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SELF-INTERSECTIONS AND LOCAL NONDETERMINISM OF
GAUSSIAN PROCESSES!

By SiMEoN M. BERMAN

New York University

Let X(¢#), ¢ = 0, be a vector Gaussian process in R™ whose components
are i.i.d. copies of a real Gaussian process X(¢) with stationary increments.
Under specified conditions on the spectral distribution function used in the
representation of the incremental variance function, it is shown that the
self-intersection local time of multiplicity r of the vector process is jointly
continuous. The dimension of the self-intersection set is estimated from
above and below. The main tool is the concept of local nondeterminism.

1. Introduction and summary. Let X(¢), ¢ > 0, be a vector random
process in R™. For r closed disjoint intervals I, ..., I,, define the process

(1.1) (X(ty) — X(ty),...,X(¢,) — X(¢,_y), t,el,i=1,...,r,

from I, X -+ X I, into R™"~D, The local time of this process, if it exists, is
called the r-multiple intersection local time of the original process X(¢). The
zeros of the process (1.1) are points ¢, < -+ < ¢, on the time axis, where
X(¢,) = --- =X(¢,), and the set of such r-tuples of points is the r-multiple
intersection set. The focus of this work is the Hausdorff dimension of the
multiple intersection set for a particular class of vector Gaussian processes. In
line with current work in this area, the main tool in the determination of this
dimension is the intersection local time.

Let X(¢), t > 0, be a real Gaussian process with mean 0, stationary incre-
ments and with X(0) = 0 a.s. Then the vector process X(¢) is defined as having
m independent component processes which are distributed as X(¢). The major
step in obtaining the results on the dimension of the self-intersection set is
showing that the intersection local time is jointly continuous and satisfies a
certain uniform Holder condition. This is achieved by showing that a particu-
lar multiple integral whose integrand contains the modulus of the joint
characteristic function of the random vectors (1.1) is finite. The tool used in
the evaluation of this integral is the local nondeterminism of the underlying
real process, introduced by Berman (1973). The latter property implies the
following relation: For each % > 2 there exists a constant K > 0 such that if
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t; < -+ <t and t, — t, is sufficiently small, then
k
Var[ulX(tl) + X uj(X(tj) _X(tj—-l))}
=1
(1.2) !

> K[u% Var X(t,) + f u? Var( X(¢,) — X(tj_l))}
j=2

for all (u,,...,u;). This inequality has a key role in the evaluation of the
multiple integral.

The present work depends heavily on the sufficient conditions for local
nondeterminism given by Berman (1987). These conditions are closely related
to the upper and lower bounds for the dimension of the self-intersection set
obtained here. Suppose that the process is real, and let o%(¢) = EX?(¢) be the
incremental variance function, and F(x) the corresponding spectral distribu-
tion function, so that

1+ x2

x2

o2(t) = [0”(1 — cos xt) dF(x).

If F is absolutely continuous, let f be its density function, and assume that

xf(x)

and
(14) By = limsupA <2

x— F(oo) - F(x) .

Our main results are stated in Theorem 9.2 and Corollaries 9.1 and 9.2.

With probability 1 the intersection local time is jointly continuous, and the
dimension of the r-multiple intersection set is at most equal to

(1.5) r—:B,m(r—1).
With positive probability, the dimension is at least equal to
(1.6) r—ig,m(r—1).

There is an analogous result when F is a discrete distribution on the
nonnegative integers. Here the sample function is periodic, so that the time
domain is restricted to [0, 27). This case is discussed in Section 10.

Rosen (1984) considered the dimension of the self-intersection set for
particular kinds of Gaussian processes, including one in which the underlying
component is a fractional Brownian motion process of index g, which, in our
notation, corresponds to 28. This is a real Gaussian process X(¢), t € RY,
such that X(0) = 0, a.s., EX(¢) = 0 and E(X(¢) — X(5))? = ||s — ¢||*?, where
| - |l is the Euclidean norm in R™. Rosen’s result is that, with probability 1, the
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dimension is at most
(1.7) Nr—Bm(r-1)

and, with positive probability, at least equal to the same. Thus our result is a
generalization of Rosen’s for N = 1. The extension of our results to N > 1
would be based on the corresponding extension of our previous results on local
nondeterminism [Berman (1987)], but this would represent a project for
another time and place.

The significance of the current work is that the general kind of local
nondeterminism implied by conditions (1.3) and (1.4) is used in the place of the
special property of the fractional Brownian process used by Rosen. Pitt (1978)
had shown that (1.2) holds for a fractional Brownian motion with vector time ¢
for all ¢,,...,¢, such that

Iltj+1_tj||5||tj+1_ti||’ 1SiSjSk,
5<”tj”<8—-1, j=17--"k,

for any ¢ > 0. His argument employs the self-similarity of this process. By
contrast our hypothesis, stated as (1.3) and (1.4), involves only the tail of the
spectrum, which governs the local behavior of the process. This hypothesis
implies only the local version (1.2) for ¢, — ¢; — 0. Much of the effort in this
paper goes to extending (1.2) to a version which holds globally, without the
special feature of self-similarity. The key to the verification of (1.2) is to show
that the joint distribution of increments X(¢;) — X(¢;_,), j =1,...,k, each
divided by its respective standard deviation, for ¢, <t; < -+ <¢,, is
“bounded away” from a singular distribution. While our earlier work (1987)
showed that the latter is true for the same points (¢,) converging to a common
limit, the current arguments now demonstrate that under the same assump-
tions, the conclusion about nonsingularity continues to hold without the
convergence to a common point. This implies the desired global version of .
(1.2). The latter inequality is then employed to estimate the key integral which
arises in Gaussian local time theory, and this enables us to prove the joint
continuity of the intersection local time.

The results for Gaussian processes can be extended to certain non-Gaussian
processes by the method of ‘‘subordination” introduced by Berman (1982) and
developed further by Berman (1987). It is shown, in particular, in Section 10,
that the results can be extended to random Fourier series with coefficients
which are symmetric stable random variables.

Section 3 contains some improvements of the theory of local nondetermin-
ism which are also of independent interest. Theorem 3.1 is a Tauberian
theorem for characteristic functions which answers a question raised by
Berman (1987), and which is crucial for the main results which are obtained
here.

A related subject, that of the existence of multiple points of a given order,
was also studied by Cuzick (1982).
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2. Local nondeterminism and preliminary results about second-
order moment inequalities. We recall the concept of local nondetermin-
ism of a Gaussian process X(¢), t € J, where J is a real open interval,
introduced by Berman (1973). Assume that EX(¢) = 0 and EX2(¢) > 0 for
t € J, and that there exists d > 0 such that E(X(¢) — X(s))? > 0 whenever
0<|t—sl<d,fors,ted Fork=>21lett < --- <t, be points in </, and
put

Var{X(tk) - X(tk—l)IX(tl), ey X(tk—l)}
Var{X(¢,) — X(t-,)}
The process is called locally nondeterministic on o/ if, for each 2 > 2,

lim inf V, > 0.
c—0t,—t <c

Vk =

It can be shown by means of the arguments in Berman (1969), Lemma 5.1,
and Berman (1973), Lemma 8.1, that local nondeterminism implies the follow-
ing result: For every k& > 2, there exists C,, > 0 such that whenever ¢, — ¢, is
sufficiently small, we have

Var[ulX(tl) + ‘E uj(X(tj) _X(tj—l))]

(2.1) o .
> Ck[u% Var X(t;) + ¥ u?Var(X(t;) - X(tj_l))]

j=2

for all u,,...,u,.
This condition can be put in a convenient matrix form. Let A = (a,;) be the
k X k matrix defined as

(2.2) a;;=08;; =8 ji1s

i,j=1,...,k. (A has 1’s on the diagonal, and —1’s as entries just below the
diagonal entries.) Put X = X(¢,), and define the random k-component vector
X = (X;). (The dependence on the #’s is implicitly understood.) Then AX has
the components (AX), = X, (AX); =X, - X, ,, 2 <j <k, and (2.1) may be
written in the form
k
(2.3) Var(U'AX) > C, ). u? Var(AX);,
j=1

where U = (u;), and U’ is its transpose. Since (2.3) holds for all U as a
consequence of local nondeterminism, it holds in particular if U is replaced by
AY~'u,

k
(2.4) Var(UX) = C, Y (A'~'U)} Var(AX);

j=1

j=

for all U.
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The following preliminary results, dealing with general second-order mo-
ments of random variables are intended for applications to the extensions of
(2.3) and (2.4).

LemMa 2.1. Let Y,,...,Y, be random variables with variances o, ..., 07,
and put p = max, , ;|Correlation(Y;, Y;)|; then
(2.5) Var(Y, + -+ +Y,) = (1 —p(r — 1)) (o2 + -+ +02).

Proor. This follows from the elementary results that

Va £ %> Lo - T ag,

i=1 i=1 i#j

and
r 2
( Z O'i) < I'Z O'iz. ]

LEmma 2.2, Let Y = (Y)) and Z = (Z;) be k-component random vectors
such that for some C > 0,
k
Var(UY) > C Y, U? Vary,,
j=1

j=

(2.6)

k
Var(UZ) > CY, U? Var Z;
j=1

for all U; and for every pair of components Y; and Z;,

(2.7) |Correlation(Y;, Z;)| < &
for some 0 < & < 1. Then for every U and V,
(2.8) |Correlation(U'Y,V'Z)| < ér/C.

Proor. By an elementary formula and the Cauchy—Schwarz inequality we
have
|Covariance(U'Y, V'Z)|

1/2 )
L UV,(Var; - Var Z;)"’" Correlation(Y;,Z;)
iJ
<5( T IUlyVar Y, |( S IlyVar )
i ) j

172
sBr(Z U2 VarY,.) (Z v? Vaij)
i J

1/2



SELF-INTERSECTIONS OF GAUSSIAN PROCESSES 165

By the assumption (2.6), the latter pr_oduct is at most equal to
(6r/C)[VarUY - Var V'Z]'/?,
which confirms the claim (2.8). O
Our main result here is Lemma 2.3.
Lemma 2.3. Let Y,,...,Y, be k-component random vectors, and put Y, =

component j of Y;. Suppose that there exists C > 0 such that for any set of
k-vectors Uy, ..., U,,

k
(2.9) Var(U,lYl) ZCZ l]l‘% VarYU, i=1,...,r.
j=1
Put
(2.10) p= max |Correlation(Y;;Y;;)l;
it i, j=1,...,k
Ji=1,.r

then, for any U,,...,U,,

(2.11) Var( Zr: U;Yi) >(C—-r(r—1)p) Zr Zk UZ Vary,;.

i=1 i=1j=1

Proor. By Lemma 2.2, with p in the place of 8, we have
|Correlation(U;Y;, U/Y,) < pr/C for i # j. Hence, by Lemma 2.1, with UY,
in the place of the random variable Y;, i = 1,...,r, and pr/C in the place of
p, we have

Var( 3 U,~'Y,~) > (1-r(r—1)p/C) L Var(UY,),

i=1 i=1
and the latter, by (2.9), is at least equal to the right-hand member of (2.11). O

3. Local nondeterminism for Gaussian processes with stationary
increments. Let X(¢), ¢ > 0, be a separable Gaussian process with mean 0
and stationary increments, and with incremental variance function o%(t) =
E(X(s + t) — X(s))?, which is continuous for ¢ > 0. For simplicity we assume
that X(0) = 0 a.s. so that EX%(¢) = 0%(¢), t > 0. Then o%(¢) has the well-
known representation

(3.1) o¥(¢) = ij“’ lei* — 112(1 + x2)x~2 dF(x),

where F is the spectral distribution function. Since we are assuming that X is
real, F' is symmetric, and (3.1) becomes

(3.2) a¥(t) = f:(l —cosxt)(1 + x2)x"2dF(x).
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Suppose that F is absolutely continuous with density f:

(3.3) F(x) = [ f(y) dy.
0
Define
(3.4) #(t) = F(») — F(1/¢), t>0.
Following the definition of Cuzick (1978), we say that X is ¢-locally nondeter-
ministic if for ¢, < --- < t,, the determinant of the covariance matrix of the

standardized increments
X(tl) X(tz) - X(t1) X(tk) - X(tk—-l)
¢(t1) ’ ¢(t2 - t1) T ¢’(tk - tk—l)

is bounded away from 0 for ¢, — ¢, = 0. The main result in Berman (1987) is
that X is ¢-locally nondeterministic if the spectrum satisfies the conditions

(3.5)

()
by = Hminf ey TRy

56) (=) ~ F(x)
By = lim sup xf(—x) <2

xow  F(®) —F(x)

The definition of ordinary local nondeterminism in Berman (1973) is that this
condition holds in the case where ¢ is replaced in (3.5) by the function o2
[Cuzick’s definition is not restricted to the particular function ¢ in (3.4) but
may be employed for any nonnegative nondecreasing function ¢.] I noted in
Berman (1987) that I did not know the exact relation between ordinary local
nondeterminism and ¢-local nondeterminism for ¢ in (3.4). It will now be
shown that the two are actually equivalent. The following theorem is a
“characteristic function version” of a Tauberian theorem of de Haan and

Stadtmiiller (1985) for Laplace transforms.

THEOREM 3.1. Under (3.6)

(3.7 li Zi(—tl <

‘ o” #(2)
and

3.8 limint 2 5 0
(3.8) im in —M > 0.

« Proor. The inequality (3.8) was proved in Berman (1987), page 81. We
now prove (3.7). The representation (3.2) implies that o 2(¢)/¢(¢) is, for fixed
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T > 0 and all ¢ such that T¢ < 1, equal to the sum of three integrals,

(3.9) /OT(1 _ cos xt) > :fz % dx,

(3.10) le/ ‘(1 = cos xt) — :;C i((’:)) dx,
o 1+x? f(x

(3.11) fl/t(1 — cos xt) :2 2((0) .

The integral (3.9) is at most equal to a constant times #2/¢4(¢), which, by
Berman (1987), Lemma 2.1, converges to 0 for ¢ — 0.

Since T is arbitrary, we fix it to be so large that, under (3.6), f(x) <
3¢(1/x)1/x), for all x > T, so that (3.10) is at most equal to 3T~ 2(1 + T'2)
times
é(1/x) dx

o(t) x
Since 1/x >t on the domain of integration above, the first inequality in
Berman (1987), formula (2.6), implies
#(1/x)
é(¢)

for some ¢ > 0 arbitrarily small. Hence the integral above is at most equal to

fl/t(l — cos xt)
T

< (xt) —2+¢

1/¢1 — cos xt dx 11 — cos x
[ [ e < o
0

T (xt)Z-—s x = 3—¢

Finally, we estimate (8.11). It is obviously less than
#(1/x) dx

$() =
Since 1/x < ¢ on the domain of integration it follows from the second inequal-
ity in Berman (1987), formula (2.6), that

$(1/x) e
— < (xt ,
o =
so that the integral displayed above is at most equal to a constant times
© dx © dx
f e = f i7e <@
1/t (xt) x 1 x7°
We have shown that (3.9) tends to 0 for ¢ — 0, and that (3.10) and (3.11) are
bpunded. O

X

3(1+ tz)j::t(l — cos xt)

As noted before the statement of Theorem 3.1, the significance of the result
is that the function o2(¢) may be interchanged with ¢(¢) in the criterion for
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¢-local nondeterminism based on the family of random variables (3.5). Thus
(3.6) is also sufficient for ordinary local nondeterminism.

We also deduce the following improvements in the content of Berman
(1987), due to Theorem 3.1.

COROLLARY 3.1. Under (3.6), for any B; < B, and B} > B,
(3.12) tPt < 0?(t) < tPt
for all sufficiently small ¢t > 0.

Proor. This is a consequence of Berman (1987), formula (2.6), and Theo-
rem 3.1. O

CoroLLARY 3.2. Under (3.6) the local time of the sample function exists
a.s.

Proor. In view of Corollary 3.1, the condition in the hypothesis of Berman
(1987), Theorem 3.1, is fulfilled, and the conclusion is immediate. O

4. Preservation of the hypothesis under certain changes in the
spectrum. The condition (3.6) implies that, for all sufficiently large x, the
density f(x) is exactly of the same asymptotic order as (1/x)¢(1/x). In the
following lemmas we give a more precise version of this result.

LEMMA 4.1. Let f satisfy (3.6), and define
g(x) =x"'(F(=) — F(x)),

4.1 ®
. (4.1) G(x) =fxg(u) du

for all sufficiently large x; then

. xg(x)
(4.2) B, < h,?llo?f G(x)
and
. xg(x)
(43) llI;l—)S:olp m < B,.

Proor. First of all, by Theorem 3.1 and Corollary 3.1, F(x) — F(x) < x AL,
for every B; < B, for all large x. Therefore g(x) < x~'7P1, and so the integral
G(x) in (4.1) is finite. Writing the ratio xg(x)/G(x) in terms of F,

g(x) . F(x) - F(x)
G(x) ~ fru(F(») — F(x)) du’

and applying (3.6), we see that for each B] < B; and all sufficiently large x,

(4.4)
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the denominator in (4.4) is at most equal to [J(B)) !f(u)du =
(B1)~Y(F(x) — F(x)), so that the ratio is at least equal to ;. Therefore

E(€))
hjrcrl)lolnmf G(x) e

for all B} < B;, and (4.2) follows. ‘

By the assumption (3.6), for every B4 > B,, the denominator in (4.4) is at
least equal to [2(B5)~'f(u) du = (B5) 1(F(x) — F(x)), for all sufficiently large
x, so that the ratio is at most equal to B5. Therefore

lim sup %€ (x) < B}
soe  G(x) 777

for all B} > B,, and (4.3) follows. O

LEMMA 4.2. Let the spectral distribution F in the representation (3.2) of o2
have a density f satisfying (3.6). For arbitrary x, > 0, let f(x) be replaced by
the function g(x) in (4.1) for all x > x,, and let 3%(t) be the transformed
integral (3.2) corresponding to the altered density. Then

0 < lim inf o®(t) , o?(t)
< — — < ™,

TR F) et 751

Proor. By Lemma 4.1, the condition (3.6) is preserved under the given
change in the spectral distribution, with a possibly larger lim inf and a possibly
smaller limsup. By Theorem 3.1, applied to the new spectral distribution,
%(t)/G(1/t) is bounded away from 0 and « for ¢ — 0. By Lemma 4.1, it
follows that G(1/¢) is exactly of the same asymptotic order as ¢t 1g(1/¢t) =
F(®) — F(1/t) = ¢(1/t), which, by Theorem 3.1, is exactly of the same asymp-
totic order as o%(t). O

5. Nonsingularity of finite-dimensional distributions. In this sec-
tion we prove a general inequality for the variance of a linear combination of
random variables of a Gaussian process with stationary increments. This
inequality does not depend on (3.6). Furthermore, it holds also for a process
whose spectrum is supported by the positive integers. This case is included
here because it is to be applied in Section 10 to the case of the discrete
spectrum and its extension to random Fourier series.

If the spectral distribution in the representation (3.2) of o%(¢) has a density,
then, for every 0 < ¢; < --- < ¢,, the joint distribution of X(t,),..., X(¢,) is
nonsingular. This fact is well known. For the benefit of the reader we state and
prove an analogous result in the discrete case which may be less well known.

sLEMMA 5.1. Suppose that F has support on {0,1,2...} with f, defined as
the mass at n, forn > 0. If f, > 0 for all large n, then, for 0 <t, < -+ <
t, < 2, the joint distribution of X(t,), ..., X(¢,) is nonsingular.
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Proor. It suffices to show that

k
ij(tj)) >0
Jj=1

(5.1) Var(

for any nonzero vector (b,,...,b,). The spectral representation (3.1) implies
[under the assumption X(0) = 0 a.s.] that the variance in (5.1) is equal to }
times

2

2” 1+n2f
2 i

n=—ow n "

n#

R
Y bi(e™ - 1)
=1

Jj=

If this were to be equal to 0, then, under the assumption of the lemma, we
would have

k
j=1
for all sufficiently large |n|. This implies
k N
b.[ei"tdt =0
o,

for all sufficiently large |n|. The left-hand member above represents 27 times
the nth Fourier coefficient of the function

_

bjl[o,,j](x).
Jj=1

On the one hand, we have just shown that this function has at most finitely
many nonzero Fourier coefficients. On the other hand, by its definition, it is a

step function assuming the values b, + -+ +b,,b; + -+ +b,_;,...,b; on
the intervals [0, ¢,), [¢4, 2,), . . ., [£,_1, £1), respectively, and 0 on [¢,, 27). These
two conclusions are reconcilable only if b, = -+ = b, = 0, so that (5.1) must
hold for every nonzero vector (b,,...,5,). O

THEOREM 5.1. Let F be absolutely continuous or be discrete and satisfy the

assumption of Lemma 5.1. For 0 <t, < -+ <¢, (with t, < 27 in the dis-
crete case) there exists a constant K > 0, which may depend on t,...,t,, such
that .
k k
(5.2) Var( Y uJ-X(tj)) > K}, u?o?(t;)
j=1 j=1

forallu,,...,u,.
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Proor. Forl <i <k,

Var( i qu(tj)) > Var( i w; X(t;)X(t,), h#i
Jj=1 j=1

= u? Var( X(t,)IX(t,), h #i).

Averaging over i = 1, ..., k, we obtain

k k

Var( Y qu(tj)) >k lmjnk Var(X(¢;)IX(¢,), b #1i) ) u?
j=1 <1< j=1
min; Var( X(¢,)1X(¢,), h #i) %

2 2
? t.).

The ratio on the right-hand side above is positive by virtue of Lemma 5.1 in
the discrete case, and follows from the established nonsingularity of the
distribution in the absolutely continuous case. O

6. Asymptotic properties of the standardized increments. As is
well known, the representation (3.1) of o%(¢) is equivalent to the orthogonal
decomposition representation of the process itself,

(6.1) X&) =4[ (e = Dl N1 + £ g(d),

where ¢(x) has orthogonal Gaussian increments, with Var(é(dx)) = dF(x).
The point of the following lemma is to identify the asymptotically dominant
x-frequency band in the representation of a small increment obtained
from (6.1).

LemMA 6.1. Under (3.6), for arbitrary 6§ > 0, h > 0, the random variable
(X(t + h) — X(t))/o(h) is equal to

1/2

(6.2) e (e — 1)lx] 711 + x2) " "¢(dx)

20(h) -/«;/hslxlsl/ah

plus an independent random variable n = n(8, h,t) having a normal distribu-
tion with mean 0 and such that for each t,

(6.3) lim limsup E(7(8,k,t))* = 0.
-0 h-0

Proor. The proof relies only on the properties of ¢ stated in Berman
(1987), Lemma 2.1, and the current Theorem 3.1.: The random variable 7 is
taken as the stochastic integral (6.2) with the complementary domain {|x| <
8/h} U {lx| > 1/8h}, so that the variance of 7 is

) 1+ x2
— leixh — 1/ f(x) dx.
402(h) ‘/;|x|<6/h)U(|x|>1/8h) x? (x)

(6.4)
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For arbitrary fixed M > 0,

x2
Uz(h) [xlsMelxh 2 f(x) dx
1+M? ) h?
az(h) [M(Mh f(x) dx = constant——— o(h)’

which, by Theorem 3.1 above, and Berman (1987), Lemma 2.1, converges to 0
for A — 0. Thus, in estimating (6.4), we may replace the domain of integration
by its subset where |x| > M, for arbitrary fixed M > 0. In particular, for each
B4 > By, we may take M so large that f(x) < B3p(1/xX1/x), for x > M [by
(3.6)], so that the expression (6.4) is at most equal to

Bs(1 + M?) dx
2 . > f l ixh -1 ¢( )
40%(h)M? Jyx <5 /my0lixl > 1/5k) x| ] lx] ©

By Theorem 3.1 and a change of variable of integration, this expression is
exactly of the same asymptotic order as

¢(h/Ixl) dx
(6.5) / |
(Ix|<5}U(Ix|>1/8} o(h) x|
If 6 < 1, then there exists ¢, 0 < ¢ < 1, such that
(h/lxl) l | ~2+e
To(h)
for all |x| < & and all small A > 0 [Berman (1987), formula (2.6)]. Therefore
¢(h/lxl) dx _
2 < lx| "1 dx = (2/¢)6°.
[(|x|<5)| TS “o(R) '/I‘x|<8 (2/2)
Furthermore, there exists ¢, 0 < ¢ < 1, such that
s/
¢(h)
for all |x| > 1 and small A > 0 [Berman (1987), formula (2.6)]. Therefore
> 1/6 “¢(h)
<2 lx|"17¢ dx = (4/¢)8°.
lx|>1/8

It follows that the integral (6.5) is at most equal to (6/¢)8°, and so, by the
reasoning leading from (6.4) to (6.5), it follows that (6.3) holds. O

Our first application of Lemma 6.1 is Lemma 6.2.
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LEmMA 6.2. Under (3.6) let (s, s') and (¢,¢t') be a family of real pairs such
that

(6.6) s —s'| =0, lt—¢] -0, ls —s'l/It — ¢'| - 0.
Under this limiting operation, the random variables
X(s) - X(s") X(¢) - X(¢)
a(ls=s') > o(t-1t))
have a joint limiting distribution which is a product of standard normal
distributions.

(6.7)

Proor. It suffices to show that the limit of the covariance of the pair is
equal to 0. According to Lemma 6.1, we may estimate the covariance by
putting ~, = s — s'| and h, = |t — #'|, and computing the limit of the covari-
ance of the pair

1 , . 1/2

e t(e*h — 1)lx| (1 + x2 dx
20(h;) f{a/h,-slxlsl/ah,-) ( ) ( ) ¢(dx)
for i = 1,2, for h; — 0 and then § — 0. The covariance of the pair above is
equal to
Y
40(hy)o(hs) /(s/minth,, hol<ixl <1/06 max(hy, ko)

1+ x?
X > dF(x).

(eixs _ eixs’)(e—ixt _ e—ixt')

By the assumption (6.6), h, is eventually smaller than h,, and, for fixed
8 >0, 1/8h, is eventually smaller than 6 /A, so that the domain of integra-
tion is eventually empty. It follows that the limit of the covariance of (6.7) is
equal to 0. O

LEMMA 6.3. Assume (3.6). Let I be a fixed real interval. Under the limiting
operation
(6.8) [t =t -0, t,t'el, ian' o(s) >0,
se

the random variables

X(s) X(¢) - X()

a(s)’ o(t—-t))

have a joint limiting distribution which is a product of standard normal
distributions.

(6.9)

Proor. For arbitrary s € I and T > 0, it is easily seen that X(s) is mean
square approximable by

Xp(s) =3[ _ el 71+ 2%) " e(dx)

lxl <T
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in the sense that

lim sup E(X,(s) — X(s))* = 0.

Towo sel

By Lemma 6.1, (X(¢) — X(¢")) /o (|t — ¢']) is mean square approximable by (6.2)
with n = |¢ — ¢'| = 0. By the orthogonality of the increments of ¢, the. covari-
ance of the approximating random variables is

1 . . o
ei*s(e~i*t — e ) x| T3(1 + x2) dF(x).
40(h) Yx: 1x1<T, 8/h<xI <1/5h)

If, in the approximation of the pair (6.9) we choose & and T to be related as
h = 0o(1/T), then, for fixed § > 0, h is ultimately smaller than §/7. Hence
the domain of integration above is empty, and therefore the limit of the
covariance (and the correlation) is equal to 0. O

7. Asymptotic independence of local increments for processes with
transformed spectral distributions. In this section we establish some
limiting distributional properties of processes whose spectra are of the special
type considered in Section 4.

THEOREM 7.1. Suppose that F is absolutely continuous with a density [
satisfying (3.6). Let X(¢) be a process having a spectral distribution with a
density of the form

g(x) = x7(F(») - F(x))

for all sufficiently large x. Let (s, s) and (t,¢t) be a family of pairs of real
numbers such that

(7.1) Is—s'l—0, t—t| >0 and |s— tlisbounded away from 0.

Then the random variables

X(s) — X(s' X(t) - X(¢
(7.2) (s) ,( ) e (2) ,( )
o(ls —s'l) a(lt —t')
have a joint limiting distribution equal to a product of standard normal
distributions.

Proor. The cases |s — s'| /|t — ¢'| = 0 or « are covered by Lemma 6.2, so
that it remains to consider only the case |s — s'| /|t — ¢'| > ¢, 0 < ¢ < ». For
simplicity, we will consider just the case A = |s — s'| = [t — #'| - 0. By Lemma
6.1, the covariance of the pair (7.2) is approximately equal to

1 ,1+x? (l)dx

—_— eix(t—s)leixh _ 1| =
40%(h) '/c;/hslxlsl/hﬁ x? x| | lx|
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for small 8 > 0 and A — 0. The latter is asymptotically equal to
)
402(h) Js<ixi<1/8
which, by Theorem 3.1, is of exactly the same order as
1|2d;(h/lxl) dx
(k) x|

We will show: For every sequence (k) converging to 0, there is a subse-
quence over which (7.3) has the limit 0; this will complete the proof of the
lemma. Observe that ¢(h/x)/¢$(h) is monotonic in x, and, by Berman (1987),
Lemma 2.1, is bounded on & < x < 1/, uniformly in A. Hence there are a
subsequence (k') of (k) and a monotonic bounded function g(x) such that
¢(h'/x)/$(h) — q(x) at all points of continuity in (8, 1/8). From this and the
bounded convergence theorem it follows that
o(h'/1xl)

$(h')
Therefore, if & in (7.3) is replaced by &', the latter integral has the same limit
as

eix(t—s)/hleix _ 1|2¢’(i)§£’
lxl ] |x|

(7’3) f eix(t—s)/hleix _
o<|x|<1/8

q(lxl) — dx — 0.

'/t;slxlsl/s

[ eix(t—s)/h'leix _ 1|2q(|x|) dx,
d<lx|<1/8

which, by the Riemann-Lebesgue lemma, has the limit 0. O

8. Extension of local nondeterminism to r distinct points. In the
case of a process with stationary increments, the limiting operation ¢, — ¢; = 0
in the definition of local nondeterminism may be replaced by the simpler
operation ¢, — r, ¢, > 7, for each fixed 7. Accordingly, the inequality (2.1)
holds in a neighborhood of each fixed point 7. We will now formulate an
inequality which extends (2.1) to neighborhoods of r distinct points. This will
provide the inequality needed in the estimation of the local time integral for
multiple self-intersections.

Let 0 <7, < -+ <7, be ordered real points. For each i, let ¢;;, j =
1,...,k, be points such that ¢;; < -+ <t;,, for each i. We assume that ¢;;
has an implicit parameter A such that
(8.1) tij=tij(h)_)7.i7 i=1,...,r,j=1,...,k,
for h — 0.

Consider the random r X k matrix (X;;) defined by.X;; = X(¢;,), and define
X, as the transpose of the ith row vector, that is, a column vector with
components X,;, j=1,..., k.

TueoReM 8.1. Let X(t), t > 0, be a Gaussian process with stationary
increments whose spectral distribution satisfies (3.6). Let (7;) and (t;;(h)) be
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defined as above. Then there exists a number C > 0 which may depend on
Tis---, T, and on k such that if h is sufficiently small in the operation (8.1)
then

(82) Var( y U;(Axi)) 2CY ¥ (U3 Var(AX,),,
i=1 i=1j=1

where A is the matrix (2.2), for all k-vectors U,,...,U,, and U’ denotes the
transpose of U.

Proor. The left-hand member of (8.2) may be written in the form
r r k
(8.3) Var{ Y ouaX(ty) + X L ou(X()) _X(ti,j—l))}'
i=1 i=1j=2

By the spectral representation (8.1), the variance (8.3) is representable as

AP

uhl(@ixt"1 -1)

h=1
r k ' ) 2 x2
+ X X uy, (e — et hin) | ——f(x) dx,
h=1j=2
which, for any T > 0, is at least equal to
1 r .
2] 1T e - )
4 x|>T|p=1
(8.4) . )
# LT w6 - e )| f(x) ds.
h=1j=2

For every B] < B,, there exists T sufficiently large so that a lower estimate
of (8.4) is obtained by replacing f(x) by B;lx| '¢(1/|x|). Lemma 4.1 implies
that the condition (3.6) holds for the modified spectrum with a possibly larger
B, and possibly smaller B,. Therefore the process with the modified spectrum
inherits the local nondeterminism of the original process, including the proper-
ties expressed by the inequality (2.1) and the lemmas of Section 6. Lemma 4.3
states that the same variance function o may be used for the altered process.
Furthermore, the process with the modified spectrum has the additional
asymptotic independence property expressed in the statement of Theorem 7.1.

We proceed to find the appropriate lower bound for (8.3). By Theorem 5.1
there exists K > 0 such that if & is sufficiently small in (8.1), that is, ¢;; is
sufficiently close to =, i = 1,..., r, then

(8:5) Var( » ui;X(t,-l)) > K'Y uho(ty)

i=1 i=1

for all (u ;).
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Let Y,,...,Y, be the (¢ — 1)-component random vectors obtained from
AX,, ..., AX, by eliminating the first component of the latter: Y, = (X(¢, Dk
X(¢; ;_1), J =2,...,k). By the ordinary local nondeterminism of the process
[Theorem 3.1 above and Berman (1987)] and by the inequality (2.1) above with
J=2,...,k, it follows that there exists C > 0 such that (2.9) holds. Further-
more, by Theorem 7.1, the maximum modulus p of the correlation coefficient
in (2.10) converges to 0. Therefore, by (2.11), there exists K > 0, that is,
K=C-r(r-1pfor p < C/(r(r — 1)), such that

r k r k
(8.6) Var{ P Z uij(X(tij) - X(ti,j—l))} >K) ) u%jo'z(tij - ti,j—l)
i=1j=2 i=1j=2
for all (u;;). Here K is not necessarily the same as in (8.5).
By Lemma 6.3, every random variable X(¢,,) and every increment X(¢, ;) —
X(¢, ;_,i,l=1,...,rand j = 2,..., k have limiting correlations equal to 0.
Hence, from (8. 5) and (8.6) by another application of Lemma 2.3, the variance

(8.3) is at least equal to a constant times the sum of the right-hand members
of (8.5) and (8.6). O

9. Joint continuity of the intersection local time of multiplicity r.
Let X(¢) be a Gaussian process with stationary increments satisfying (3.6).
Let X,(¢), h =1,...,m, be independent copies of X(¢). For disjoint, com-

pact intervals of positive length in the time domain, I,,..., I,, consider the
m(r — 1)-component vector process

(9.1) (Xn(tivy) —Xp(t):i=1,...,r=1;h=1,...,m)

defined for ¢, €1,, i = 1,...,r. The process obviously has an r-component

time parameter.

To simplify the notation here, we define ¢,, = 0 for all i. Since X,(0) =0
a.s. by assumption, it follows that X,(¢;,) = 0, a.s. Following the outline of
Rosen (1984), we prove Theorem 9.1.

THEOREM 9.1. The integral

/ﬂfﬂf oo 11 1:11( 3 u”,,)

m r—1 k
(92) ><exp —%Var{ Z Z ljh[Xh(ti+1 J) Xh(tz j)]}}
h=1i=1j=
r-1 &k m r k
X l_.[ ]—.[ duijh l_[ dtu
i=1j=1h=1 i=1j=1
isfiniteforall y > 0, m > 1, r > 1and k > 2 such that
Byr—1
(9.3) ?—r—(m+2y(r— 1)) < 1.
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Proor. As we noted in Section 1, the distinction between this work and
that of Rosen (1984) is that we are using a more general form of local
nondeterminism than that of the fractional Brownian motion process. Thus,
while there is a similarity between the outline of the proof of this theorem and
corresponding proofs in Rosen (1984) and Geman, Horowitz and Rosen (1984),
I have presented a complete proof of this theorem because it differs from the
earlier ones in the details related to the features representing the generality of
this work.

In the course of this proof, the index i = 1,...,r is a label for the intervals
(I;), the index j = 1,..., % is a label for the random variables X(¢,,), ¢;; € I,
and A =1,...,m is a label for the components of the vector process.

Since (X,(¢)) are independent copies of X(¢), the summation operator over
h may be placed before the variance in the exponent in (9.2), and the subscript
h on X, may be omitted:

(9.4) £ { T Y ] X(ti) - x<tu>]}

i=1j,=1
For each i, consider the subset of I} for which
(9.5) b1 <t g< " <ty fort;el,i=1,...,r.

Then, with the exception of a set of measure 0, I} is the union of the images of
the subset (9.5) under the family of all permutations of (1,..., k). Let X,
i=1,...,r, be the k-component random vectors defined in Section 8, and let
P, be a k X k row permutation matrix, that is, one obtained from the identity
by a permutation of rows. Then the integral (9.2) may be expressed as the sum
of (k)" integrals of the form

o o o JITI(£ )

Dj=1i=1\p=1

<

r—1 &k

XeXp{—%ZT‘. [Z Zuuh(( i+ 1Xi41)j — (PiXi)j)]}

i=1j =1

(9.6)

X [Tdu;;I1dt;,

where (P,X,); is the jth component of X; after the permutation of coordinates
defined by P,.

For h=1,...,m, let U,, be a k-component column vector with compo-
nents u,;,, j =1,..., k. Then the variance in the exponent in (9.6) may be
written in the vector form

Var[Z P, X, — PX,)|,
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which, by summation by parts, may be written as

r—1
(9.7) Var{_Ul'hplxl + 2 (Ui_y,n — Uy)'PX; + Ur'—1PrXr}-
i=2

Define the k-vectors
Vih = U1h7 =1,

9.8
( ) = ih_Ui—l,h, l=2,,r-1,

then (9.7) is equal to

r—1 r—1

(99) Var{_ Z Vz’thXz + ( E iIh)Prxr}'

i=1 i=1

We aim to find a lower bound for (9.9) of the type described in Lemma 2.3.
For any nonsingular £ X k& matrix A, the variance (9.9) may be written as

r—1 r—1
(9.10) Var{— Y (AP Vv, )AX, + (A"IP,’( Y Vih))’AX,}.

i=1 i=1
Take A as the matrix (2.2). For the purpose of proving that (9.2) is finite, it
suffices to consider intervals I,,..., I, of arbitrarily small length. Hence we
may consider I; to be a small neighborhood of a point 7;,i = 1,...,r, and then
apply Theorem 8.1: There exists a constant C > 0 such that the variance
(9.10) is at least equal to C times

r—1 &k 2

E > (A'—lpi'vih)j Var(AXi)j

i=1j=1

A'-IP;(rE_:l\ch)) Var(AX,);.

i=1 Jj

k
+ Y
j=1

The latter is equal to

r—1 &
r— ’ 2
Z Z (A IPi Vih)jo'z(tij - ti,j—l)

i=1j=1

(9.11) ) o
.y (A'-IP;( y v)) ¥ty — b, ).
j=1 -

i=1 Jj

Now we use the transformation (9.8) as a change of*variables of integration
in (9.6):

Uijh=uijh, l='1,

=uijh_ui_1,j’h, i=2,...,r_1,j= 1,...,k,h=1,...,m.
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The Jacobian is equal to 1. It also follows from the definition that
u; ijh = Z U; Jjho

and so, by the Cauchy-Schwarz mequahty,

r—1
iy <(r—-1) Y v3, i=1,...,r—1L
i=1

It follows that

r=1( m v/2 r—1 m y(r—=1/2

I x u%jh <(r- 1)y(r_1)/2 DM vizjh

i=1 i=1h=1

for 1 <j < k. From this and the lower bound (9.11) for the variance, we obtain
the following upper bound for the integrand in (9.6) with integration variables

vijh:

) y(r—1)/2

r-1 m
( )’Yk(r 1/2 l_[ ( Z Zlth

=l\i=1#h

r—1

(9.12) Xexp{—— [f i

k
1—1p, 2
Y (AP Vih)j‘fz(tij — ¢ j-1)
h=1i=1j=1

> (A'*Px(rilm))jﬂ(t,j - t,,j_l)]}-

h=1j=1 i=1

Now we are going to find r different upper bounds for (9.12), and their
corresponding integrals over the variables (v;;;,). Our first bound is obtained
by omitting the second sum from the exponent. It is a constant times

r—1 m y(r—1)/2
].—.[1( Z Z vljh)
(913) J i=1h=1

m r—-1 k
Xexp{—— Y X X(ap Vh) _ti,j—l)}'
h=1i=1j=1

The integral of this function is not changed if the permutation matrix P; is
removed from the exponent Indeed; any permutation matrix has Jacobian 1,
and the product I1,(X,X ,v7) is invariant under permutations of the indices
J=1,..., k. Thus the lnteg'ral of (9.13) is equal to the integral of

E [(r—1 m y(r—-1/2

> (A' 'V, h)i"2(tij—ti,j—1) .
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Define the vectors W;, = A'"'V,,, where A is the matrix (2.2). Then, with
the convention (W,,,); = 0 for j = 0,k + 1, we have V;, = A'W,,,, and so

Ivljhl lwz]hl + Iwz Jj+1, h,I
and, as a consequence,
2 2 2
Vijn < 2W5, + 2w 41 ps

and so

k r—1 m y(r—1)/2
(x5 £ o)

r-1 m r-1 m )V(r_l)/z

< gk 1)/211(2 P wit T T w?,

i=1h=1 i=1h=1
The latter is at most equal to the sum of 2* terms of the form

r-1 m 0;¥(r—1)/2
(915) 2ky(r Lr2 ].—I ( Z E wljh) ’

Jj=1\i=1h=1

where 0, =0, 1or 2, for j =1,...,k.
It follows from (9.15) that, after the change of variables from (v) to (w), the
integrand (9.14) is bounded above by a sum of 2* terms of the form

r—1 m )ﬂ(r—l)/Z

constant H ( Y X wiy

(9.16) =l k=l

Xexp{——Zk:er(Zm:w,,h) Pt —ty o 1)}

Jj=1i=1

Let us now integrate over the variables (w, in)- For fixed (i, j) we first
integrate over spheres in R™, w? = L} ;w?;,, and then over w; ;. The inte-
gral of (9.16) over R™*("=1 g equal to a constant times

k (,._1 )j’y(r—l)/2

[ ];{k(r n ]':I Lg Wij

k r—1
(9.17) Xexp{— — E w?o?(¢,; — ti,j—l)}
j=

By the elementary inequality,

r—1 p r—1 p
(z w) < TT(+w?)
i=1 i=1
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for p > 1, and from the fact that 0 < 6, < 2, the integral (9.17) is at most
equal to the product of &2(r — 1) single integrals,

r—1

ko _ C
[T/ (+w?)" exp(_ gwio(t; - tw"l)) .

i=1j=17-o

By a change of variable and a simple computation, the latter product is seen to
be bounded above by a constant times

r—1

k
(9.18) 1'11 I‘[l(a(tij —t; ) TR,
i=1j=

This is our first bound for the integral of (9.12) over the variables (v, ).

Now we construct r — 1 other upper bounds. For an integer q, 1 <q <
r — 1, we obtain a lower bound for the sum in the exponent in (9.12) by
dropping all terms of index i = q, for any j and A, from the first sum. Thus
the vector V,, appears only in ©]_{V;,, in the second sum in the exponent. We
define new variables .

W,=V, fori#q,i=1,...,r—1,

9.19 r1
(9.19) =YV, fori=gq.
-1

The Jacobian of the transformation is equal to 1, and the sum in the exponent
in (9.12) becomes

h=1i=1,i#q j

(A'_IPiI‘Vih)iaz(tij - ti,j—l)

1 k
=1

(9.20) o
_ 2
+h2 2 (A' IPrIth)jo-z(trj_tr,j—l)‘
-1j=-1

For fixed (j, h) consider the linear transformation v,;, — w;;;, induced by
(9.19). It has an (r — 1) X (r — 1) matrix of the form: 1’s on the diagonal and
on row ¢, and 0’s elsewhere. The inverse has 1’s on the diagonal, and —1’s
throughout row ¢ with the exception of the diagonal entry. It follows that

r—1 r—1(r—1 2
> vizjh <X ( P lwi’jhl)
i=1

i=1\i'=1
r—1 2
=(r— 1)( > lwijhl) )
i=1

which, by the Cauchy-Schwarz inequality, is at most equal to
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(r — D’LiZ{w};,. Therefore the product appearing in (9.12) satisfies

k (r—-1 m y(r-1)/2
Az £
(9.21)

r—1 m y(r—-1)/2
< (r - - “n(z 5 w) .

J=1\i=1h=1

Applying (9.21), and using the lower bound (9.20) for the sum in the
exponent in (9.12), we see that the upper bound we obtain for (9.12) is the
same as our first bound (9.13) except that the index i = ¢ of P, and ¢, ; has
been replaced by r. Thus, by the same calculations leading to (9.18), we obtaJn
for each g, 1 < ¢ <r — 1, the bound

r k

(9.22) constant [T T[lo(t;-1¢ ;-
i=1,i#q j=1

) m—2y(r—1)

for the integral of (9.12) over the variables (v, ;).

Since the integral is bounded by a constant tlmes the function (9.18) of the
t’s and is also bounded by a constant times each function (9.22), for 1 < ¢ <
r — 1, it follows that the geometric mean of the r bounds is also a bound.

Therefore

—(r=1/rXm+2y(r—1))
(9.23) constant l_[ ]_[ [a(tu t; 1)] il

i=1j=1

is also a bound for the integral of (9.12) over the variables (v, ;).
- Now we integrate (9.23) over the ¢-domain indicated in (9. 6) The integral is
finite if

(924) /1[0(8)] —((r=1)/rXm+2y(r—1) ds < .
0

This holds if (9.3) is assumed. Indeed, if the function o2(¢) is based on the
original spectral density f, or the original mass function (f,), then, for any
Bs > Bs, it follows from the first inequality in (3.14) that the integral (9.24) is
finite if

%——(m +2y(r—-1)) <1.

Since B is an arbitrary number greater than g,, it follows that (9.3) is
sufficient. If the function o?(¢) is based on the modified spectral distribution
described in Lemma 4.1, then, by Lemma 4.2, o-(¢) is, for ¢ — 0, of exactly the
same asymptotic order as the one based on the original spectral distribution,
and so (9.3) is still sufficient for (9.24). O
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Now we apply Theorem 9.1 to the local time of the process (9.1), denoted
a(x, B), where x € R™" "D and B is a rectangle in I; X -+ X I,.

THEOREM 9.2. Let the real underlying process X,(t) in (9.1) satisfy the
spectral conditions of Section 3, and suppose that

Bo(r —1)m <1

(9.25) 5

Then the local time a(x, B) exists and is jointly continuous, a.s.

Proor. If (9.25) holds, then there exists y > 0 sufficiently small, so that
(9.3) also holds. Then the integral (9.2) is finite for the given y, and the
conclusion of joint continuity is a consequence of Geman, Horowitz and Rosen

(1984), Theorem 2.8. O

COROLLARY 9.1. Under the condition (9.25) the dimension of the set of zeros
of the process (9.1) is at most equal to

(9.26) r—impBy(r—-1)

almost surely.

Proor. It is well known that the right-hand inequality in (3.12) implies
that the component sample function X,(¢) satisfies a Holder condition of order
less than B;/2. It then follows that the same is true for the process (9.1).
Noting the joint continuity of a(x, B), and applying Lemma 8.2.2 of Adler
(1981), we conclude that the dimension is at most equal to r — 38;m(r — 1).
Since B} < B, is arbitrary, we obtain the bound (9.26). O

COROLLARY 9.2. Under the condition (9.25) the dimension of the set of zeros
of the process (9.1) is at least equal to
(9.27) r—asmBy(r—1)

with positive probability.
Proor. Following the notation of Geman, Horowitz and Rosen (1984), we
call the integral (9.2) V,,,(I; X -+ X I,). Let J; be the subset of I; for which

t;; < -+ <t;. In proving Theorem 9.1 above we showed that the integral
(9.2) is dominated by

f f [function(9.23)]ndtij'
S RG b
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A standard integration shows that this is at most equal to a constant times

k—1
ﬁ (f (o(2)) " CD/Ame2yeD) gy
i=1\’r,

By the first inequality in (3.14), the latter integral is at most equal to a
constant times

(E=DI1—(Bs/2X(r—1)/rXm+2y(r—1))]

freen)]

for any B4 > B,. Putting

By(r—1
a

e-(k-li- 2 m s 2vr - 1)

we observe that we have just shown that
V,,(B) < constant(mes B)*¢

for every rectangle B in the r-dimensional time domain. It follows from
Geman and Horowitz (1980), Theorem (27.1), and Geman, Horowitz and
Rosen (1984), Section 2, that the local time a(x, B) satisfies a uniform (in x)
Holder condition in B of every order ¢ < (¢ — 1)/k. By Adler (1981), Theorem
8.7.4, it follows that the Hausdorff dimension of the set of zeros of the process
(9.1) is at least equal to r(¢ — 1) /k whenever the local time at 0 is positive. By
the definition of ¢ we have

r(¢-1)/k = {r—2Bs(r — 1)(m + 2y(r — 1))}.

In the expression above, £ may be taken arbitrarily large, v > 0 arbitrarily
small and B4 > B, arbitrary. Thus r(¢ — 1)/k may be replaced by the expres-
sion (9.27). The proof is now completed by showing that (0, B) > 0 with
positive probability for any rectangle B. Indeed, E«a(0, B) is equal to the
integral over the time parameter of the joint density of the random variables
(9.1) at 0. Thus Ea(0, B) > 0, and so «(0, B) > 0 with positive probability. O

10. Application to random Fourier series. While the results above
have been formulated in the case where the spectral distribution is absolutely
continuous, there is also a version in the discrete case where the spectrum has
support on the nonnegative integers. The significance of this case is illustrated
by the application in this section to random Fourier series. Suppose that F(x)

.is of the form -

F(x)= ¥ fu

O<n<x



186 S. M. BERMAN

where f, > 0 and £, f,, < ». In the place of (3.6), we assume

n n
B: = liminf >0,
n—® j>nfj
(10.1) of,
B, = limsup < 2.

noo  Ljsnl

This condition is sufficient for ¢-local nondeterminism in the discrete case
[Berman (1987)]. Furthermore, it is sufficient for all of the results proved
above in the absolutely continuous case under (3.6). The required modifica-
tions of the proofs above are uncomplicated. The functions g and G in (4.1)
are taken as sequences (g,) and (G,) defined as g, =n"'L ;. f; and G, =
L ;- &, respectively. The content of Section 5 includes the discrete case. The
only point in the discrete case requiring a careful distinction from the density
case is the proof of Theorem 7.1. In the place of the Riemann-Lebesgue
lemma, one should use the technique of Berman (1987), page 80, for the
evaluation of the trigonometric sum which arises as the analog of the Fourier
integral (7.3).
Let X(¢), 0 < ¢ < 27, be a real process of the form

(10.2) X(t)= ) a,(X,cosnt+Y,sint),
n=0

where (X,) and (Y),) are all standard normal independent random variables,
and

(10.3) f a2
n=0

Then X(¢) is a stationary Gaussian process with mean 0 and a spectral
distribution consisting of masses f, = a2 at n =0,1,... . If we assume that
(f,,) satisfies (10.1) for some B, < B, < 2, then the theorems and corollaries of
Section 9 apply to the vector process (9.1) defined in terms of X(¢).

These results can be extended to series of the form (10.2), where the
coefficients (X,) and (Y,) are not necessarily Gaussian. In Berman (1982,
1987) it was shown that the local time properties of a series (10.2) with
Gaussian coefficients are inherited by series with non-Gaussian coefficients
under ‘“subordination.” In Berman (1987) we considered X, and Y, with
symmetric stable distributions of index «, 0 < a < 2. In the place of (10 3), we
assume the stronger condition

la,|* < .
0

(10.4)

TMS

[The factor 2 should be removed from the exponent in Berman (1987), formula
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(4.15).] The latter condition assures the a.s. convergence of the series (10.2)
when the coefficients are a-stable. Let us refer to the series on the right-hand

side of (10.2) as Y(¢) when the coefficients are standard normal. By the form of
the stable characteristic function, we have for u,,...,u, and ¢,,...,¢,,
Jj=1

] |

2 2a/2) B 2et/2)
( i)a/z (Z u; cos ntj) + (Z u; sinntj)

Jj=1

o k 2 k 2
Y a2 (E u;jcosnt;| + | u;sinnt;
n=0 j=1 j=1

a/2

k

u; X(t; )}

—log E exp[

k
+ Zluj sin nt;
Jo

k
Y ujcosnt,
Jj=1

k

Var(ng qu(tj))}

v

Hence

—|Var Zk: u;Y(¢;)

(10.5) E|exp
A =

a/Z}
Therefore, by the calculations in the proof of Theorem 9.1 leading to the
finiteness of the integral (9.2), we conclude that the analogous integral for the
characteristic function of the stable process (10.2) is finite whenever it is true
for the Gaussian version Y(¢) of (10.2). [See Berman (1982) for this ‘‘sub-
ordination” principle.] Thus the conclusions of Theorem 9.2 and of Corollary
9.2 hold for the stable version of (10.2) as long as the coefficients (a,) and the
numbers m and r satisfy the conditions stated for the Gaussian version of
(10.2).

The conclusion of Corollary 9.1 requires a major modification because we
employ the Hélder continuity of the sample function. Here the stable case does
not easily follow from the Gaussian case. Indeed, the stable sample functions
have a much smaller Holder index.

For 0 < & < 2, define the function

(i élqu(tj)‘)] < exp

(10.6) R(2) = i la,|*(1 — cos nt)|.

n=1
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For h = |t — s| it follows that

— log E( e/ *(X®-X(»)
=]
= lul* ) la,|*[lcos nt — cos ns|* + |sin nt — sin n¢|*]
n=0

(10.7) );/2

=]
< /2~ Vapy* ¥ |an|“((cos nt — cos ns)® + (sin nt — sin ns)?
n=0

= 22V 2" B o, (1 - cos n(t — 5))*/%

n=0

By the moment inequality we have

Y la,*(1 - cos n(t —s))*?
n=0

a/2

o 1-a/2 ©
< ( Y lanI“) ( Y la,l*(1 —cosn(t—s))| .
n=0 n=0
Hence, from (10.6) and (10.7),

(10.8) — log E(e'*X®O-X(D) < Clu|*(R(t — 5))*/?

for some C > 0.
The ratio

X(t) - X(s)
{—log E[ei(x(t)—X(s))]}l/a

has a (stable) characteristic function independent of (s, ) for s # ¢. Hence, by
the known form of the stable distribution tail, we obtain

P( { IX(2) - X(s)l

~log E[eiX®)-X6D]y1/*

>x) ~Kx™¢

for x —» « and some fixed K > 0, uniformly in (s, ¢) for s # ¢. From this and
from (10.8) we infer the relation

o[ X® - X(5)!
(R(t—s))"*

for all x > 1 and some K > 0 not depending on (s, ¢) for s # ¢.
Lét us now assume that

(10.10) R(¢) ~ blt|”, t—0,

(10.9) x) <Kx
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for some b > 0 and y > 0. It then follows from (10.9) that
P(X(t) — X(s)l > 272t — s|"°/?)
1X(¢) — X(s)l
~P 1/2
(R(t—s))
< Kba(l—s)/zlt _ slya(l—ﬁ)/2

(10.11) > p@-D/2|p _ g|@=1y2

for arbitrary 8, 0 < 8 < 1, for [t — s| positive and sufficiently small.

Let us now apply Loéve (1978), page 183, with g(h) = constant|h|**/? and
q(h) = constant|h|"** /2 If
(10.12) ya(l—-268)/2>1,
then X(t) is almost surely Holder continuous of order y8 /2. This implies the
following proposition.

If
(10.13) ya > 2,
then X(¢) is almost surely Hélder continuous of order less than
1
(10.14) r_Z.
2 a

Indeed, if (10.13) holds, then (10.12) holds for any 0 <6 <1 — 2/ya, and
X(¢) is Holder continuous of order y8 /2, which is less than (10.14).

We mention that there has been much recent research on the continuity of
stable series of the form (10.2); for example, see Marcus and Pisier (1984).
However, for simplicity, we have chosen to apply the elementary general
theorem stated in Loéve (1978) to obtain the specific result on Hoélder continu-

ity.
" We now apply the results above to the stable series (10.2), where we take
the sequence (a,) to satisfy

(10.15) a,~n"% noow

THEOREM 10.1. Let X(t) be the process represented by (10.2), where (X))
and (Y,) are i.i.d. symmetric and a-stable, and a, satisfies (10.15), with

1 3
(10.16) Z<g< =,

@ 2
If
(10.17) (26 — 1)(r—1)m < 2r,

then the conclusion of Theorem 9.2 holds, as well as that of Corollary 9.2 with
the dimension

(10,18) r—sm(r—1)(20 - 1)
in the place of (9.27). If, in addition,
(10.19) a(ad — 1) > 2
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and
af — 1 1

(10.20) m(r — 1)[ g <r,
then the conclusion of Corollary 9.1 holds with the dimension

af — 1 1
(10.21) r—m(r— 1)[ - —]

2 a

in the place of (9.26).

Proor. Let Y(¢) be the process represented by the right-hand member of
(10.2) when (X,,) and (Y,) are independent standard normal. The process is
stationary with spectral sequence f, = a%2 > n~2°. By a standard calculation,
it is seen that condition (10.1) holds with

(10.22) B, =By =20—1.

The first inequality in (10.16) implies (10.4), which is sufficient for the almost
sure convergence of the series (10.2) in both the Gaussian and stable cases.
Both inequalities (10.16) also imply the requirement 0 < B, = B, < 2. The
statement of Theorem 9.1 holds for the Gaussian process Y(¢). Therefore, by
the remarks following (10.5), Theorem 9.1 also holds for the stable version of
(10.2), and so the conclusions of Theorem 9.2 and Corollary 9.2 hold in the
modified forms stated above.

In order to obtain the conclusion of Corollary 9.1, we derive the Holder
index of the sample function. For (a,) of the form (10.15), it follows that the
sequence f, = |la,|* satisfies condition (10.1) with B, = B, = a8 — 1, so that
0 < B; = By <2 under the hypothesis (10.16). Thus the Tauberian theorem
implies

R(¢) = ¥ la,|*(1 — cos nt) ~ constant|t|**~*
n=0
for ¢ > 0. Put y = a6 — 1; then the hypothesis (10.19) implies that (10.13)
holds, and so (10.14) is the index of Hélder continuity. Substituting

vy 1 afd — 1 1
2 a or 2 a

for the Hélder index B,/2 in (9.26), we obtain (10.21). O

The parameter 0 in (10.15) is identified as 8/2 in Berman (1987), page 83.
The member max(1, a~!) on the bottom line of that page is incorrect and
should, in accordance with (10.16) above, be replaced by 2/a.
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