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ON THE LINEAR PREDICTION OF MULTIVARIATE
(2, p)-BOUNDED PROCESSES!

By CHRISTIAN HOUDRE
University of Maryland

We develop the linear least squares prediction theory for some classes of
nonstationary processes having a Fourier spectral representation. We study
time domain as well as spectral domain properties for these processes, such
as a Wold decomposition and a decomposition for matrix bimeasures. We
also obtain an autoregressive representation for the optimum predictor.

0. Introduction. The object of this work is to develop a comprehensive
study of the linear (least squares) prediction problem for some classes of
multivariate discrete time nonstationary processes. The processes under study
are the (2, p)-bounded processes, 1 < p < + =, which have been introduced by
Bochner (1956) and the author [see Houdré (1990a)]. The (2, «)-bounded class,
also known as V-bounded, has recently seen a revival of popularity essentially
due to the work of Niemi (1975a,b), (1977). Such is not the case for 1 < p <
+0o, and our work will thus also include a study of some structural properties
of these processes.

(2, ®)-bounded processes are important since they contain wide sense sta-
tionary (WSS) processes and also retain some of the fundamental WSS charac-
teristics, such as a Fourier integral representation. However, the (2, ©)-bounded
class is too broad. Typically, for WSS processes, one is often interested not in
the full generality of the WSS class but rather in some particular subclass, say
the WSS processes with absolutely continuous spectral measure. For p < +,
(2, p)-bounded processes play such a role within the (2, x)-bounded class.
Furthermore, they provide a single framework to develop a prediction theory
which recovers both the Wiener—-Kolmogorov (stationary) theory as well as
Kalman’s (nonstationary) state space theory. The analogies between the sta-
tionary and (2, p)-bounded classes do not, however, carry over analytically and
new methods have to be developed to study the prediction problem for these
processes.

In its modern setting, and for discrete time univariate WSS processes, linear
least squares prediction was initiated by Kolmogorov (1941), following the
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844 C. HOUDRE

geometric approach of Wold. Independently, Wiener (1942) motivated by
engineering applications, studied the prediction problem and obtained, for
continuous time processes, an explicit formula for the optimal predictor. For
multivariate WSS processes, Wiener and Masani (1957), (1958) also adopted
the geometric framework and essentially exhausted the study of the prediction
problem for full rank processes. Their fundamental work, which was partly
duplicated by Helson and Lowdenslager (1959), (1961), generated subsequent
studies too numerous to list here so we simply refer to Masani (1966) for a
good introduction to the subject. For nonstationary processes, prediction has
seen a shift in methods and emphasis, originating in the work of Kalman
(1960), where the processes to be estimated have a state space representation.
Time domain methods have replaced frequency domain methods and analytic
tools have been replaced by recursive ones. Kalman’s work also generated
considerable interest. A good overview of this work as well as extensive
references is in Kailath (1974). The reviews of Wiener’s work in the third
volume of Wiener’s (1981) collected work will also provide the reader with
recent insights and references.

We now give a brief description of the various parts of this work. In the first
section, a few basic definitions are introduced and some theorems, mainly on
matricial integration, recalled. The second section is essentially devoted to a
characterization of (2, p)-boundedness in terms of dominating measures. This
provides a unifying framework for the (matricial) Grothendieck’s inequality. In
the third section a matrix bimeasure integral is studied, a decomposition of
matrix bimeasures obtained and other characterizations of (2, p)-boundedness
provided. The results of the fourth section are built on the previous ones as
well as the Wold decomposition. It can be-called prediction a la Kolmogorov.
Section 5 is prediction & la Wiener-Masani. A new factorization notion is
* introduced and a further decomposition of matrix bimeasures obtained. In the
next to last section, we give an analytical expression for the optimal predictor
and study the problem of obtaining this predictor in autoregressive form. In
the last section, we present some open problems.

1. Preliminaries. C is the complex field, R the real one, Z the integers,
N* = N\ {0} and K denotes a generic absolute constant whose value might
change from one expression to another. C*** is the set of £ X k matrices with
complex entries, and det, tr and * refer to the determinant, the trace and the
adjoint of matrices. A, B, etc., denote %k X k matrices with entries a; ;, b; ;,
etc., while ®, W, B, ..., are reserved for C***-valued entities with components
@ Ui o Bijoen The letters Xx,y, ¢, ¥, etc., denote k-dimensional column
vector (-valued entities) with components x;,y;, ¢;, ¥;, etc. The exceptions to
these rules generally involve complex valued quantities, for example, eln
denotes both the complex exponentials and e” I, where I is the £ X k identity
matrix. For 2 X k matrices A and B, we set (A, B) = tr AB* and vtr AA* is
the associated Euclidean norm ||Allg. .

Next, if H is any complex Hilbert space with inner product (-, - ) and
norm || - ||, H denotes the inflated space ® ik= \H. For ¢,¥ € H, the square
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matrices [¢, ] = ((¢;, ¥,)); jeq, ..., ») induce a Gram structure on H, and H is
a pre-Hilbert module over C*** [see Masani (1966)]. The topology on H is the
one induced by the norm || - |lg, associated to the inner product (¢, ¥) =
trle, W] = L%_(¢;, ;). For this topology, H is complete, that is, H is a Hilbert
module. In H, two elements, ¢ and ¥, are orthogonal (¢ L W) if [<p,\|:]

that is, <§Dl,llf>~—0 i,je{1,..., kL

We now lntroduce a few bas10 spaces on Il = R/2wZ =]—a,m]. For p a
finite positive measure on II, L?(u), 1 <p < +x, are the usual Lebesgue
spaces of complex valued functions. When u is the normalized Lebesgue
measure on II, these spaces are simply denoted by L~”(II), while C(IT), B(II),
and P(II) denote, respectively, the sets of (complex valued) continuous func-
tions on II, Borel bounded ones and the trigonometric polynomials.

Let M be a k X k nonnegative Hermitian matrix valued measure over
(11, #(11)), where #(I1) is the Borel o-algebra of II. The space L(M) is
defined a la Rosenberg (1964) and Rozanov (1967), that is, L2(M) is the
set of matrix functions ® such that

f_”wq)(o) dM(0)®*(6) = fjﬁ@(e)Mg(a)q:*(o) dr(0)

exists, where M/, is the Radon-Nikodym derivative of M with respect to the
trace measure. For ®, ¥ € L2(M), [®, ¥] = [;® M ¥* = [(®M'¥*dr ex-
ists and L2(M) is a . pre- -Hilbert module over C***. Under the associated norm
@l = (fyll®yM,|I% d7)!/2, L%M) is complete (F is any nonnegative Her-
mitian square root of M’). When dM = du, that is, M = uI, the space L2(M)
as defined above is just the space of matrix functions ® = (¢, ;) such that
¢, ; € LX), i,j €(1,...,k)}, it is denoted by L?(x) and the infegral is just
a componentwise integral Similar definitions hold for LP(u), 1 <p < +.
When du = d6, the normalized Lebesgue measure on II, LP(u) becomes
LP(I1) and the norms become [|®, ={/" [I®@OIEd6})/P, 1 <p < +x,
@l = ess supye;—r, | ®(O)llz. Similarly, B(II) and C(II) are the matrix-
valued functions whose entries are in B(I1) and C(II), while P(IT) is the set of
C*k** matrix trigonometric polynomials. On B(II) or C(II), the norm
SUPg e -1 ®O)llE is also denoted by [|®|l... For dM = M'd6, ® € LM if
and only if ®/M' € L3(II), equivalently, ® € L?(M) if and only if the compo-
nentwise integral [;®PM'W*d0 exists (this last integral is in fact equal to
[a @M. W*d7). The spaces LP(u) enjoy properties similar to the ones satisfied
by the unidimensional L?”(u). When needed, these properties of LP(u) will be
stated in the text.

When M is a o-additive matrix valued function (net necessarily nonnegative
definite), the above definition of integrability can be extended. This follows
from the work of Robertson and Rosenberg (1968), and integrability of matrix
functions with respect to matrix valued measures, that is, [q®dMW¥ is
always taken in that sense. When ¥ = I, we get [;® dM and say that ® is left
integrable (with respect to M); [; dM ¥ is defined similarly and ¥ is said to
be right integrable (with respect to M).
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Let us make a last convention which holds throughout this work. A process
is always understood to be of discrete time and H-bounded, that is, x: Z - H,
with [Ix,llu < K, n € Z. We now present our first definition and refer the

reader to Houdré (1990a) for more details.

DEFINITION 1.1. A process x is (2, p)-bounded, 1 < p < +, if there exists
K > 0 such that

N

Z :ijnj
Jj=1

< KIPll,
H

(1.1)

for all matrix trigonometric polynominals P of the form P(0) = I, P;e~"/*.

It is immediate to verify that .#?, 1 <p < +, denotes the C**%.linear
space of (2, p)-bounded processes, we have #' C 4" C.#°C . #* 1<r<
s < 4o and that WSS processes are (2, ©)-bounded; however, for p < +, this
will not necessarily be the case. A WSS process is said to have L?-spectrum,
1 < p < +, if its spectral matrix measure is absolutely continuous with a
Radon-Nikodym derivative in LP(IT). With this notion, we have:

THEOREM 1.2. For 2 < p < «, a WSS process is (2, p)-bounded if and only
if it has LP/®~P-spectrum (L"-spectrum for p = 2). For 1 <p <2, a WSS
process is (2, p)-bounded if and only if it is the zero process.

PrOOF. Let 2 < p < + and let x be a WSS process with L?/ (P=2)_gpec-
trum. Then, [x,,X,,] = /7, ®"™®(0)d0, n,m € Z, with ®' € L»®~3(11).
Hence
2

T N . N . %
=f tr( Y Pemif|@'(0)| X Pje”‘f") de
j=1 Jj=1

-

N
L Pyx,,
Jj=1 H

< fj IP(8)II% tr ®'(8) do

< V& ["IP(6)IIEI9(8)l1z db

)

)(p—z)/p

< VE ([T 1@l o) ([ 1oy e o
by Hoélder’s inequality. Thus, x is (2, p)-bounded. Similarly, for p = 2,

I Px, Ik < VE l®'12IP||2. Let 2 < p < + and let x be a (2, p)-bounded
WSS process with matrix spectr.al measure ®. Then by (1.1),

- 2/p
(1.2) tr[ P®/P*dr < K(f IPII% do) .
II I

Since matrix trigonometric polynomials are dense in LP(II), (1.2) can be
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extended to
2/p
(1.3) tr[ WO W*dr < K(/ k453 dB) ,  We LP(II).
I1 II

Let ¥ = xgI, with E € &(I1) and |E| = 0, (|E| denotes the Lebesgue measure
of E), then [;®.d7 =tr ®(E) = 0, hence ®(E) =0 and d® = ®'df, '
LY(IT). Now, for the matrix function ¥ = ||®'|%?~?I € LP(I1) and since
tr @' > ||®'||g, (1.3) becomes

2/p

(1.4) f @15 P~? do < K{ j (@5 ®~2 do}
II II

In other words, if x is not the zero process, {/;ll®'|%?~? deyr-2/r <
K, which is the result. For p = 2, similar arguments show that,
1/IED ¥l d6 < K, for all E € H(I1) with |E| > 0, that is, ||®'||g € L™(11).
For 1 < p < 2, the disjointness of the two classes can be obtained (using || - || g)
essentially as in Houdré (1990a). O

We now briefly sketch an integration theory of matrix valued functions with
respect to stochastic measures. This can be seen as either the restriction to our
framework of Bartle’s (1956) general vector integral or as the matricial version
of the Bartle, Dunford and Schwartz (1955) integral; details are also in
Dunford and Schwartz [(1957), 4.10].

DEFINITION 1.3. A stochastic measure § is an H-valued function on #(Il)
such that

(15) (E)= Y UE), Ee @),
i=1

for every Borel partition {E;}; .\« of E, where the convergence in (1.5) is in the
norm of H.

Following Masani (1968), we also say that a stochastic measure { is orthog-
onally scattered if [{(E), {(F)] = 0 whenever E N F = ¢, E, F € #(I1). The
set of stochastic measures is denoted by M*(II); it is a C***-linear space.

The Vitali variation (which for stochastic measures is not necessarily finite)
is replaced by the Fréchet (or semi-) variation. For each E in Z(II),

,¥ N € N*,V {E;} ., Borel partition of E,

N
IZICE) = SUP{
i1

V{A}L, A € CHR Al < 1}

is called the Fréchet variation of E. As defined, the Fréchet variation ||{]I(-) is
monotone and o-subadditive on #(II). In addition, for each E € #(I1) and
A € C*** we have [IE((E)llg <lIKI(E) and ||AEICE) < |AllglIEI(E). Further-
more, |[{[I(TT) < +oo.
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With the help of the matricial semivariation, classical one-dimensional
definitions such as &-null set, {-almost everywhere (t-a.e.), {-measurable and
{-essentially bounded can be extended. These definitions as well as the results
stated below can be obtained following, mutatis mutandis, the steps in the
works previously mentioned, as such, they are only briefly stated. However, we
sketch the appropriate integral. For ®, a (Borel) matrix simple function, i.e.,
®=1YN A, Xp, A, € € C*** E, e #(I) d1s101nts the (-integral of ® over
E € #(I1) is defined by fE(b dt =X N A LE,NE). Then, a function
®: I1 > C*** is {-integrable if there ex1sts a sequence {®,}, of matrix simple
functions converging to ®,{-a.e. and such that {[;®, d{}, converges (is
Cauchy) in H for each E in #(I1). This limit is defined to be the {-integrable
of ® over E and is denoted by [z ®(0) d{(9). The {-integral shares most of the
properties of the Lebesgue integral, in particular, a dominated convergence
theorem holds. The C***.linear space of (-integrable matrix functions is
denoted by L!}({). The following result is fully stated since used in a few
instances.

THEOREM 1.4. (i) Let ® be {-measurable and (-essentially bounded on Ti,
then ® is (-integrable and || [z ® di|| < C-essy supl Pl &lEICE).

(i) Let £ € M3(I1) and let T be a bounded C***-linear operator on H. Then
To { € M5(I1) with for each E € #(1), T CI(E) < ITllIEICE) Al - llo is the
norm of the corresponding operator). Furthermore, if ® € LY({), then ® €
LYT-{) and T(y®d{ = [p® dT-L.

As a particular case of (i): If & € B(II), then ® € L!(¢). The C***-linearity
of T is essential to ensure T - {-integrability in (ii). If T is only linear, this is no
longer true. )

To close the preliminary section, we state another folklore result: a charac-
terization of (2, ©)-boundedness. This is a direct consequence of the work of
Grothendieck (1953) or of Bartle, Dunford and Schwartz (1955) on the repre-
sentation of bounded linear operators from C(IT) to H. As is well known, for x
is WSS, ¢ below is orthogonally scattered.

THEOREM 1.5. A process x is (2,»)-bounded if and only if there exists a
(unique) stochastic measure { such that x, = &{(n) = [7_e® d{(), n € Z.

Since .#P C #®, p < «, (2, p)-bounded processes can be represented as in
Theorem 1.5, moreover the corresponding stochastic measure { has some
additional properties. For E € #(I1), we define the p-Fréchet (or -semi)
variation as |Itll,(E) = sup{/[> N ,A;{(E)|lg}, where the supremum is taken
over all matrix simple functions ® = LY A, X, such that ||®]|, < 1. Then, it
is not difficult to see that x is (2, p)-bounded if and only if x,, = £(n) for some
¢ of finite p-Fréchet variation. To verify that [|§||,(II) < + is quite impracti-
cal, and not much better than (1.1). To study the prediction problem we need
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to find more practical characterizations of the classes .#®. This is the object of
our next section.

2. Domination results. Results on vector measures often rely on
Grothendieck’s inequality. Such is the case of the theory of (2, p)-bounded
processes. Among the various equivalent forms of this inequality, the one of
particular interest is the form due to Pietsch (1969). Before presenting these
and connected results we need:

DErFINITION 2.1. A stochastic measure { is majorizable if there exists a
finite positive Borel measure u on II (called a Grothendieck’s measure or a

dominating measure) such that
1/2
< {[portau)
H i}

(2.1) H jn ®dg

for all continuous matrix functions ® on II.

Pietsch’s univariate result is to the effect that a stochastic measure §
is always majorizable. Multivariate versions (even infinite dimensional) of
this domination result have also been obtained by Truong-Van (1981) and
Rosenberg (1982). In its full generality (2.1) gives very little precise informa-
tion about u. One of the great features of the (2, p)-bounded classes, p < +x,
is the possibility to characterize the dominating measures. First we need a
lemma. Its proof can be obtained by modifications of arguments given, for
p = +o, by Truong-Van (1981) (using Proposition 2 there, and replacing || - |
by 11~ 11, 2).

LEMMA 2.2. Let x be (2, p)-bounded, 2 < p < +x, with spectral stochas-
tic measure {. Then there exists K >0 such that TN |lf®, dtlf <
KIEN I®,1%l, /2 for all N € N*, @, ®,,..., &, € CI).

THEOREM 2.3. Let x be (2, p)-bounded,2 < p < +[resp., (2, ©)-bounded],

with spectral stochastic measure §. Then there exists a nonnegative function u
in LP/®~2(I1) (nonnegative finite Borel measure u) such that

2 Ifedtlhs [lolhude (e, [0l du)
1 i} m
for all continuous matrix functions ® on II.
ProoF. The case p = + is Truong-Van’s. Let p < +x and let ¢ be a

continuous real valued function on II and let K be any constant appearing in
Lemma 2.2. Let finally

2

H b

Jy

p/2

2/p N
de -y
j=1

N
¢ +KY |®ll%
i=1

Q(e) = inf{

jncbj dt
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where the infimum is taken over all the finite sets {®;, ®,, ..., ®y} ¢ C(ID). As
in Houdré (1990a), @ is an inhomogeneous, subadditive functional on C”(II)
(the space of real-valued continuous functions on II) such that —llell, 2 <
Q(¢) < llll, /2. By two applications of the Hahn—Banach theorem, there exists
a complex linear functional L on C(II) such that |[L(p; + i@yl < V2lle, +
igyll, /2 L can be extended to LP/ 2(I1). By the Riesz representation theorem,
there exists uo € L?/?~2(I1) such that L(e) = [7¢(0)uy(0) d6, for all ¢ €
L?/2(T0). Then, L(¢) > 0 for ¢ > 0 in C(I1) and thus for ¢ > 0 in L?/2(II).
This in turn gives 4, > 0. Finally, for ® € C(ID, @(~KI|®I|%) < —||/n® dila,
hence —KL(|®|%) = L(-KI|®[}) < Q -K[®l3) < —Il/y® dtllf, that is,
Il fn® dElif < Kfpll®lEu, do. O

The information conveyed by Theorem 2.3 is that for p finite, (2, p)-bounded
processes have in our nonstationary framework the role of WSS processes with
absolutely continuous LP-spectrum. We also note that the majorizability
definition of stochastic measure could equally have been given via the Gram
structure since [ [;® d¢, [n® d{] < [ ®P*dp holds for all ® € C(ID) if and
only if (2.1) holds for all @ € C(II), and such is the case when and only when
there exists a positive matrix measure M such that, for all ® € C0),
[[u®dE, [q® d] < [ dM ®*. A stochastic measure is (2, p)-bounded if
(2.2) holds for some pu € L?/®~3(II). Combining Theorems 1.5 and 2.3 gives:

THEOREM 2.4. A process x is (2, p)-bounded if and only if there exists a
(2, p)-bounded stochastic measure { such that x,, = t(n) forall nin Z.

3. Matrix bimeasure integration. Since for a (2, p)-bounded process x,
x, = [7_e" d{(9), it has to be expected that R(n, m) = [x,,x,,] also has a
Fourier integral representation, namely, we would like to write R(n, m) =
[T _ei*Pe~im¥ d[¢(8), {(y)). This double integral must, however, be inter-
preted cautiously and in general is not a Lebesgue integral.

DEFINITION 3.1. A matrix bimeasure B is a C***.valued function on the
Cartesian product Z(I1) X #(I1) such that B(E, - ) and B(-, F) are o-additive
for all E, F' in Z(I1).

A matrix bimeasure is positive definite (p.d.) whenever

N N
Y Y AB(E,E)A5 =0

i=1j=1

for all NeN*, E,,..., Ey € &), A,,...,Ay € G**¥, equivalently, when-
ever LN TV z,B(E,E)zt >0 for all NeN* E,,..., Eye 21D,
zZ,,...,Zy € C*. It is easily verified that the set function B(:, -) = [¢(+), £(-)]
induced by the stochastic measure { is a p.d. matrix bimeasure and indeed, by
the usual Gaussian process argument, any p.d. matrix bimeasure is given that
way. As alluded by the induced case, a matrix bimeasure is not necessarily of
bounded Vitali variation and thus does not extend to a matrix measure on
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B(1) ® #(I1). However, another notion of variation is finite. This result
follows readily from the corresponding complex valued case as given by Ylinen
(1978).

THEOREM 3.2. A matrix bimeasure B has finite Fréchet variation, that is,
[IBIICIT, IT) < o where for each E, F in #&(11),

,V N € N*,
E

V{E}Y {FJ}JN=1 Borel partitions of E and F,

N N
Y Y AB(E;, E;)B]

i=1j=1

IBII(E, F) = sup{

V(AN (B}, A;,B; € C*** [IAllg < 1, 1Bz < 1}.

In order to obtain a Fourier representation for the covariance of a (2, p)-
bounded process, the integral of matrix valued functions with respect to a
matrix bimeasure has to be defined. Our definition of integrability relies on
two results. The first one is due to Robertson and Rosenberg (1968), and
asserts that if M: #(II) » C*** is a matrix measure and if ®: I1 » C*** is
left M-integrable, then the set function N: #(II) » C***, E - N(E) =
[ ® dM, is also matrix measure [in all of this section, integration is taken in
the sense of Robertson and Rosenberg (see Preliminaries)]. The second result
is just the multivariate version of a result of Ylinen and states that if &®:
I1 - C*** is left B(-, F)-integrable for all F € #(II), the set function
oB(E, - ): B(I1) » C*** F - 4B(E, F) = [®(-)dB(-, F) is a matrix mea-
sure for each E € #(I1). Combining these, we see that 4B(-, ) and By(:, )
are actually matrix bimeasures. Of course, we can replace left integrability by
right integrability in both results.

DEFINITION 3.3. A pair of matrix functions (®, ¥) is said to be integrable
with respect to the matrix bimeasure g (B-integrable for short) if the following
two conditions hold:

(i) @ is left B(-, F)-integrable for all F € #(I1) and ¥ is right B(E, - )-
integrable for all E € Z(II).

(ii) @ is left By (-, F)-integrable for all F € #(II) and ¥ is right 4B(E, - )-
integrable for all E € Z(II).

For complex valued functions, the integration theory with respect to bimea-
sures was initiated by Morse and Transue and our integral is a restricted
matricial Morse-Transue integral. Under weaker conditions than the ones of
Definition 3.5, an extra Fubini type property is usually required to ensure
B-integrability; this is unnecessary here since the following result holds [see
Houdré (1989) for the univariate proof, which can easily be adapted, and the
references therein for more information on the bimeasure integrall].
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THEOREM 3.4. Let the pair (®,¥) be B-integrable. Then
J®()dBu(, F) = [W(-) doB(E, ")
E F
for all E, F € #(11), and the common value is denoted by [g[r® dp ¥.

As given by Definition 3.3 and Theorem 3.4, the matrix bimeasure integral
shares familiar properties, such as bilinearity in (®, ¥), dominated conver-
gence, etc. Since the matrix bimeasures encountered in the rest of this study
are induced by stochastic measures, the stochastic integral results suffice for
our purpose. This is also shown by our next two results. The proof of the first
one follows by matricial adaption of arguments in Houdré (1989), while the
second can be obtained with the help of Theorem 1.5.

THEOREM 3.5. Let B be an induced matrix bimeasure, that is, let (-, - ) =
[£(), £(-)] for some stochastic measure {. A pair (®,®*) is B-integrable if
and only if ® is -integrable; in either case and for all E € #(I1),

[ ®dL, [z® dL] = [5/z P dB D*.

COROLLARY 3.6. A process X is (2,x)-bounded if and only if there exists a
(unique positive definite) matrix bimeasure B such that [x,,x,]=
[T T e dB(8, y)e” "™, n,m € Z.

When B is induced by the stochastic measure ¢ of a (2, ©)-bounded process
X, [®, V] = [ /[P dBP¥* defines a matricial semi-inner product, which be-
comes a Gram product after identification of ® and ¥ such that [® — W,
® — ¥]=0. The associated inner product space LZ(B) = {®: II —» C***.
(P, ®) = tr{®, ] < +x} is called the spectral domain of the process x. The
WSS case corresponds to B(E, F) = 0, whenever E N F = ¢, and B uniquely
determines a positive matrix measure supported on the diagonal of IT X II.

REMARK 3.7. From Theorem 3.5 and Corollary 3.6, we have L2() = L(Y),
thus L2(B) is complete if and only if L!({) is complete. In general LZ() is not a
Hilbert space, even when B is a measure on I12 [see Miamee and Salehi (1989)
for a univariate counterexample]. This important difference between station-
ary and (2, »)-bounded processes does not represent, for prediction purposes,
an impossible drawback. The completeness of L2(B) is only indispensable in
obtaining autoregressive predictors and this problem has only been partlally
solved, even for stationary processes.

We complete this section by studying the decomposition of matrix bimea-
sures.

DEFINITION 3.8. A matrix bimeasure B is said to be continuous if B(E, F') =
0 for all finite subsets E, F of Il and discrete if there exist two increasing
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sequences {E,} and {F,} of finite subsets of II such that
lim g — B,(11, 1) = 0,

where B, is the restriction of B to (E,, F,), that is, B,(G, H) = B(G NE,,
HNF,) for all G, H in &(1).

THEOREM 3.9. A positive definite matrix bimeasure B admits a unique
decomposition B = B, + B,, where B, is a continuous positive definite matrix
bimeasure and where B, is a discrete positive definite matrix bimeasure.

Proor. Let u be any of the finite positive dominating measures in Theo-
rem 2.3 (B is p.d.,, hence induced by a stochastic measure) and let E =
{6 € II: u(6) > 0}). E is at most countable, and E = U E, where E, C E, C
-+ CcE, c --- are finite sets. Let B, (resp., B,) be the restriction of B to
(E, E) [resp., to (E,, E,)], then B, and the B, are p.d. We now show that B,
is discrete. Let {G,} to be a Borel partition of I, let ® = L A, x5, A, € C**¥,
lA;llz < 1, and let E: denote the complement of E, in E Then by bilinear-

ity,

T T ABu(GLG)A — T T AB.(GiGA

i=1j=1 i=1j=1

(3.1) =’

E

j;jj;]q’XE,,.dﬂ XE;‘I’* + fnfn‘l’)(z«:; ap XE,,‘I’*

+fan‘I’XE,C, dp xp:P*

By the p.d. assumption, the triangle and Cauchy—-Schwarz inequalities, (8.1) is
majorized by
1/2
N

d

,,dBXE;‘I’*” “ffq’XE,, dBXE,,‘p*
EllVn'n

ifmme,

1/2

<2 j;gc”(l)”% dufE |®|1% du j;ECII(I’IIzE du) (Theorem 2.3)

< 2(u(ES)u(I))"? + u(ES) (since @z < 1).

Fipally, since B is p.d.,, the Euclidean norm for matrices is submultipli-
cative (modulo the order %), hence

lim 1B, — (T, T) < & lim, _(2(s(ES)u(ID)""* + (w(E5)"?) = 0,
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since u(ES) —» 0 as n » +o. B, is thus discrete. Let B, = B — B4, let F; and
F, be two finite sets and let E be as above. Then,

B.(F1, Fy) = B(Fy, Fy) — By(Fy, Fy)
=B(ENF,ENnF,) +B(E°NF,ENF,) 4
+B(ENF,E°NF,) +B(E°NF,E°NF,) —By(Fy, Fy)
=B(E°NF,ENnF)+B(ENF,ENF)+B(E°NF,E°NF),

since B, is the restriction of B to (E, E). Now, the discrete part of u is
supported on E, hence u(E°N F,) = u(E°N F,) =0 and by Theorem 2.3,
B(EENF,ENF)=8(ENFE°NF)=B(E°NF,E°NF)=0 (again, B is
p.d.), hence B, is continuous. For G, H € #(II) since B, is continuous,
BAGNE HNE)=B(GNE,HNE)=8,(GNE,HNE)=0, hénce

B.(G;,G,) = B.(G; N E°,G, N E°)
=B(GiNE°,G,NE") - By(G; NE*,G; N E°)
= B(G; N E°,G; N E°),

G;,G; € #(1), and B, is p.d. The uniqueness of the decomposition follows
readily from Definition 3.8 and the theorem is complete. O

The decomposition of scalar bimeasures into continuous and discrete parts
is due to Saeki (1976), but the above proof is directly inspired by the work of
Graham and Schreiber (1984). In fact, these authors do not require any p.d.
assumption, and such is also true for generic matrix bimeasures. In sharp
contrast to measures, in general, B, does not admit a further decomposition
into a L}(IT) matrix function and what could be called a singular continuous
matrix bimeasure (Graham and Schreiber have a counterexample in the scalar
case). However, in Section 5 we obtain a decomposition result for g, which
plays a role similar to the Lebesgue decomposition in the case of measures.

A p.d. matrix bimeasure B is (2, p)-bounded if it is the spectral matrix
bimeasure of a (2, p)-bounded process, equivalently, if B satisfies (2.2). From
Theorem 2.3, we have:

COROLLARY 3.10. For 2 <p < +, a (2, p)-bounded p.d. matrix bimea-
sure is continuous.

4. Time domain prediction. Associated with a process x defined on H is
a class of spaces carrying the information about this process: The present and
the past subspaces: Hy = &{x,: m <n, n,m € Z} C H, the remote past:
H*_, = N,<,HX c Hand the time domain: HX , = &{x,,: m c Z} c H, where
&{-} denotes the closure (in the norm of H) of the linear span (with respect to
k X k complex matrix coefficients) of the corresponding set. In this framework,
the orthogonal projection theorem has the following form.
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LEmma 4.1. Let f € H and let K be a subspace of H, then there exists a
unique £ in H, called the orthogonal projection of f onto K and denoted by
(fIK), satisfying any of the following equivalent conditions:

() feKand f—f 1K
) feKand[f-ff—fl<[f-gf—g] forall g in K

Since K = ®ik=1K, the ith component of f is just the (ordinary) orthogonal
projection of the ith component of f onto K [Wiener and Masani (1957)], and
(i) and (ii) are equivalent to

i) f € K and |If — fllg < |If — gllg forall g € K.

Since for each n, H,_, is a subspace of H,, (when no confusion seems
possible we suppress the reference to the process, for example, write H,, for
HZX), we have x, = (x,/H,_,) + e,. The process e = {x, — x,/H,,_)}, <2,
which is clearly orthogonal, that is, [e,,e,]1=2X, ,, for all n, m in Z, is
called the innovation (process) of x.

DEFINITION 4.2. A process x has full rank if X, = [e,,, e,]is invertible for
all neZ, rank q (0 <q <k)if rank ¥, = q for all n € Z and uniform full
rank whenever there exists a constant C > 0 such that CI <X, for all n
in Z.

A time-domain classification of the nature of a process is also possible.
Recall that a process is purely deterministic if H_,, = H_ ., purely nondeter-
ministic if H__, = {0} and nondeterministic if H_, ¢ H_ . In contrast to the
WSS case, the above properties are not shift invariant and are only local in
time. The importance of the time domain analysis is illustrated by the follow-
ing well-known Wold decomposition due to Cramér (1961).

THEOREM 4.3. A process x can be uniquely decomposed as x =u + v,
with the processes u = {u,}, ., and v ={v,}, ., having the following two
properties:

@ u,v,eHlandu, L v, foralln,m e Z.

(ii) The process u is purely nondeterministic, while v is purely determin-
istic.
In addition, u has the property (iii).

(iii) Foreachn € Z,u,=%,__,A, e, (in H), where e is the innovation

process.

The processes u and v are given by u,, = (x,|HX e H* )and v, = (x,|H*),
where H} © H* _ is the orthogonal complement of H* , with respect to H}

—o00



856 C. HOUDRE

and are called the purely nondeterministic and the purely deterministic
components of x. If ‘/ Y, denotes any square root of X, that is, ‘/ T, V3 =2,

we have |lu, |} = ):Z__wIIAnp\/—_HzE < +w, neZ For all n and p <n,
the coefficients A, X are uniquely determined by A, %, =[u,,e,] and
A, X =2 =3 A*n o+ Finally, the coefficients A, , are unique when and
only when x has full rank, in which case A, ,.=1I= A*n »» 1 € Z. If x has full
rank, let e, = ‘/ le »» then the representationx, = L7__.A, , \/27 g, +V,,
where [an, £,l=36, .1, n,me Zis called the normahzed Wold decomposition
of x. If x is WSS, then so are e, u and v. If x is (2, p)-bounded, so is the
orthogonal process e. Moreover, u, v are also (2, p)-bounded.

THEOREM 4.4. Let x be (2, p)-bounded, p < +x, with matrix bimeasure
B, and let u and v be, respectively, its purely nondeterministic and purely
deterministic components. Then w and v are (2, p)-bounded with matrix
bimeasures B, and B, such that B, = B, + B,

ProOF. Since the set of (2, p)-bounded processes is a C***-module, it is
enough to show that u or v is (2, p)-bounded. In the Wold decomposition,
v = (x|H_,), hence if P__ denotes the orthogonal projection operator from H
onto H*_, by Theorem 1.4(ii), we have

v.=P_x,=P_ [ e™di,(6) = [ e d(P_.oL,)(0).
Clearly, P__ - {, is (2, p)-bounded and from Theorem 2.4 so is v, with stochas-

tic measure {, = P_ . The orthogonality of u and v gives B, = B, + B,.
O

We wish now to characterize, among the orthogonal decompositions of the
process X, the one which is the Wold decomposition [see Masani (1966) for the
stationary version]. First, for x (2, p)-bounded, we say that x =y + z is an
orthogonal decomposition of x whenever y and z are also (2, p)-bounded with
y 1 z, thatis,y, L z,, for all n and m in Z.

THEOREM 4.5. Let x =y + z be an orthogonal decomposition of the (2, p)-
bounded process x. Then, x =y + z is the Wold decomposition of x if and
only if y is purely nondeterministic, z is purely deterministic and HY c HX,
for all nin Z.

Proor. Theorems 4.3 and 4.4 give the only if part. For the if part, since
HY c H} and sincey L z, we have for all n, H; = H} ® H}, where & denotes
the orthogonal direct sum. Taking intersections (the sum of the intersections
is the intersection of the sums), we have H* = HY & H?_, and since y is
purely nondeterministic H* , = H% . Thus, (x|H* ) = (z|H?,) = 2, since z is
purely deterministic. The result follows. O
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From Lemma 4.1 and for any m > 1, the process &™ = (& =
X, 4 HX)}, < 7, is uniquely defined and is called the (mth-step ahead) predic-
tion process of x (based on its own past), while x — 8™ = {x, — &7} ., is
called the prediction error process. Now, as a direct consequence of the Wold
decomposition and since {e,, ;,...,e,.,} L HY with HS c HX, we have

Z;——m n+m, pep + Vitm and x — X" {En+g+1An+m,pep}n ez with
covariance matrix sequence {X ”*;’fﬂAn +m, p2p A 4, phn « 2+ Since this process
v is purely deterministic, v, , ,, is observed and can be predicted without error,
that is, v,,,, € H*, and (v, ,|H}) =v,, .. We thus have an elementary
solution to the linear least squares estimation problem without any (2, p)-
boundedness assumption. This is, however, unsatisfactory since we obtained
the predictor ™ in terms of e and not in terms of x itself. However, the use of
spectral methods, as done in the rest of this work, will give such a representa-
tion. Before doing so, we state a last result due for p = + to Niemi and
Truong-Van. Its proof is similar to the univariate proof given for p < + in
Houdré (1990a).

THEOREM 4.6. A process x defined on H is (2, p)-bounded,2 < p < +», if
and only if there exist a Hilbert module K containing (a submodule isometri-
cally isomorphic to) H and a (2, p)-bounded, 2 <p < +x, WSS process y
defined on K such that x = Py, that is, x,, = Py, for all n, where P is the
orthogonal projection from K onto H.

5. Spectral domain prediction. In this section, we classify the time
domain properties of (2, p)-bounded processes by giving various characteriza-
tions and decompositions of the associated matrix bimeasures.

DEeFINITION 5.1. A matrix bimeasure B is nonanticipative if for all m > n,
B(n m) = /”,,/" e"0 dp(6, Ple '™ = 0 and anticipative if for all m < n,

B(n m) =

Respectively, we denote by BM, BM , and BM _ the sets of matrix bimea-
sures, nonanticipative matrix bimeasures and anticipative matrix bimeasures
and by BMP, BM?. and BMP the corresponding sets of (2, p)-bounded matrix
bimeasures, p < +».

DEFINITION 5.2. A matrix bimeasure B is factorizable if there exists a
matrix bimeasure y in BM | such that B(n, m) = 5- _¥(n, p)y(m, p)*, for
all n and m in Z.

In the precedmg definition, the summation extends only to n Am =
min(n, m) since ¥y is purely nonanticipative also, a factorizable B is necessarily
p.d. with Z=___lI4(n, p)ll% < K, for all n. The matrix bimeasure B is called
the smash product of y and y* and is denoted by y ® y*. Our definition of
factorizable matrix bimeasure involves involves only C**%*-valued matrix
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bimeasures as opposed to C**%valued (¢ < k) ones. The latter case corre-
sponds to processes of constant rank g; it has not been considered here in
order not to overburden the notations [Rozanov (1958) has the WSS case]. We
can characterize the purely nondeterministic (2, p)-bounded processes.

THEOREM 5.3. A (2, »)-bounded process is purely nondeterministic if and
only if its spectral matrix bimeasure is factorizable.

Proor. Let x be purely nondeterministic, then x, = X7___A, e, and

rr_ A, ‘/—IIE < +oo, where \/i_ is any square root of E = [e e,l. To
prove the necess1ty part of the theorem, it is enough to show that the matricial
(Schwartz) distribution whose Fourier coefficients are

{An,p\/i psn}’

0 p>n
is actually a matrix bimeasure, equivalently, that

+ oo n
v~ ¥ L A, /Z e eBM,.

n=—op=—w
It is enough to show that for P(9) = EN 1P e’ and Q) = 1_,Q e,
P;,Q, € C***, the function y(P,Q = L,V -PA, ‘/E pr induces a
bounded bi-C***.linear matrix function on C(H) X C(H) But

N
(5.1) Z Z Pl n, V20, Q|| < Z PA, n,/Zn Z lQ, ||E
Jj=1p=1 p= 1 Jj=1 EP—
and
N | N 2 N N
(52 1 |5 Pa,, /5] -uL TP (ZAn 5. )P
p=1]j=1 E Jj=1lg=1 p=1

Since p(n, m) = LA, XA, L, with B a p.d. matrix bimeasure, (5.1)
and (5.2) give

(5.3) (P, Q)I% < KIPI2IQIE < KIPI2IQIZ.

For the converse, let w C H be an orthonormal process (a Gram-Schmidt
orthogonalization method will give such a process). Since ye BM,, y, =
Lr__An,pw, € H and ly,,y,] = Z22™4(n, p)3(m, p)* = (n, m) =
[x,,x,,], n,m € Z. Thus, x and y have the same second moments and
H} = HY (the two spaces are isomorphic). Since w is orthogonal, H¥_ = {0},
but Hfm =HY_ c HY_ = {0} and x is purely nondeterministic. O

REMARK 5.4. In the above proof, ¥ (hence the smash product of y and y*)
has only been defined implicitly, namely, we proved the existence of a bimea-

sure y such that p(n, m) = L 2_A(n, p)¥*(p, m), where 4* is the unique
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matrix bimeasure such that {*(p, m) = 9(m, p)*. This is without loss of
generality, since it is not difficult to prove that y is the weak * limit of the
sequence of matrix bimeasures {£]_ _an,_qu pr_ X e i9%PV 49 di}, [see
Houdré (1988) for more details]. More generally, given two matrix bimeasures
p and o, the unique matrix bimeasure A (when it exists) such that A(n, m) =
L 2_.p(n, p)é(p, m), is called the smash product of p and o and is denoted
by A = p @ 0. The resulting A can also be obtained as a weak * limit. The same
comments apply if given A there exist p and o such that A(n,m) =
L2 _.p(n,p)d(p,m) as well as to defining the smash product of a matrix
bimeasure A and of a stochastic measure ¢, that is, A © {. This will be used
without any further comment in the rest of this work.

When p and o are concentrated on the diagonal of I12, equivalently, when p
and o are L?(II)-valued functions, the smash product is the ordinary multipli-
cation. This can be seen as follows: p(n, p) = p(n — p) and 6(n, p) = 6(n — p),
hence L= _p(n — p)6(p — m) = po(n — m), that is, p ® ¢ = po. Heuristi-
cally, this can also be written in the following way: p®o(6, ) ~
[™.000,)a(t, y)dt ~ [T _p(0,8)5(0 — t)a(t, $)6(t — ) dt ~ p(6)a(0). Special-
izing Theorem 5.3 to WSS processes and denoting by L2 (II) the set matrix
valued functions y € L2(I) such that 4(n) =0 for n <0, we recover a
classical result of Rozanov (1958): A WSS process with positive matrix mea-
sure B is purely nondeterministic if and only if there exists y in L2 (II) such
that dp = yy*dé.

As indicated in the remarks following Theorem 3.7, a (matrix) bimeasure
does not have a Lebesgue decomposition. However, another type of decomposi-
tion is possible.

THEOREM 5.5. A positive definite matrix bimeasure B has a unique decom-
position B =B, + By, + By, where B,., B, and By are positive definite
matrix bimeasures such that B,. is factorizable, B,. is continuous and not
factorizable and B, is discrete.

Proor. Since B is a p.d. matrix bimeasure, B is induced by a stochastic
measure {. Let x, = [T _e"*d{(0). Then x = {x,},., is a (2, )-bounded
process such that [x,,x,]= B(n m). Froma Theorem 4.4 and 5.3, B =
By + By =vO0y* + B, with y ® y* and B, p.d. matrix bimeasures. But again,
by Theorem 5.3, B, = B, + Byq, uniquely, with B, and B, positive definite
and B,, not factorizable, since v is purely deterministic. Let g,. = B, = v ® v*,
Bsc B,. and B, = B4, then B Byc + Bsc + By, uniquely. O

B, Bs. and B, are, respectively, called the purely continuous, singular
continuous and discrete component of B. For (2, p)-bounded processes p < +,
B=y0y*+ B,,, with yOy* and B,, in BMP, and hence is continuous
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(Theorem 4.4 and Corollary 3.10). For multivariate WSS processes, p = yy* +
B.. + By [Cramér (1940)] and yv* is again continuous. Although it is reason-
able to expect that for general (2, ©)-bounded processes y @ y* is also continu-
ous, we could not prove it. Nevertheless, in view of the (2, p)-bounded (p < +)
and WSS cases, we will keep the terminology purely continuous for y @ y*.

REMARK 5.6. Our method of proof for Theorem 5.5 relies on both bimea-
sure theoretic arguments and on the Wold decomposition. It is of interest to
find a pure bimeasure theoretic proof of Theorem 5.5. This should give new
insights on the decomposition of (matrix) bimeasures. If such a proof is
obtained, it is not difficult to see that there is concordance, for processes of
constant rank, between the decomposition of Theorem 5.5 and the Wold
decomposition. This, of course, parallels the WSS constant rank case.

To close this prediction in the spectral domain section, we relate the
prediction error to the spectral matrix bimeasure. Let B be a spectral bimea-
sure whose factorizable part is y ® y*. We denote by vy, the “nth Fourier
marginal” of 'y, that is, v,(¥) = £2_,.3(n, p)e?’.

THEOREM b5.7. Let x be a (2, x)-bounded full rank process, then
logldet y,| € LX(ID), n € Z.

Proor. Let X, >0, then v,(y)= e"""’E;SOAn,n_p‘/zn_pe_ip"’. Since
3,0) = T =04(n, n — ple~P¥ € L2,(ID), |det 4,|"* = |det v, |Y* e L2(0). If
¥.(2) denotes the analytic extension of ¥,() inside the unit disc, Jensen’s
inequalities with A, , = I give

w

—% < }logdet X, = logldet 4,(0)] < [ logldet v,()|dy

= 37 logdet v,(#)v3(¥) A < }logdet | v, (¥)¥i(¥) d¥ < +%. O

Theorem 5.7 only partially recovers a WSS result of Wiener and Masani
which was the basis for our proof. It is our belief that the converse in the
above theorem holds, in other words, that the ¥,’s are outer matrix functions
for all n. We could not prove it in full generality. If true, it is then not difficult
to see, in the equivalent minimizing problem, that the contribution from B,
and B, are both null. Hence, '

o expf logdet y,(v)¥i(¥) du

- i%ff:,f:,det(e""" — P,(6)) dB(6, ¥) (e — P, (¥))*.



PREDICTION OF (2, p)-BOUNDED PROCESSES 861

6. Spectral and autoregressive predictors. For WSS processes a solu-
tion to the prediction problem, per se, involves a spectral factorization and an
inversion formula. Such is the case for (2, x)-bounded processes. We first
investigate conditions under which inversion is possible.

THEOREM 6.1. Let x be a purely nondeterministic (2, »)-bounded process
with spectral matrix bimeasure B. Then, B is invertible in BM if and only if
there exists a constant K, > 0 such that

(6.1) K1||¢|Iw_(trf " ®(0) dp(s, tﬁ)‘b*(tlf))l/2

-t -7

for all ® in C(II).

ProoF. Since x is purely nondeterministic, dp = dy © y*, with y purely
nonanticipative. Let

N

L e > (d/dy) [” B(o) dx(o,v)

T: P(6)

n

N
= Z J,p)e”’"’

— 00

~

where d/d¢ denotes Radon-Nikodym derivative. Then T is well defined,
C**k.linear and

f_ﬂtr Wj_ﬂp(o) dy(e,w)@f_ﬂP(B) dvy(6,9)*dy

= trf f P(6) dy © v*(6, ¢)P*(¢)

—mTT -

—tr [7 [7 P(8) dB(6, ¥)P*(¥) < K,IIPIZ.

T can be extended to a bounded C***-linear operator from C(IT) to %2 c L2(II).
Readily, p is invertible in BM if and only if T is invertible (as bounded
operator), namely, if and only if | T(P)|lz > K,|IP|l. and if % is dense in L2(II).
So we just have to show that % is dense in L*(II). If %+ L*(II), then by
Lemma 4.1 there exists ® € L2(II) such that ® # 0 and ® L #. In particular
for any matrix trigonometric polynomial P we have [7 _(TP)6)®*(6) d6 =
C(ID) is dense in L2(I1), hence. there exists ® € C(II) such that ||® — ||, < &.
It thus follows that

“f;(TPW)“’*(G) d6 - f;(TP)(o)é*(O) dONE < el TIIP]L
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and [7_(TPX0)®*(8)d6 = 0 if and only if /7 (TPX6)®*(6)d6 = 0. With
. 2

P(:) = e, n€Z we get rr__o(n, p)®(p)* =0, for all n, and

[T |7 e dB(8, Y)®*(y) = 0, also for all n. Since @ € C(II) and since B is

p.d. and belongs to BM, dominated convergence and the density of matrix

trigonometric polynominals (for vector measures) give

[7[7 @(0) dB(6,9)®*(v) = 0;

-7 =T

hence ® = 0 and ® = 0 (a.s. Lebesgue). O

The crucial information in Theorem 6.1 is that B! is a (2, »)-bounded
bimeasure with moreover (B~1)* = (*)~! € BM. If (6.1) does not hold, this is
generally not true, even for simple processes. If w is an orthogonal process
such that [w,, w,] = (1/(In| + 1)L, then its spectral matrix bimeasure B, has
an algebraic inverse which is not a matrix bimeasure. For p < +, the
inversion problem has a different solution. By essentially the same techniques
as above, the following can be shown: If the left-hand side of (6.1) is replaced
by K/ l®(0)Iz d(6)/", 1 < r-< 2, B becomes invertible in BM*. For r > 2,
inversion in BMT is impossible, unless r = + in which case B is invertible in
BM. Spectral factorization and invertibility can now be combined in a single
result.

COROLLARY 6.2. Let x be a purely nondeterministic (2, ©)-bounded process
with spectral matrix bimeasure B. Then, dp = dvy ©y* with y and vy~ ! in
BM , if and only if B is invertible in BM. Moreover, the factorization is

" unique up to the equivalence under unitary diagonal matrix bimeasures.

Proor. From Theorem 5.3 and 6.1, we just have to prove the uniqueness.
Let a®a* be another factorization. First, &(n, m) = a loy(n,m)=
Z;‘,=m&‘1(n,p)'?(p, m) for m < n, and 0 for m > n, since ™! and y € BM .
But 00o* =a 0OyOy*Oa M = alopoal= al0a®a*0a * =
% = ¢* 00, hence o* = 0~ L. But *(n, m) = 0 for m > n while since « and
y 1€ BM,, 6 n,m) =0 for m < n. Thus, (n,m) = 0 for n # m, that is,
o is diagonal. Finally, 6(n, n)é(n,n)* = &(n,n)*é(n, n) = I give the unitary
property. O ’

A similar corollary holds for B dominated (above and below) by p and r
norms, for which inversion is possible, with a slight difference: B is factorizable
(from Theorem 4.6, for p < +, X has a stationary dilation y with HX, c HY
but ‘the spectrum of y € L®®~23(II) so HY,, = {0} and the factorizability).
Rissanen and Barbosa (1969) obtained for bounded linear operators, that is, in
the (2, 2)-bounded case, a sufficient condition for invertible spectral factoriza-
tion, which was an early motivation for our work.
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Combining the above results we find an explicit spectral formula for the
predictor . A last notation: We denote the nonanticipative truncation opera-
tion by [-],, that is, for a matricial Schwartz distribution

+ oo ~+ 00

x(0,9) ~ ¥ X A, e "%,

n=-—op=—o0

+ oo n
[x(6,9)].~ X X A, e "%,

n=-—op=—o0

THEOREM 6.3. Let x be a purely nondeterministic (2, »)-bounded process
with spectral stochastic measure {,, and let its spectral matrix bimeasure By
satisfy the condition (6.1). Then, for each m in N* &™ = (& = (x,,, ,,|/H)}, <z
is (2,)-bounded and uniquely given for each n by &™ = [T _e'"® d{;~(0),
where d{ym = d[e'™ y], Oy 1 OL,.

ProoF. First, a (2, »)-bounded process which satisfies (6.1) has uniform
full rank since for P(9) = e'"*L_ P, e~ 7",

[e,,e,] = ill:lvffjvf:,(eino — P(6)) dB(0, ¥)(e™ — P())*

> Klixl}ff_ﬂ(l - P(6))(1 - P(6))*de6

N
=K, inf(I + Y PPP;") =K1
p=1
Since x is purely nondeterministic, B, = y ® y*, y € BM, and
+o +oo

(e )0, ¢) ~ Y X A, ‘/Epe_i(”"")"eip‘” € BM,

n=—owp=-—m

we thus have
+ oo n
[eim.'Y] + (0, ‘/’) ~ Z Z An+m,P ‘/'ge—moetpl# € BM“’
n=-—op=-—m
and [e™'y], ©[e!™ y]* € BM. Since x has full rank and from the remark
preceding Theorem 4.6, X7 = X7_ A, ., ,/Z ¢, and R is (2, ©)-bounded

[(1.1) is satisfied] so &} = [7,e"* d{em(0). Tj_ _.A,4m, /Z,eP’ € L2(ID),
with € orthonormal, so interchanging sum and integral we get

Cxr = [T 8 A, /E e dl, = [

—Tp=-—w -

T

1Teino d([eim'y] . CDCC)(O),

where [e*™'y], © {, is well defined because [¢‘™ y], € BM ,. Similarly, x,, =
[T e dg, (0) = [T e d(y® ¢ )X0). The uniqueness of the Fourier
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transform gives {3m = [e*"'y], ® ¢, and {, = y © .. Finally B,, equivalently
y, is invertible in BM and [e'™'y], @y ' ®{, is well defined with {em =
[ei™y]l, 0y l0L,. O

In the above result, we have [&]’, &7'] = f" f” e"? dB™(8, Y)e*P¥, where
dp™ = dle!™y], ®[e!™ y]% and x — k™ = [T "0 d[(3 — [e™y], @
vy Ho, 6. For B invertible in BM or BM', l1<r<2and p< +x, a
similar result holds, moreover X € .#P.

We close this work by studying the important theoretical and practical
problem of obtaining for £ an autoregressive series representation. This relies,
first, on the possibility of transfering methods from the spectral domain of the
process to its time domain. As is well known, this transfer is given by the
Kolmogorov isomorphism, which asserts that the correspondence ® —
/™ _®(8) d{(6) is an isomorphism from L?(8) onto H, ,, if and only if L2(B) is
complete [see Truong-Van (1981) and Remark 3.7]. Hence, with a completeness
assumption, the problem of obtaining autoregressive representations reduces
to one of convergence of Fourier series in L*(B).

A natural requirement to solve this Fourier series problem is again a
boundedwise condition a la (6.1), namely, that there exists a constant K > 0

such that

1/2
(6.2) K|®ll; < (trj ] (I>(0) dp(o, ¢)¢*(¢))
for all @ in C(II). For (2, 2)-bounded processes, (6.2) also ensures that L2(g) =
L2(II) hence the completeness, while in the (2, 2)-bounded WSS case it trans-
lates to B and B~ € L*(I1), which is Wiener and Masani’s original bounded-
ness condition.

THEOREM 6.4. Let x be a (2, p)-bounded process, 1 < p < 2, whose spec-
tral domain is complete and whose spectral matrix bimeasure B satisfies (6.2).
Then, X7 ):;‘_ _N™(n, s)x,, where y = [ei™y], ® y~! and where the con-
vergence is in H - Equivalently, & = [T _w"(0) d{,(0), where «7(6) =
Tr__ 4™, s)e* in L2(B).

Proor. First, x is purely nondeterministic (see the comments after Corol-
lary 6.2) and B = y ® y*; moreover, by Kolmogorov’s isomorphism, the conver-
gence of the two infinite series is equivalent. Since £ € H_,, we have &7 =
/™ _k™(0) d§,(0) for some k™ in L?(8). By Theorem 6.3 and the uniqueness of
the Fourier transform, we also have

K (¢) = (d/di) f d([e™v], ov7t)(6,¥),

with by (6.2) ard (2, p)-boundedness, /7. Pl dél < K|P|l,, for all matrix
trigonometric polynomial P, hence as in the proof of Theorem 1.2, k7' €
LP/P~(I1) c LX(II). In particular, k™(s), the sth Fourier coefficient of ™, is
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well defined and equal to 4™(n, s). Finally, since for 1 < p < 2, LP/P~(II)
LP(IT), we get
2

n
ﬂ;;n_ 2 Qm(n’s)xs

s=—N H
=t [ [ (-c':(o)— > ?’”(n,S)eis")dﬂx(G,t/f)
T s=—-N
X|wr(6) - X ?'"(n,S)eis")*
s=—-N
- n p 2/p
sK(f k™(0) — Y 4™(n,s)eis do)
- s=—-N E
. n p/p—1 2(p-1)/p
sK(f k™(8) — Y. 4™(n,s)e'*® do)
- , s=-N E

Fourier series of LP/P~(II) functions converge in LP/ P-1(T]), hence the
result. O

When applied to WSS processes, the proof of Theorem 6.4 provides a new
set of conditions to have autoregressive predictors, that is, a physically realiz-
able set of filters [Masani (1960) also has a different set of conditions].

COROLLARY 6.5. Let x be a WSS process with g in LP(I), 2 <p < +x,
and B~ in L**(I1). For all n,

g = [7 eino[eimiy(6)], v (0) dLy(6) = ¥ [ ], v H(s)x,,,
—ar s=0
in H, .

Clearly, a nonanticipative autoregressive convolution representation exists
when and only when the Fourier series of [e™ y] .y~! converges in L%(B). The
particular form of [e!™ y],y~! makes the conditions of Corollary 6.5 indepen-
dent of the Helson and Szegd (1960) characterization of measures for which
the exponentials form a basis [see Houdré (1988)] for counterexamples in the
case p = 2. If in (6.2), ||®||; is replaced by [|®||,, 1 < r < 2, a result similar to
Theorem 6.4 holds. However, the computations involved become quite cumber-
some and this will not be stated. The problem of estimating a process based on
the past of another process admits also a similar solution using the techniques
developed here.

7. Some questions and problems. Many questions remain - unan-
swered, and many problems untouched, in both theory and applications. This
is illustrated by the following nonexhaustive set of problems and questions
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which have only been partially raised and solved, when not simply ignored.
Foremost among these is the prospective study of the relationship between
analytic functions of two complex variables and Fourier series of bimeasures.
This in turn calls for a better understanding of the decomposition of bimea-
sures and the possibility of obtaining a Szegd-type formula for the prediction
error. Such questions lead also to problems such as minimality, interpolability,
subordination, characterization of constant rank processes and so forth. The
study of the shift operator (when it exists) for (2, p)-bounded processes is
another topic on its own. On the filtering scene, an algorithmic analysis and its
comparison to Kalman’s approach is desirable [this has been initiated in
Houdré (1990b)]. Finally, the problem of finding minimal conditions to obtain
autoregressive predictors is still open, even in the stationary case.
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