
regular product requires a certain renormalization, which we indicate by a
change of notation. Full details are given in Sections 2 and 4.

There are essentially three different cases to be considered in constructing
the intersection local time of the Brownian density process. When d = 1, then
W, exists, for each ¢ € [0, 1], as an ordinary function, and there is no need to
treat it as a distribution. When d = 2, 3 it exists as a random distribution, and
for d > 4 there is no renormalization that allows a straightforward analog of
(1.5) to be defined. Higher dimensions, as well as higher orders of intersection,
require a more delicate analysis, details of which can be found in Adler and
Rosen (1990). This is consistent with well-known results on the intersection
local time of d-dimensional Brownian motions, and this connection will be-
- come clearer later.

A general word of warning to the reader, regarding the issue of dimension.
The only results in this paper that always hold are the planar ones, and, in
many ways, the easiest way to read this paper is to imagine that d = 2
throughout. Very often we have written results also for d = 3 or for general d.
The rule we have followed has been to state each result at the highest level of
generality for which the proof given works without adjustment. When extra
work is required for a more general, or slightly different result, we shall say so
explicitly.

Intersection local times of the above form, for measure-valued process, have
been the subject of intense recent interest, commencing with the work of
Perkins (1988) and followed by Dynkin (1988a, b), Dawson, Iscoe and Perkins
(1989) and others. The emphasis in Perkins’ work was on the dimensionality
of the support of the intersection local time, while Dynkin was primarily
concerned with integral representations of the intersection local time itself. (In
fact,»in the planar case, we shall also obtain a representation for ¥, as a
process in t, as a multiple stochastic integral, but of a somewhat different
form.) In both of these works a structure akin to (1.5) was taken at face value
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as representing a generalization of the intersection local time concept to
distribution or measure-valued processes, with no real justification other than
“things seemed to work.” Our aim is to show why this was the right thing to
do.

To see how to do this, we return to the sum (1.1). We shall require another
process of considerable independent interest, also defined in the same setup.
Set

49 A E 5
(1.6) -t
= fotnﬁ(tﬁ) ds

for ¢ € 7. By taking ¢ = 1,, where A C R? (and ignoring the fact that 1, is
not an element of /), we see that u}(1,) describes the average “net charge”
of the X’ in A until time ¢, and so we shall refer to u*, and its A — o limit, as
Brownian occupation processes.

Since integration is a continuous functional in D([0,1],.#) the limiting
distribution of u}(¢), as a process in ¢, is clearly that of [{n,(¢)ds. It then
follows (as, in fact, it does from a simple central limit theorem) that the
limiting marginal distribution of x} is that of a centered .//-valued Gaussian
random variable, which we shall denote by w,. Limit theorems of this form
(modulo some minor technical differences—see the comments at the end of
this section) were discussed in detail in Adler and Epstein (1987), where we
also discussed more complicated, and more interesting, limit theorems for
sums of additive functionals of quite general symmetric Markov processes. A
particular, and important, special case was a limit theorem for sums of
intersection local times of planar Brownian motions. The intersection local
time of two such processes X and Y is defined formally as the continuous
#4-valued process

(1.7) L{($; X,Y) = [ ‘du A “$(Y,)8(X, - Y,) dv,

where 6 is the Dirac delta function, or, rigorously, as the .Z%(P) limit, as
e —> 0, of

(1.8) Li($; X,Y) = ['du [ $(Y,)e™/* p,(X, - ¥,) dv,
0 0

where p, is the transition density of planar Brownian motion. (Recall that the
transition density of d-dimensional Brownian motion is given by

_ _ = o-llx—y?s2t
(1.9) p(x,y) =p(x—y) 2 72° e
where, hopefully, our use of the same function p, to denote both a function on
R? X R? and R¢ will not lead to too much confusion.) The limit theorem
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studied, for fixed ¢, sums of the form

(1.10) WA($) = AL L oalL,(¢; X', X7),

i%j
which were shown to converge in distribution, as A — o, to certain .;-valued
random variables which could be represented as double Wiener-It6 integrals of
the Gaussian process u,. '

The main result of this paper is that the weak, A — o, limit of ¥, is the
intersection local time W,. For us, this is what justifies calling (1.5) an
intersection local time.

However, there are a number of other applications of this weak conver-
gence. For example, we can derive without much pain a result somewhat akin
to Tanaka’s formula for the temporal development of the local time of a single
Brownian motion, so that we shall be able to write ¥, in terms of an evolution
equation driven by Gaussian white noises.

The evolution equation itself is of considerable interest. The process Y,
appears naturally in a model of interacting, signed particles [cf. Adler (1990)]
and the evolution equation formulation adds insight into that model. Since the
infinite particle limit in that model is a Euclidean field theory, the added
insight extends beyond the specific prescriptions of that paper.

In the following two sections we shall present all our major results, with
some discussion but without proofs. These follow in the remaining sections.
The main technical tool used there is the weak convergence theory developed
in Walsh (1986), and we are grateful to John Walsh for long ago providing us
with a prepublication copy of his excellent set of notes.

The link between Brownian motion intersection local times and the inter-
section local time that we shall present is restricted to the two-dimensional
case. It is not too hard to see that most of our arguments also extend to three
dimensions, although there are some nontrivial technical problems to over-
come on the way. The important fact to note, however, is that although some
details change, the same intuition developed for the intersection local time of
the planar Brownian density process carries over qualitatively to the three-
dimensional one as well.

We close the Introduction with some technical notes, explaining why the
processes considered here are directly comparable neither with those treated in
Adler and Epstein (1987) nor with the measure-valued processes referred to
above. The reader not interested in this can skip immediately to the following
section without loss of continuity.

TECHNICAL ASIDES. First, we note that our use of the term ‘‘Brownian
density process” is somewhat more restrictive thah that of Walsh (1986)
mentioned above. Walsh’s version of the SPDE (1.2) has an extra term on the
right-hand side, that comes from a certain branching mechanism that we have
chosen not to include at this stage.

In Adler and Epstein (1987) and Adler (1990) our basic processes were
general Markov processes with symmetric transition densities. Here we treat
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only Brownian motion, and so are, in essence, obtaining much more detail for
a much smaller class of processes. In Adler and Epstein (1987) our processes
were not started according to the points of a Poisson process, but either
according to a (nonprobability but o-finite) uniform measure on R2, or accord-
ing to a rather awkward probabilistic way of spreading points out through a
partition of R? [also used in Adler (1989)]. We could have saved ourselves a
substantial amount of trouble had we used the Poissonization trick, for no lack
of realism in the model. Thus we do so here.

Furthermore, objects like L,(¢; X,Y) were replaced by intersection local
times of the form

oo

(1.11) L*(¢; X,Y) =[

[e e 9 (Y,)5(X, - Y,) dudv,
0 -0

so that the corresponding limit theorems for objects like ¥} are somewhat
different. Because of the exponential weighting in (1.11), and the fact that the
integration on z and v is over the entire real line, the results of this and the
previous paper are not strictly comparable. Both, however, show similar
phenomena. We emphasize again, however, that the results of the current
paper, in so far as planar Brownian motions are concerned, give substantially
more detailed information.

We also note that our processes and those of Perkins and Dynkin mentioned
above are not strictly comparable, and, despite the fact that they are distribu-
tions rather than measures, are actually somewhat simpler to work with. (In
the measure-valued setting, each one of our Brownian motions must be
replaced with a branching Brownian motion with a branching rate that goes to
© as A — «.) Nevertheless, we thought we might start with the simpler case,
both because of our original interest in it resulting from the interacting
particle results described above and because, as will become clear in future
sections, even this case is not all that easy.

2. The Brownian density process and its intersection local time.
In this section we shall give a more self-contained definition of the Brownian
density process than that of the Introduction, and also carefully formulate its
intersection local time.

Rather than work with the SPDE (1.2), we shall now give an alternative
definition of the Brownian density process n,. This will be in a Gaussian rather
than stochastic analysis framework.

All our calculations take place on a complete probability space (Q, &, P).
Recall that p, is the standard Brownian transition density (1.9).

DEeFINITION 2.1. The d-dimensional Brownian density process on [0,1] is
sthe centered .'(R?) valued Gaussian process with covariances given by

(21)  E{nddy) 02} = [[ 6:(x)pr-(x.7)d3(y) drxdy,
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for ¢,,¢, € 4 and t > s, and for ¢t = s by

(2.2) E{n($1) - 1 $2)} = [$1(x) b5(x) dx.

Our first requirement toward defining an intersection local time for 7, is to
properly define the product distribution n, X 1, as a random distribution in
34 For fixed o this is standard, since for ¢ € ./, we can set

where the inner operation 7,(¢(x, y)) should be thought of as n, operating on
the function ¢(-,y) for fixed y [cf. Gelfand and Shilov (1964)]. There is no
difficulty in showing that, again for fixed w, this yields a continuous linear
functional on ./,,;. However, since 7, in general operates on the random test
function y(x) = n,(¢4(x,y)) on the right-hand side of (2.3), we shall need to
define n, X m, by a somewhat more circuitous route if we want to establish
joint measurability in (w, s, £), something that will be important to us later.

In order to do this, equip ./, with the usual topology defined by either of
the equivalent sequences of seminorms

sup |xPD%(x)]|, sup [f(xPDQ¢(x))2dx]1/2,

Ipl,lgl<n

(2.4) x
Ipl,lgl<n
n=0,1,...,
where p and g are multi-indices, and
5 \0 5 \% d
xP =P - xfe, D"=(5x—1) (:936—,1) ) |p|=i§1p,~.

Consider ©7,,, the dense subset of ./,; made up of functions of the form

N
(2.5) dn(x,y) = 1 dp(x) - (),
k=1
where ¢,(x), ¥,(y) € .. We define the product distribution 7, X 1, on /5 X
- by setting
(2.6) (ns X 1) (d(x) X ¥(3)) = n,($(x)) - n(¥(¥)),
and extend it to functions of the form (2.5) in &7,; by setting

N ‘
(2.7) (ng X 1) (dn(2,5)) = kX_‘.lns(tﬁk(x)) “(U(5))-

The fact that this construction can be extended to all of g to define a
#y,-valued stochastic process on [0,1] X [0, 1] that is jointly measurable in
(w, s, t) is our first result.
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THEOREM 2.1. There exists a /4, valued stochastic process m, X m, on
[0, 1] X [0, 1], jointly measurable in (w, s,t), such that:

D) If ¢ € A,,; then (n, X n,)¢ is given by (2.7).
(i) For each ¢(x,y) € A4y, and distinct s, t, u,v € [0, 1],

(28)  E{(n, X n)(6(x,9))} = [[ py_y(x,7)$(x,) dudy,
E{(n, X n.)(d(x,9)) - (m, X m,)(¢¥(x,5))}

= ([ Pr—q(,9)b(x,5) dxdy - [[ ppo_u(x, )0 (x,y) dxdy
+ J[[] Prou(2,2) Py, w) (%, ) (2, w) dx dy dz dw
+ [[J] Pio—u(®, 0) P (3, 2) b(x, ) (2, w) dx dy dz dw.

In the cases s = ¢ and /or u = v, (2.8) and (2.9) make sense if at each point
we formally replace p,(x,y) by a delta function. That this is permissible will
be a consequence of the proof of the theorem, given in detail in Section 4
below. Thus, for example, we have that

E{[(n, x n,)(¢(x, )]’}
= [ (6(x,2)6(3,9) + $(x,9)d(%,5) + d(%,7)b(y, %)) dxdy.

(2.9)

(2.10)

We are now ready to define the intersection local time of 7,. As we saw in
the previous section, this involves an integral of the product n, X n, applied to
a delta function. Unfortunately, without appropriate renormalization, this
leads to a plethora of infinities. Thus, for ¢ € ./, define the renormalized, or
centered, product

(2.11) (s ® M) (o) = (ns X n,)(¢) — E{(n; X n,)()}.

The following theorem is the main result of this section.

THEOREM 2.2. Lett €[0,1], ¢ € ./ and d = 1, 2 or 3. Then the following
expression has a limit in .#*(P) as ¢ - 0:

(2.12) ¥ (o) =[] (m, ® m,) (e p.(%,5) $(x)) du dv.

O<u<v<t
The limit is denoted by VY,(¢) = V(¢d(x)) and is called the (self )intersection
local time process corresponding to the Brownian density process. As t varies,
¥, yields a #/-valued stochastic process.

REMARK 1. The need for the renormalization in (2.12) comes from the fact
that when d = 2, 3, lim, _, , E{(n, X 1,)(p,)} = », which implies that none of
the .#2 calculations performed.below on 1, ® n, are correct if performed on
77;>< n,. The divergence of this limit is reasonably easy to check, along the
lines of the calculations involved in the proof. We shall leave verification,
however, to the reader.
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REMARK 2. The factor e 272 in (2.12) has, of course, no real effect in the
limit as ¢ — 0, and could well have been left out of the definition. We include it
only for ‘“semantic’ consistency with the Brownian motion intersection local
time of the following section, where it will have the affect of making some of
the proofs algebraically simpler.

As we remarked in the Introduction, definitions akin to (2.12) have been
used by a number of authors in the past to define intersection local time for
measure-valued processes. Although there are some intrinsic reasons for doing
so, we believe that the results of the following section are what justify this
choice fully.

3. The particle picture. Our aim in this section is to show how the
intersection local times of the individual processes X/ appearing in (1.1) can be
used to understand the intersection local time of the Brownian density pro-
cess. To do this, we shall present a series of results, commencing with a fuller
formulation of the weak convergence of m} to m, than that given in the
Introduction, followed by weak convergence results for intersection local times,
and concluding with an application of the theory to the development of a
Tanaka-like formula for the intersection local time of 7,.

We retain the notation and general setting of the Introduction, so that
X}, X2,... is a sequence of R<-valued Brownian motions, started at the points
of a homogeneous Poisson process I1* of intensity A. As before, 1} is given by

(5.1) () =22 Y oig(X7).
i=1

The o' are, of course, the random Rademacher signs of the Introduction.

Our first result incorporates the central limit theorem for 7, described in
the Introduction, but also includes information on two (orthogonal) martingale
(signed) measures. The first is defined for each A > 0 as

(3.2) WA(A,t) = A2 L ot [1,(X}) dX},
i=1 0

where A c R? and we restrict ¢ to the interval [0, 1]. The second measure is
the R?-valued Gaussian white noise W on R? X R,, defined by the require-
ment that the components W,(A,¢), i = 1,...,d, of W(A,?) be independent,
zero mean Gaussian random variables, and for all A, Bc R? and s <t, u < v,

(3.3) E{[Wi(A,¢t) - W(A,s)] - [W(B,v) - Wy(B,u)]}
=8,;/A N Bl -|[s,t] N [u,v]],

where | - | is Lebesgue measure in the appropriate dimension.
The following result is a consequence of Proposition 8.16 of Walsh (1986).
We associate with the Poisson point process I1* giving the initial points of the
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Brownian motions a signed version defined, in distribution form, by

M(¢) = ¥ o'¢(X§),
i=1
so that A ~/2[1*(¢) = n)(¢). (Recall that the points of IT* are the Xi.) Weak
convergence is denoted by = '

THEOREM 3.1. As A — oo,
(A~Y2M1Y, WA, 9t) = (11, W, 7),

where 11 is Gaussian white noise on R?, W is defined above, n is defined as
either the solution of the SPDE (1.2) with initial condition m, = I1 or as in
Definition 2.1 and the weak convergence is on the Skorohod space D([0, 1],
S X S X AY).

Since Theorem 3.1 shows one how to think of the Brownian density process
as a limit of a large number of individual Brownian motions—themselves
particularly simple processes—we shall call any proof or description based on
this approach as being based on a ““particle picture’ of 7,.

The next step is to set up a central-limit-like result for sums of intersection
local times.

Let X and Y be two generic processes from our collection of Brownian
motions. Then, as noted in the Introduction, the intersection local time,
L/(¢; X,Y) between X and Y, up to time ¢, and weighted by the test function
¢ € /4, is defined as the -#? limit, as ¢ — 0, of

(34)  Li#XY) = [duf e/ p(X, - V,)6(Y,) do.
0 0

That the limit exists when d = 2, 3 follows from results in Dynkin (1981), and
it is this limit that gives a precise meaning to the formal expression (1.7).
Defining, as before,

(3.5) VA (9) = A7t L o'o'L(; X', X)),

i1#j

and ¥, as the intersection local time of Theorem 2.2, we can formulate the
main result of this section, and, indeed, of the paper as a whole.

THEOREM 3.2. Let d = 2 or 3. Then ¥* = ¥ as A - » on the Skorohod
space D([0, 1], /). )

NoTeE. One immediate consequence of Theorem 3.2 is the fact that ¥
takes values in a Skorohod space. While the direct approach of the previous
section establishes the existence of V¥, as an .#? limit, the extra cadlag
property implicit in Theorem 3.2 is not available there.
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The reason why this result provides the justification for the definition of
Brownian density intersection local time we claimed above comes from the fact
that we know that L, is precisely what we want to serve as the intersection
local time of two Brownian motions, and ¥}, as a sum of such local times, is
well understood, and has support exactly on the intersections of the paths of
the individual Brownian motions. It seems reasonable, therefore, that the
A — o limit of ¥, should be an appropriate candidate for the intersection local
time of the Brownian density process. Since Theorem 3.2 gives us that this
limit is the ¥, of Theorem 2.2, the particle picture helps understand the more
formal, direct definition of the previous section.

At first inspection, Theorem 3.2 should be a “straightforward’’ consequence
of Theorem 3.1, via an appropriate version of the continuous mapping theo-
rem, since we know by Theorem 3.1 that n* = n, that ¥} is a functional
defined on 1} and that ¥, is a similar functional on 1. The difficulty with this
line of argument, however, is that functionals based on intersection local
times, whether they be of Brownian motions or the Brownian density process,
are generally not smooth enough to apply continuity arguments of this kind.
[A related, but somewhat different problem, was studied by Dynkin (1988b).]

As a consequence of this, the proof of Theorem 3.2 is unfortunately some-
what circuitous, and will rely on results (to be detailed in Section 5) which are
more involved and less interesting. Fortunately, however, another conse-
quence of our hard work will be the Tanaka-like representation of the intersec-
tion local time process ¥, in two dimensions.

To state this result, we need one more piece of notation. Let g be the
Green’s function of X, given by either

(36) g(x)= f()”e-tfzpt(x)dt or g(x,y) = f:e-t/zpt(x—y)dt.

Also, to save on notation, we shall write A, to denote the centered product
1, ® 1,. Equality in law is denoted by =, . We can now state Theorem 3.3.

THEOREM 3.3. If d = 2 the following equality holds for all ¢ € #5:

(9) =3[ duf “dvA,,(g(x - ) ()

+ ['dud, . (g(x - y)6(5))

(3.7) °
- ‘dud,,(g(x ~y)b()).
+f0tfRz'uu(Vg(x - )¢(+))W(dx,du),

where the stochastic integral is of the type studied by Walsh (1986).
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We shall conclude this section by indicating the main results that go toward
establishing Theorem 3.3, and, in particular, emphasizing why the particle
picture is so useful in establishing (3.7).

Our first task is to look a little more carefully at the intersection local time
between two generic Brownian motions X and Y, and to represent it via a
Tanaka-like formula. This is given in the following result.

THEOREM 3.4. Ifd = 2 then the following equality holds for all ¢ € A4:

L(¢:X,¥) = }['du["g(X, - ¥)o(¥,) dv + [g(X, ~ ¥,)$(Y,) du
~ ['8(X, - Y,)$(Y,) du + [dX, ["Vg(X, - Y,)$(Y,) dv.
0 0 0

This result is basically due to Rosen (1986). Details of the proof appear in
the following section.

IMPORTANT REMARK ON NOTATION. Note that since X, € R? we should
really write the last integrand above as the inner product {(¢(Y,)Vg(X, —
Y,),dX,) dv, using the second option in (3.6) to define g. To keep our
formulas reasonably neat, however, we shall use the more ambiguous formula-
tion above throughout the paper, and the reader will do well to keep this in
mind later on.

The Tanaka formula for the intersection local times of the individual
Brownian processes lifts, in a reasonably straightforward fashion, to the
process ¥}, which is the centered sum of these local times, taken over all pairs.
To see how this works, set, for ¢ € 7,

(3.8) A\($) =271 Y dloip(XE, XF).

i#j

Note that the sum here does not include the diagonal i = j.
To help out in the following, if ® € ./ is a distribution, and ¢ € ., a
test function, we shall often write ®(¢4(x)) to denote ®(¢).

LeMMA 3.5. Let d = 2. Then, for everyt €[0,1], A > 0, ¢ € A,

VA8) =3[ du [ doal,(8(x ~9)8())
(3.9) + [l du Al (8(x = 0)6(2)) - [ dudl(8(x = 1))

+ [ pT8(x = )$())WH(dx, du) = RX(),



204 R.J. ADLER, R. EPSTEIN FELDMAN AND M. LEWIN

where
RN$) =21 L [*[*Va (X} - Xi)$(XE) dvdX,
; 7070
and R}N($) > 5 0 as A > o, forallt €[0,1] and all ¢ € .

Once again, it rather looks as if any ‘“‘easy’ proof of Theorem 3.3 would be
to apply the continuous mapping theorem via Theorem 3.1 and Lemma 3.5. In
particular, for the reader familiar with the weak convergence theorems of
Walsh (1986), which we shall rely on heavily in the following section, it would
seem that virtually all the work has already been done in that paper. The
difficulty in following this direct route, however, lies in the fact that the
functions g and Vg appearing above are not always the best behaved [e.g.,
glx,x) = o, Vg(x — y)p(y) & £2R?% x R?)] and so substantial technical dif-
ficulties arise.

The key to proving both Theorems 3.2 and 3.3 is the following result, based
on the random distributions
(3.10) VAo (¢) = A1 T olaiLi(g; X, XV),

ikj
where L{ was defined at (3.4). Let ¥/ be the approximate intersection local
time of 7, defined at (2.12). [In the terminology of Dynkin (1988), ¥,** and ¥/
provide “links” between ¥, and ¥,.]

THEOREM 3.6. Let d = 2 or 3. Then ¥} = ¥/ as A - », for every ¢ > 0,
on the Skorohod space D([0, 1], .4).

Since it is the main result of the preceding section that ¥/ — . ¥, as
e = 0, and it follows from the definition of ¥*¢ and the .#? convergence of
L: to L, that ¥** - 2 ¥* as ¢ — 0 for every A > 0, it is now easy to see how
to prove Theorem 3.3 from Lemma 3.5. We shall give the details in Section 5.

In closing this section, however, we note that a result similar to Theorem
3.3 holds also for the intersection local time of the Brownian density process
on R3. The technical differences in this case, referred to briefly in the Introduc-
tion, arise primarily from the fact that the corresponding summands in the
remainder term R}(¢) of (3.9) do not exist in this case. Nevertheless, approxi-
mations to these, analogous to the summands of R}*(¢) of (5.12) in Section 5
do exist, and judicious handling of the A — » and ¢ — 0 limits overcomes the
difficulties. We shall not go into the details, however.

4. Proofs for Section 2.

~ Proor or THEOREM 2.1. We commence by noting that the measurability
referred to in the statement of the theorem holds automatically if the space of
test functions is restricted to .27,,. [This is an immediate consequence of the
definition (2.7), the measurability of 7, in w and its continuity in ¢.] The next
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step is to establish (2.9) for
N ) N )
Dy(x,5) = X ¢p(x) - du(y), Yy(x,y) = X (=) “Pr(y),
k=1 k=1

elements of .27,;. Equation (2.8) is easier, and follows from similar calcula-
tions.

Recall [e.g., Adler (1981), page 108] that if Y,,...,Y,,, is any set of 2m
centered Gaussian variables, then
(4.1) E(Y, --- Y,,} = Y E{Y.Y,} - E{Y,

i7" i lgm—1 i2m}’

where the sum is over the (2m)!/m!2™ different ways of grouping Y;,...,Y,,,
into pairs. For ease of notation, we denote the right-hand integral in (2.1) by
(1, P3):—s. It then follows from (4.1), with m = 2, the form of ®, and ¥y,
(2.7) and (2.1) and (2.2) that

E{(n, X n,)(Pn(x,5)) - (1, X 1,)(¥n(x,5)))
N N
= kgl kZ_:I {<¢k7 $k>|t—s| : <J’\k” */’k'>|v—u| + (ds, li;k’>|v—s| : <$k’ l/’k'>|t—u|

+ <¢k’ dfk’>|u—s] : <(£k’ ‘ﬁk'>]v—t|}’

where we have considered u, v, s and ¢, distinct, and leave it as an exercise to
the reader to handle the other, easier, cases along the lines noted in Section 2.

Consider, for example, the first summand above. Interchanging the order of
integration and summation gives

N N

Z Z <¢k7¢;k>|t—s| ' <J;k’,¢k’>|v—u|

k=1Fk'=1

N
~ [[ T i) $u(3)P_u(,) dxdy
k=1

N
x [[ k§1¢kl<z)$kl<w)plu_v.(z,w) dzdw

— [ Py-si(%,9)On(x,5) dxdy - [[ Py_u(x,5)¥x(x,y) dudy,

which is the first term of (2.9) for the functions ®,-and ¥,. The remaining
terms are handled similarly, and this establishes the theorem for test func-
tions in 7. .

“Now take ® € ./, and let {®}y be a sequence of 7, functions converg-
ing pointwise to ®. We shall show that {(n, X 1,)(®,)}y is Cauchy in Z2(P).
This is enough to establish the theorem in full generality.
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By (2.9), with s = u # t = v, we have
E{[(ns X ) ( Py — q)M)]z}
=| [ Pr-ae: D) [ @5, ) = Pur(x, )] day|
42 [ [Oy(x,) = Oyl )] dudy

+ ff[fplt"3|(x’ w)plt—-s|(y7 Z)
X[@n(x,5) = Py (x,5)][Pn(2, w) — Bp(2, w)] dxdydzdw.

Setting &y, = sup,, | Py(x,y) — @y (x, )| and using the fact that, for ¢ # s,
Pjs—s is a probability density, we easily have that the first and last terms on
the right-hand side of (4.2) are each bounded above by £2,,,, which goes to 0 as
N, M — = by virtue of the equivalence of norms on ./, noted above when we
set up the topology. The second term also goes to 0, by a similar argument.

A similar argument also works for the case s = ¢ [in which case all the
integrals corresponding to (4.2) appear without the factor p,_;]. This estab-
lishes the existence of (n, X 1,)(¢) as an 2 limit for each ¢ € 4, as well
as the moment formulae (2.8) and (2.9). It follows now from (2.9) that for
d) € "/2d7

(4.3) A ' A "E|(n, X n,)($)[* dsdt < 3sup|é(x, ) [,
X,y

so that the joint measurability of n, X , in (w,s,t) is a consequence of
Fubini’s theorem.

To complete the proof of Theorem 2.1, we still need to establish that the
process m, X 7,, defined as a .#? limit, for each fixed ¢ € 4, is, in fact, a
#4g-valued random variable. In order to establish this we require some
notation and a lemma. We follow Martin-L6f (1976).

Introduce a sequence of norms on ./ defined by ||¢ll, = [ [(H"¢(x))? dx]*/2,
n > 0, where n € 4, and H is the operator defined by H¢ = lx|’p — Ad.
This sequence generates an equivalent topology on ./, to that generated by
the seminorms (2.4). Define a topology on ./ via the dual norms

(4.4) Inll-n = sup [n(¢)].
llpll.<1
The norms ||¢||,, increase in n > 0, and so ||nll-, = lI9ll-,-1 for n > 0.
The importance of these norms lies in the fact, among other things, that
Martin-Lof showed that there exists a p such that

(4.5) P{ln,ll-, <o} =1 forall ¢ € [0,1].

Recall that a linear operator T with domain D(T') c X into Y is said to be
closable or pre-closed, if the closure on X X Y of the graph G(T') = {(x, Tx):
x € D(T)} is the graph of a linear operator S from D(S) into Y. The following
result is standard [e.g., Yoshida (1980)].
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LemMma 4.1. If X and Y are quasi-normed linear spaces, then T is closable
if and only if

(4.6) {x,} <D(T), limx, =0, lim =yimpliesy =0,
n—oo n—o
where the limits are taken in the strong topologies.

We can now return to the proof of Theorem 2.1. Choose p so that (4.5)
holds. It is immediate, from the continuity and linearity of n,, that o, X n,
restricted to 27,, is a continuous linear functional. Write ./, , to denote
#5q With the topology generated by I - Il », and %d » todenote its topological
dual. Note that ./, , is a Hilbert space, and, in particular, quasi-normed.
Also, o7,, is dense in /%, ,. Using now the .2 convergence of (n, X 1,)(®y)
and (4.3) it is easy to check that (4.6) is satisfied, with probability 1. Applying
Lemma 4.1, the Banach closed graph theorem and the joint measurability of
ns X M, it follows that n, X n, can be extended to a random, continuous,
linear mapping from ./, , to R. That is, n, X 0, € 83, , for all s, € [0, 1].
Since the topology we have placed on S4q makes A, = U, A%y p, this com-
pletes the proof of the theorem. O

To prepare ourselves for the next proof, note that (4.3) also implies that the
integral [[o_s<;<7(ns X n)($(x,y)) dsdt is well defined as a ./, distribu-
tion.

Proor or THEOREM 2.2. Fix ¢ € (0, 1] and denote the integral in (2.12) by
I(¢). To prove that it has an _#2limit, it suffices to show that
%m; E{I.(¢) - I;(¢$)} = constant.

From Theorem 2.1 and the form of 7n, ® n, it follows that, up to a factor of
exp(—(e + 8)/2), which we shall neglect, E{I (¢) - I,(¢)} is given by

L[R4dpls—ul(x’ z)plt—vl(y’ w)ps(x’ y)ps(z, w)¢(x)¢(z)
(4.7)

+fD[R4f|S—UI(x’ w)plt—ul(y’ z)Pe(x,y)Ps(z, w)d)(x)¢>(z),

where the inner integrals are over (x, y, z, w) € R*?, the outer integrals over
={0<s<t<T,0<u<v<T}, and we have left out the eight differen-
tials to save space. (Again, we are implicitly assuming that s, ¢, u and v are
distinct, and are leaving the other cases to the reader.) We shall show that the
first integral in (4.7) has a limit as ¢, — 0. The second is handled similarly.
,Let T, be the contraction semigroup given by

(T.F)(2) = [ p(x.9)F(5) dy,
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so that recalling the symmetry of p,(x,y) we can write the first integral in
4.7) as

@8) [ [, (T(()pus(>2))@)  (To(Pru(53)))(2)$(2) dy dz.

By contractivity we can interchange the order of integration and take the
g,8 — 0 limit, as long as the limit we thus obtain is finite. Modulo this
technicality, the limit of (4.8) is thus given by

@9) [ [, Pu-u(32)Puou(9,2)$(3)(2) dydzdsdtdud,

and this is enough to establish the 2 convergence claimed in the statement

of the theorem.

It remains to establish, however, that (4.9) is finite, which we shall now
show is the case for d = 1,2,3. In fact, since test functions in ./ are
bounded, it suffices to establish that the following integral is finite:

ij;dedels—ul(y’Z)P|t—u|(y,Z)|¢(Z)|dyd2dsdtdudv
4.10 = —ul+li— ) dzdsdtdud
(4.10) fode(ls ui+ie-up( 2, 2)|#(2) | dzds dt du dv

= C- [ lIs —ul + It = vl]™** ds dt dudv,
D

where the first equality is a consequence of the Chapman-Kolmogorov
equation, the second of the fact that p/z,2) =[27] ¢/% and C =
27172/ %|p(2)| dz < .

Since for all x,y > 0, /2xy < x + y, the last term in (4.10) is bounded above
by

1

C - dsdtdudv.
fD s — u|d/4|t _ vld/4

Standard estimates now show that this is finite for d < 3, and this com-
pletes the proof of the _#2 convergence part of the theorem. It remains to
establish, as in the previous section, that the 2 limit, established indepen-
dently for each test function ¢, can be extended to a proper distribution.

In order to do this we need the following result. The proof is almost
identical to that of a stronger result of Martin-Lof (1976), Lemma 4, for
Gaussian distributions. All that needs to be changed is to replace the parts of
his argument that require specific bounds related to Gaussian distributions
with Chebyshev’s inequality. The notation is as at the end of the previous

section.
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LEmMMA 4.2. Let n be a #/-valued random variable, with covariances
E{n(¢)n(¥)} = R(¢p, ¢). If L,R(p;,d;) =D < = for some p-orthonormal se-
quence [i.e., (¢;, ¢;), = [HP¢(x)HP¢ (x) dx = 5,;] then

(4.11) P{linll-, = A} < D/A%

We can now return to the proof of Theorem 2.2. The easiest approach is to
think of the I.(¢) as a sequence of continuous linear functionals applied to the
test function ¢ € ., an approach that is permitted by Theorem 2.1.

Since, for each ¢ € ./, I.(¢) = 2 V,(¢), as € — 0, there is a subsequence
{¢,,} along which the convergence occurs with probability 1. Since .45, is
separable we can assume that this holds simultaneously for all ¢ in a dense
subset. Furthermore, for each ¢,, I, is an element of .. Thus, since ./} is
weakly complete [Gelfand and Vilenkin (1966)], it will follow that the limit is
also in ./ if we can show that for some p, [lsup, Z, ll-, < %, with probability
1. This, however, follows from the nuclearity of ./, the #? calculations
above, Lemma 4.2 and the Borel-Cantelli lemma. O

5. Proofs for Section 3. We shall start by proving the central Theorem
3.2. In fact, since we shall require something a little stronger in order to
establish the Tanaka formula of Theorem 3.3, we shall prove a little more than
necessary at this stage. For this we shall require a little extra notation.

For ¢ € .4, let UM &(x,y)) be given by

(51) IJt)‘(d)) = /:./I;Qdu):‘(d)(x’ .))W/\(dx1du)1
and, similarly, define
(5.2) U(9) = [ [ ml#(x,))W(dr,du).

The next result is the key step in establishing all of our main results.

THEOREM 5.1. Let A — = along a countable sequence. (We should therefore
really replace A by A, in what follows, but there is a limit to how many
subscripts and superscripts the human mind can absorb.) Then, for all

¢11 ¢2, ¢3 € ‘/ib and 4)47 4)5 € '-/Ed’
(A71211(¢,), WH(d3), n*(d3), UMN(9s), AN 5))
= (T1(¢,), W(bs),n($3), U(ds), A(5)),

as A — o along this sequence.

(5.3)

Proor. The general theory of weak convergence that we require to prove
this result is developed and expounded in detail in Walsh (1986). To give a
fully- detailed, self-contained version of the proof of (5.3), we would have to
copy two pages of definitions from Walsh’s notes, and then go through a
number of pages of rather detailed, and essentially uninteresting, calculations.
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Since this seems to be a somewhat unjustified addition to what is already an
overlong paper, we shall assume that the reader is familiar with Walsh’s notes,
and merely point out how Theorem 5.1 follows from the results and tech-
niques developed there.

Note first that the weak convergence of the triple (AT, W* »*) is a
special case of Theorem 3.1 (itself a direct consequence of Theorem 8.16 of
Walsh), since here we are only taking A — » through a countable sequence.
Appending the convergence of A%, and U} follows as in the proof of Proposi-
tion 8.17 of Walsh’s notes, once we have checked that the individual limits are
as claimed. We shall check this only for A_,, this being the harder of the two,
and somewhat different to the example treated by Walsh. A

Consider first ¢ € 4, of the form ¢(x, y) = ¥(x)(y), ¢, ¥ € 4. Then

(5.4) 4,(8) = m@)md(d) — 271 T o (XE)i(X5).

Consider the second term here, noting that if X denotes a generic term of our
sequence X,, X,,..., B a standard Brownian motion on R¢ starting at the
origin, and F a functional on C([0, 1], R¢), then

E{F(X)|X,=x} = E{F(B +x)}.

Consequently, using the fact that the sequence of Brownian motions
X' X2, ... commence at the points of a Poisson process of intensity A, it
follows that

(5.5) E{Z F(X‘)} - ,\fRdE{F(B +x)) dx.

It is now a simple moment computation to check that the second term in (5.4)
converges in probability to the deterministic expression

N f*/f(x)dxftﬁ(y)dyp,,_s|(x —y) ift+s,
Efy(X;)b(X;)) = .
Ju(x)d(x) dx if ¢ = s.

Since this expression is equivalent to E{(n, X 7,)(¢)} (cf. Theorem 2.1), it
follows from (5.4), the convergence of n* to 7, and the continuous mapping
theorem that for ¢ of product form

(5.6) AL(4) =A,(¢) =(n,®n)(d) = (n, X n,)(d) — E{(m, X 1,)($)}.

Using now the fact that sums of the form T Y_,4,(x)j,(y) are #2 dense in
24, the extension of (5.6) to all ¢ € ./, is standard.

This fact, together with the comments made above, completes the proof of
the theorem. O
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REMARK. It is important to note that since the proof of Theorem 5.1 relies
on results proved by Walsh, the weak convergence in (5.3) can only be shown,
at this stage, to hold for nice functions ¢,, and not for functions like g and
Vg, which is what we need. To handle these functions, we need the extra work
of the following arguments.

Proor oF THEOREM 3.6. We need to show that ¥} = ¥F as A — o, for
every ¢ > 0, on D([0, 1], /). Recall that

(5.7) w(s) = ['f A% (e*/2 p,(x — y)b(y)) dv du,

and Y7 is given by an identical expression with A, replacing A%, .

Note first that since e */%2p.(x — y)p(y) € A, for every &> 0, it
follows that for every ¢ € /4 we have A% (e */%p.(x — y)¢(y)) =
A, (e™*2p(x — y)p(y)). Since integration with respect to the two time pa-
rameters is a continuous functional on D([0, 1] X [0, 1], ./3,), it follows that
Vr(¢p) = ¥f(¢) for every ¢ € ./, and each fixed ¢ < [0,1]. By the
Cramér-Wold device (to handle the ¢ parameter) and linearity (to handle the
¢ parameter) this convergence can be lifted to that of finite-dimensional
distributions. The problem now is to establish tightness in ¢ for fixed ¢.
Theorem 6.15 of Walsh (1986) then gives us that ¥*¢ = ¥¢ on D([0, 1], /%),
which completes the proof of the theorem.

For fixed ¢, however, tightness in ¢ follows easily from standard moment
conditions, using the integral form of (2.12) and the fact that A’ (¢) has
moments of all orders [cf. Rosen (1986)]. O

Proor oF THEOREM 3.2. We want to prove that ¥* = ¥ on the appropri-
ate Skorohod space. Now, however, we must restrict ourselves to the cases
d = 2 and d = 3. Note first that

V(@) — WM(9) = A7 L ool [ Lo X, XV) - Ly X, X7,

i#j
and so
E{|0(¢) — ¥N(#)['} = E{|(L, - L) (¢, X%, X2)[') = C.(9),

where C_(¢) — 0 as ¢ — 0, by the very definition of L, as the -2 limit of L.
Consequently, by Chebyshev’s inequality,

C.(¢)
8

(58)  P{w($) — WA (¢)| = 6) < for every ¢ € %,

where C.(¢) —» 0 as ¢ = 0, for every § > 0.
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We now want to show that for fixed ¢ € [0,1] and ¢ € ./ that ¥ (¢) -,
¥,(¢p) as A = . For x € Rand 8 > 0,

lim P{¥}(¢) < x} = lin}) )}im P{¥} () < x}
Ao £— — 0

= lim lim P{[¥}() — V()] + ¥ (o) < x}

e>0 Ao

lim lim [ P{|(¥(6) - ¥)()| > 8)

IA

+P{¥)($) <x + 5]

< liné[&(a—(-ﬁl + P{¥:(¢) <x + 8}

= P{V,(¢) 5x+5}’

where the first line follows from the independence of both the right- and
left-hand sides of ¢, the second and third are trivial, the fourth is a conse-
quence of Theorem 3.6 and the last from the fact that ¥7 — 2 ¥, (Theorem
2.2).

A similar argument shows that lim, _,, P{TX(¢) < x} > P{(¥($) < x — 8},
and since § was arbitrary we have that ¥X(¢) —, V,(¢) for fixed ¢ and ¢.
Arguing as in the proof of Theorem 3.6, we can also establish full weak
convergence on D([0, 1], /), and so complete the proof of the theorem. O

The remainder of this section is devoted to the proof of the Tanaka formula
for the Brownian density intersection local time, so we now restrict ourselves
to the case d = 2.

We commence by trying to get a result like Theorem 3.3, but for the process
W2¢ ie., an evolution equation representation for ¥;}. Recall that ¥° was
defined in (3.10), as a sum of “approximate’ intersection local times. For
e > 0 set

(5.9) K*(x) = [ e/ p(x) dt.

€

Note that K° — .. g as ¢ - 0, where g is the Green’s function (3.6).
Unlike g, however, K¢ is well behaved in that it is C*, everywhere finite and
VK® € Z*%R?). Furthermore,

(5.10) #(—A+ DK (x) =e /2 p,(x),

as is easily checked by direct differentiation. This leads us to the following.
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LeEMMA 5.2. Forall A,e > 0,t €[0,1] and ¢ € A,

¥4(8) = 3A X oo [du [ dv K*(X] - X{)o(X{)

i) 0

+ A7 Y olod [CduKe( X} - X{)b(X])
i*j 0
(5.11) ’
— AV Y oo [*duKe( X - X{)b( X))
0

i#j

+ AT olod [ [T VKe(X] - X§)$(X{) dvdX;.
070

i#j
Proor. Apply Itd’s formula [using (5.10)] to the C* function
f(t,x) = ftKe(x - X7)¢(X}) dv,
0

replace x by X!, multiply by o’0’/ and sum over i # j. [A similar argument,
used in establishing the original Tanaka formula for Brownian motion inter-
section local time, can be found in Rosen (1986).] O

Proor or THEOREM 3.4. In the proof of the above lemma we actually
established, en passant, a version of Theorem 3.4 with L{ replacing L, and
K* replacing g. Sending ¢ — 0 to obtain 2 limits on both sides of the
equation is not trivial, but, fortunately, has already been done for us in Rosen
(1986). (Rosen actually treats self-intersections of Brownian motions, so his
proof is a little harder, and the precise terms in the Tanaka formula slightly
" different. Nevertheless, the proofs carry over almost verbatim.)

To convert (5.11) to a form more reminiscent of an evolution equation, we
need to make optimal use of the notation set up in the previous section. We
need, furthermore, one more piece of notation, and so for ¢ € ./, we set

(512)  RM(¢) =AT'Y jO’fO"VI{e(X,i — X))¢(X?) dvdX:.

LEMMA 5.3.

W(8) = 4 [ du [ do AL (K*(x - ) 8(2))
+ [ du Al (K5 (2~ y)6(9) — [ duAl(K*(x ~3)6(5))
0 0

+ [ (TR (x = )@(-)W(dx, du) = R}(6).
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Proor. The above is basically a rewrite of (5.11). The first three terms are
easily seen to be equivalent to the first three terms of (5.11) on applying the
definition (3.8) of A%,. To obtain the last two terms, we write the last
expression in (5.11) as

AL E oo [ [ VKA (X, - X2)o(XY) dvaX;

J

. t ¥ ore( i i i i
- lzfofo VKe(X: — X})é(X:) dvdX;.

Consider the first term here. (The second is much easier, and it is easy to see
that it is equal to R}°.) By Fubini’s theorem for stochastic integrals [e.g.,
Revuz and Yor (1987), Section 6, Lemma 1.4], this is equal to

ATZY ajftdv[)t_l/2 Y aif'VKE(X;; - X)) p(X}) dx;;].
J 0 i v
From the definition of the measure W?, it follows that this is equal to
A2y (rjftdv[ftf VK(x — X,{)qb(X,{)W"(dx,du)].
j 0 v 'R2

[This follows from Proposition 8.3 of Walsh (1986). The proof there proceeds
by establishing a result like the above first for indicator functions ¢, and then
via passage to the limit for general ¢ € 2 It is precisely at this point that we
need VK¢ € Z%4R?).]

A stochastic Fubini theorem for worthy martingale measures [Walsh (1986),
‘Theorem 2.6] implies that the above equals

ATL2Y af[‘f [quKE(x - Xj)d)(X,{)vaWA(dx,du).
j 0 “R%[“0
Interchanging summation and integration yields

j-tfz{j(-)“,\—l/z ZJ: a-j[VKE(x _Xg)d)(Xz{)dU]}WA(dx,du)

0“'R

= [ BTG = )8(-) WA (ds, du),

where the last line follows from the definition of u} at (1.6).
This completes the proof of the lemma. O

The next step is to show that R}*, the remainder term (5.12), goes to 0 as
A > o,
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LEMMA 54. R}(¢) >, 0as A — «, foreacht €[0,1], ¢ > 0 and ¢ € A.
Proor. Define
t rlu
r(X) =r(X;¢,e) = [ [ VK*(X, - X,)$(X,) dvdX,,
07’0

so that R}*(¢) = A~1T,r(X"). Thus, calculating moments as in the proof of
Theorem 5.1,

E{[R}($)]°} = A‘zE{g [r,(Xi)]z}

2

=t E[ftquKe(Bu—Bv)¢(Bv+x)dvdBu dx,
R2 070

the last line following from (5.5). Standard inequalities for the moments of
stochastic integrals [e.g., Ikeda and Watanabe (1981), page 110], combined
with the fact that ¢ decays rapidly at « give us that the triple integral above is
finite, and so R}* >, 0 as A — =, and the lemma is established. O

Proor oF THEOREM 3.3. It follows from Theorems 3.6 and 5.1 and Lemmas
5.3 and 5.4, that for all ¢ > 0, ¢ €[0,1] and ¢ € A4,

E — 1 t u E
Vi(9) =5 [duf dvA, (K (x = 3)8()
(5.13) +£WAAK%PWMUD—£W&AFu—wa)

+f0tfRz“u(VK€(x — () W(dx,du).

All we need to do to prove Theorem 3.3 is to show that each term in (5.13)
has a well-defined limit as ¢ — 0. The _#? convergence of ¥/ to V¥, is
Theorem 2.2. Thus we need only work on the four terms on the right-hand
side of (5.13). Consider the first of these, which, modulo a factor of %, equals

uw=KWK@mAWu—mawy

In order to show that I, converges in _#2, it suffices to show that E{(I,(¢)I;($)}
tends to a limit as ¢, 5 — 0. By Theorem 2.1

E{Is(d’)ls(d’)} = fD/‘;Qspm_u.l(x, z)plv—v’|(y, w)KE(x _y)
Xo(y)K?(z — w)p(w)
+fD[R3p|u—v’|(x’ w)P|u_u:|(y, Z)Kg(x - y)

Xp(y)K?(z — w)d(w),

(5.14)
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where D ={0 <v <u <t;0 <v' <u' <t}and we have neglected to write the
eight differentials in each of the multiple integrals.

Consider the first term in (5.14). (The second is handled in an almost
identical fashion.) By the definition of K* this is equal to

J [ Prucun(%:2) Py (3, w)fme‘“/2 Po(x,7)¢(y) de
DR €
® —B/2
X fa e /2 py(z, w)$(w) dB
= [p-ar2 ey
fee da[ae dB'[l)'/;vdydw(ﬁ(y)gb(w)

X [, dzpa(2,w) [ i (%, 2) Pol(%,7) Py (9, ).

Integrating over x and then z, by applying the Chapman-Kolmogorov equa-
tion twice, we obtain that this is equal to

® —ay2 Ry \ ,
f e daj(; e dBij;wdydw ¢(y)¢(w)P|u—u|(y,w)P([u—u|+a+/3)(y, w).

€

By the Lebesgue dominated convergence theorem this will converge, as ¢, 5 — 0
to the finite constant

4foR4dydw () (W) Py (¥, W) Py (y, w),

as long as [p[pe dy dw ¢(y)dp(w)p,_ (¥, WPy —ui+a+p(y, W) is bounded uni-
formly in £ and 6 for each ¢ € .#,. Calculations similar to those made in the
proof of Theorem 2.2 easily show this to be the case.

This establishes the required convergence for the first term on the right-
hand side of (5.13). The next two terms are handled similarly, and we leave the
details to the reader. The last term is somewhat different, however, so we treat
it in detail. Set

I9) = [ [ muVE=(x = )o(-))W(dx, du).
Then

t

E([(J, - 7,)()]’) [ PO = E9) (= o)W, )] |

5|
0'R2

SE{j;)t'/l;QZXRzll'Lu(V(Ke _Ka)(x‘_ )d’())l

X | (VK = K?)(y = )o("))]

X8(x — ) dxdydu},
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where the last line follows from Theorem 2.5 of Walsh (1986), and is, in turn,
equal to

B{ [/ JuuV(E* - Ko)(x - ()| drdu)

= [[[ dxduElu (V(K* - K*)(x - ()]

2

- Lt[nezdxduE foum(V(Ke = K*)(x = )¢(+)) dv

=[] dwdu [ [“E[n,(V(K* ~ K*)(x = )4("))

Xn,(V(K® = K®)(x = )o(+))] dv, dv,

= [ dwau " ["B[(V(K® - K*)(x - X,)8(X,,))

0
X(V(K* - K°)(x - X,,)6(X,,))] dv, dv,,
the last line following from Walsh (1986), page 389. Note that for each ¢ > 0,

e s +IIplP)/2

K*(x) =

eiP T — b
(277)2'[0232 1+1pl2 7

Substitute this into the above to obtain

. 2 p,l
2 ¢ :
B0, = I @) = vy [Fdvg [ def dp [ dp, TT 170

(5.15) X [e—e(1+upkn2)/2 — e +||pku2)/2]

XE[eir e Rog(X, o5 (X, ).

We now proceed much as Rosen (1986) argued when dealing with similar
expressions that arose in studying Brownian motion self-intersections. The
expectation in (5.15) is a simple Gaussian calculation, and is easily seen to be
equal to

(5.16)  elvr [ d(n)b(2)e PR py, L (y - 2) dyde.
Noté the elementary inequality |e*%" — ¢ =%%"| < C,(a%le — 8[)%, for every a <

1, and the fact that [e‘P1*P2* dx = §(p, + p,), where & here represents the
Dirac delta function. Thus, substituting (5.16) into (5.15), integrating out x



218 R. J. ADLER, R. EPSTEIN FELDMAN AND M. LEWIN

and applying these two facts we obtain that (5.15) is bounded above by
Ilpll2

oo e dp s (1 eI

X[ J D) B(2) P,y — 2)#0~ dyda

el

(5.17) = Cle — 8%t ['dv O
fo f (1 +Ipl?)* ™"

X [, dzp,(2)e™ [ dy $(x)b(y -~ 2)
. Ipl? .
< Cole = 8t* [ dp——— [ dze'” f(2)g,(2),

(1 + Ipl?)* ™ '

where C, may change from line to line, and the functions f and g are given
by

f(z) =d*d'(2), &l(z)= fo‘p,,(z)dv,

¢'(x) = ¢(—x) and * represents convolution.
Denoting Fourier transforms in the usual way and writing 4 (p) for

2—-2a
Ipl?/(1 +1pl?)" ™,
we can write the integrals in the last line of (5.17) as

(5.18) [ (P (F*2(p))dp.

Clearly, if we can establish that this integral is finite for some a < 1, then the
% convergence of J,(¢) follows from (5.15)—(5.17). A standard inequality on
convolutions [e.g., Reed and Simon (1975), page 29] gives us that

(5.19) [ () (f+2(p)) dp <k Nl fllglh,

where 1/s + 1/q = 1. We leave it to the reader to show that if we choose <
and s > (1 — 2a)! then each of the three norms in (5.19) is finite. Thls
completes the proof of Theorem 3.3. O

Only one task remains to complete our work:

Proor or LEmMA 38.5. The proof centers on noting that the equivalence
(3. 9) which is what we must establish, is almost identical to that established
in Lemma 5.3, with the function g in the former replaced by K¢ in the latter.
If we can send ¢ — 0, and show that all terms in Lemma 5.3 converge in _#2
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to the corresponding term in (3.9), then we shall be done. This, however, is not
too difficult, since at this stage the density parameter A is still finite.

We shall consider only one term of Lemma 5.3, and, following our estab-
lished practice, shall choose the most difficult term. Set

FA(9) = [ ‘ A AL (K5 (x - y)$(y)) dudv.

We need to show that as ¢ — 0 this converges in .#2? to first term of (3.9).
Note that for ¢,6 > 0,

E{|FA(#) - FA(#)[')

= E[[O’dufoudvrl Y oio(K* — K?)(X: - X7) - ¢>(X,{)}

i#j

< j;)tduj;udv)t‘2E[Z o'o/(K* — K®)(X. - X}) ¢(X5)r

1#j

< fO‘du[O"dv,\-2A2E{|(Ke—Kﬁ)(X:;—X,{)I2'|¢(X£)I2}
= fotdufoudvf[deyf[dez(K‘S —K‘s)z(y - z) - ¢%(2)

< tszzd)Z(z) dszz(KE - K%%(y) dy.

- The important thing to note at this stage is that we have managed to reduce
the computations to the point that they are of the same nature as those which
prove the existence of intersection local time for two independent Brownian
motions, as in Rosen (1986). In fact, they are very similar to those at the end
of the previous proof. We thus leave it to the interested reader to satisfy
himself that it is now not hard to show that

. A A 2\ _
Jim E{[FN#) - FA(@#)[} =0,

which completes the proof of the convergence of the first term of the represen-
tation of Lemma 5.3 to that of (3.9). The remaining terms can be handled
similarly, and this completes the proof of Lemma 3.5. O

Acknowledgment. A referee pointed out that, in a previous incarnation
of this paper, the trees were so thick that one could not see the forest.
Hopefully his demands have been met during rewriting, and the major point of
our work is now clear; i.e., that the ‘“‘particle picture’” of distribution and
measure-valued processes has a lot to offer. If so, we thank him.
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