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EMBEDDING THE FINITE SAMPLING PROCESS AT A RATE!

By GALEN R. SHORACK
University of Washington

A huge body of if and only if theorems can be obtained based on certain
strong embedding theorems for the partial sum process S,, and the uniform
empirical and quantile processes U, and V,. This embedding was accom-
plished in 1986 by M. Csorgd, S. Cs6rgd, L. Horvath and D. Mason. Their
embedding is beautifully formulated so that many necessary and sufficient
type results can be established using it. It is worthwhile to have an
accessible proof. Indeed, these authors have since produced two papers that
obtain the essential form of their result without appealing to earlier work
of J. Komlés, P. Major and G. Tusnady. Indeed, this present paper does this
for the finite sampling process R, and the weighted empirical process W,,.
These latter results are entirely new and are the main objectives of the
present paper. The applications of these latter results will appear else-
where.

1. Statement of results. Let (c,y,...,c,,) denote a vector of known
constants that satisfies the uan condition, that is,

Enl Icni - Enl

|cni -
¢ max 2
l<i<n Vno,, 1<i<n [E?=1(cni ) ]

iz >0 asn—o,

where ¢, = L7, c,;/n and o2, = L7_((c,; — ¢,)?/n. We assume throughout
that the c,;’s have been normalized so that
(1.2) ¢,=0 and o2, =1
" Let(D,,,...,D,,) denote a random permutation of (1,...,n) in which each of
the n! permutations is equally likely. We will call

[(n+1)¢] c,p.—C 1 [(m+1)]

1.3) R, (¢) = — S b c,p. for0<t<l

(1.9) R.() Vn El Te,n Vn iz=:l Dni
the finite sampling process. Let I denote the identity function, and let
I £1I2 = sup{lf®)l: a <t < b}, with I £l = Il fll5.

THEOREM 1.1. Let W be a Brownian bridge. Suppose c,1,...,Cp,, 1 21,
satisfy ¢, = 0, 02, = 1 and
n et
(1.4) Y fs(someM) <o foralln.
i=1 :
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Then the random permutation D,,, ..., D,, can be defined in such a way that
R —W I n/(n+1) 1
(1.5) n’ = — =0,(1) foreach 0 <v < —.
[I(l _I)]l/2 Il/(n+1) ? 4
ReEMARK 1.1. We may replace (1.5) by
1/4
1. R, — Wl =0,(1).
(16) o~ Wl = 0,(D)
Of course, it has long been known that
(1.7) IR, — WIl =0,(1)
is possible.
Let &,1,...5& n 21, be a triangular array of row independent
Uniform(0, 1) rv’s having order statistics 0 < ¢,., < - <£,., <1, ranks

R,,...,R,, and antiranks D,,,..., D,,.Thus, §,, = ¢,.;and §,; = §,. o
Let G, denote the empirical df and let G, ! denote the left continuous version
of its inverse. The wezghted umform empzrlcal process is then
cn

[Lign<e = ¢]

n
t) =
W,(2) g o
(1.8) -
Z Cm[l[g,,,st] t] foro0<t<l1.

The key relationship (s1nce ¢,=0)is
(1.9) W,(t) = R, (G,(t)) for0<t<1.

THEOREM 1.2. Suppose ¢, =0, 2, =1 and (1.4) holds. Then the rv’s
En1s -+ > Enn can be defined in such a way that (1.5) still holds and

Wn ERYY ”(n—l)/n
[I(l - I)]l/z_v 1/n
We may replace 1/n and (n — 1)/n by &,., and &, ., in (1.10).

1
=0,(1) foreach 0 <v < —.

1.1 v
(1.10) n .

ReMARK 1.2. We may replace (1.10) by
1/4

logn

(1.11) IW, — Wil = 0,(1). .

Skorokhod (1965) showed that the partial sum process S, of iid rv’s with
finite variance can be embedded in Brownian motion S on [0, oo) and from this
it was possible to establish [as in Breiman (1968)] the uniform convergence of
S, to S. Strassen (1967) established that the rate of convergence is almost
n~1/% when the rv’s have a finite fourth moment, and he generalized such
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results to martingales. Breiman [(1968), Chapter 13] used identities relating
the empirical process U,, and the quantile process V, of Uniform(0, 1) rv’s to
the partial sum process of Exponential(1) rv’s in a fashion that implies
uniform convergence of U, and —V, to the same Brownian bridge U, while
Rosenkrantz and O’Reilly (1972) established a rate of convergence of almost
n~1/4 (note our Remark 1.1). Komlés, Major and Tusnady (1975, 1976) (KMT)
developed embeddings in which convergence takes place at strong, or even best
possible, rates. In this KMT construction, the ““limiting”’ Brownian bridge B,
is indexed by n, which is merely a matter of phrasing.

Csorgd, Csorgd, Horvath and Mason (1986) (CsCsHM) established a rate of
convergence of U, and —V, to B, when measured in certain weighted
supremum metrics, and they used these to establish anew many previously
well-known best possible limit theorems for empirical processes. Other best
possible results based on this CsCsHM formulation soon followed. Csorgd,
Haeussler and Mason (1988a, b) used the CsCsHM construction to establish
again all the classical results on necessary and sufficient conditions for a df to
belong to the domain of attraction of any stable rv; moreover, they were able to
reframe the classical condition into a very natural and useful condition on the
quantile function F~!. Mason and Shorack (1988) were able to extend these
results to give the first theorem in the literature on necessary and sufficient
conditions for asymptotic normality, and even for stochastic compactness, of
L-statistics. These examples show that the CsCsHM embedding is powerful,
and perfectly formulated for certain kinds of results! The CsCsHM construc-
tion, like Breiman’s work cited previously, used identities relating U, and V,
to the partial sum process S,, of iid Exponential(1) rv’s. Since an Exponential(1)
rv has finite moments beyond the second, it was soon realized that simplified
proofs of the CsCsHM construction could be given. Mason (1986) gives one,
" while Csorg6 and Horvath (1986) give another; both rely on the result of
Breiman (1967) or on the KMT construction. (Of course, there are theorems
that require the added power of the KMT construction. The present paper can
surely be strengthened in that direction.)

We now turn to the contents of the present paper. Our main goal is to
establish Theorem 1.1 for the partial sum process R, that arises from a finite
sampling situation. A suitably modified version of R, is a martingale that can
be embedded into Brownian motion, and by this means Theorem 1.1 can be
established for R, . This is an important new theorem. Our proof is technically
simple in the sense that it uses nothing more sophisticated than the
Hajek-Rényi inequality, the monotone inequality, the one-sided reflection
principle for Brownian motion and Mill’s ratio. We chose to present Theorem
1.1 in terms of a fixed Brownian bridge U, rather than a sequence of Brownian
bridges B,, as was typically done in earlier papers, as it is more convenient for
our purposes. The work by Rosenkrantz and O’Reilly (1972) was very helpful
in getting started toward the right form for the inequalities used. One would
certainly suspect from KMT results that (1.6) could be improved to an almost
sure result in which n!/2 replaces n!/* provided the c,,’s are restricted
sufficiently beyond (1.4). However, the log n term in such a result would
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preclude the applications we have in mind. This is why we say the CsCsHM
result is beautifully formulated. One also suspects that a proof not based on
Skorokhod embedding would allow a strengthened version of (1.5) under a
relaxation of (1.4).

2. Proof of Theorem 1.1. We begin by noting that
R,; R,(i/(n + 1))

2.1 Z .= = ] < —
(1) A 1—im  O=i=n-l
is a martingale with respect to the o-field &%,; = o[D,;, ..., D,;]. This is true
since
22) Y,,=AZ,=Z,-Z S S Al
(’) ni — ni — “ni n,i—1 "~ n—i ni n—in—i+1 -1
9.3 n n—1+1 1 1 B
. = — + ——R_.
(23) n—i+1l| n-—i \/EC"D'”‘ n—i ™t
1 n 1 i-1
= T nD,; . ch n
nn-—1i n l+1j=1 DJ]
1 n 1 n
2.4 - — -
(2.4) Vn n—i CnDn n—i+1jz=:ic”Dnj]

(since ¢,, = 0) has [using (2.4)]

n 1 n
Bl Foi-1) = \/_n—z n—z+lz_"c"D"f

(2.5)

It follows from standard finite sampling results [see Shorack and Wellner
(1986), page 135, for example] applied to (2.3) that

aZ, n 2((n—i+1\®> i-1n-i+1
Va‘r[Yni]_ ,( ) ( )_2

n \n—i+1 n-i n—l(n_i)2
1 i—1)-1
e G02]
.s ’ (n—-1) n—-1
aZ, n? 1 n?
(2.6) 2

n-1(n—i)n—-i+1) n-1l(n-i)n—-i+1)’
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since g2, = 1. A trivial calculation based on (2.4) shows that

2.7) E(YZZ o L LR 1 P ! ¥ 2
(2.7) ( '“1)_n(n—i)n—z+1= n—i+1j=iCD"f
2. = i
(2.8) TTivis Zgn,u) with
. 1 n 1 n
&ni(J) = Y [annj - mEiCnDnj:I
(2.9) _ (the variance of the normed numbers

&,:(J) that are still in the urn).

Now let Z denote a Brownian motion on [0, ®). We will use Skorokhod’s
embedding technique to embed the martingale Z,; in Z. [This is a corollary to
Theorem 4.3 in Strasen (1967), but we wouldn’t gain by an appeal to it.] Thus,
0<T<Tp < **" < Tpp_1=Tyn =Ty, denotes a sequence of stopping
times for which

(2.10) Z,;andZ}; = Z(7,;),0 < i <n — 1, have the same joint distribution.

Let Y =AZY, Rt =1 ~i/n)Z}, T,;=Ar,; and F)=0lZ(t): 0<t <
7,;]- It follows that

(211) E(Tnil‘g;t?i—l) = E(Yzl‘g;z i— 1) Z gnt(.’)’

n—z+1

and Kendall, Stuart and Ord [1987, (12.107)] give

n2

n—1(n-i)(n—-i+1)"

(2.12) t,, =ET, =EY?2 =
Thus,

i
ETni = Z t
j=

n2

R

n=1;2y(n=-j)(n-j+1)

(2.13) =n'i1%/(1-%)=%/(1—%)

Let us briefly review Skorokhod embedding, and how the preceding
came about. Suppose 7, ;_; has been defined. Consider the Brownian motion
Z,) = Lr, ;4 +1t)— Z(Tn ;_p for t > 0. Let (A,;, B,;) be rv’s indepen-
dent of Z,; having joint df H .; specified by

(2.14) dH,,(a,b) = (b + a) dF,,(—a) dF,(b)/u;; fora>0,b>0,
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where F,; is the df of the equally likely distribution on the n — i + 1 numbers
&,:(j) with i <j <n and where u,;= [o . *dF,(x). One chooses A,; > 0
and B,; > 0 at random according to the df H,; and then runs the Brownian
motion Z,; until it hits one of the two levels —A,,; or B,,;. The time required
is denoted by T,;, and we then let Y% = Z, (T,,). This distribution is exactly
the same as that of a rv G,; that has the equally likely distribution on the

random numbers g,;(j), i <j < n. Moreover,

(2.15) ET, = E/(G?) and Var]T,] <ETZ <64EG,,

it nt ni»

where E,( ) = E( | %°_,), as in (2.5) of Rosenkrantz and O’Reilly (1972).
We now note that

i

(2.16) Z[ -E(T, %% 1) = L [T., - Ei(T,;)], 1<is<n-1,

is a martingale. Moreover,
(2.17) W2 = Var[T,|#%_,] = - E(T,))]” < 64E,G%,,
by (2.15). We thus claim that

Varlry) - E| £ 1, B (5,) + E(T,) = 1]
(2.18) sZE{Xi [T, —Ej(Tnj)]} + 2E{Z [E;(T,;) —tnj]}

=2 Z E[T,; - E(T,))]’

(2.19) st
+2) ¥ E{[Ej(Tnj) — t,; | [ Ex(Tos) — tnk]]
j=1k=1
(2'20) é 22? Zl (E[Ej(Tnj) - tnj]zE[Ek(Tnk) - tnk]2)1/2

Jj=1k=1

(2.21) <128Y EG: + z{

Jj=1

> (B[B/(T,)) - tn,«]z)”z}

Jj=1
i on1/2
(2.22) = 12SJ§1EG4 +2{, (E[E —t,; ) } ,

using the c,-inequality for (2.18), using the martingale structure of (2.16) for
(2.19), averaging conditionally as in (2.17) for the first term of (2.20) and using
the Cauchy—Schwarz inequality for the second term of (2.20), using (2.17) for
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(2.21) and using (2.15) for (2.22). We consider the two terms in (2.22) sepa-
rately. Consider E[E(G2,) — t,;]°. From (2.9) we see that E,(G2) is just the
sample variance in a finite sampling situation in which n — i + 1 are sampled
from a population consisting of the n numbers n~%(n/(n — i))c,, 1 <k <
n, given in (2.8). Thus Kendall, Stuart and Ord [1987, (12.129)] show that

ele(e) -l = (755 ) =2 et

n\n—i)/ n—-i+1
(2.23) < 1—3( i , )5
n®\n—i
In like fashion, Kendall, Stuart and Ord [1987, (12.120)] give
EG;; = E(E;(Gy;)) = E(the sample fourth central moment)
(2.24) < 3—3( . .)4
n®\n—-i
Thus, (2.17), and then (2.23) and (2.24), show that
Var[T,;] = E(Var,[T,;]) + Var[ E(T,;)]
< 64EGY, + E[ E/(G%) - t,,]°
2054

(2.25) =T (n,ii)4

Sl
LS

GX

ol

Likewise, using (2.23) and (2.24) in (2.22) gives

2
i1 . i [12) »n ]
Var[7,,;] < 4096 ( )c + 2 —( ,)c;‘L
e e
4096 — ,i/m 24 24| i 25/ ?
o (1-x) n o (1-x)
21846— 1 , 3424 1 2
< cn ; 372
n "(1-i/n)’ n (1-i/n)
. 22188— 1
(2.26) <
n (l—z/n)
L
< 22188 = 2 c2,
(1“l/n)
(2.27) -0 prowded;sl—sforsomee>0,

using (1.1) in the final step.
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DiGRrESSION TO PROVE (1.7). Combining (2.13) and (2.27) to give a weak law
of large numbers (WLLN), we have

(2.28) To,ins] ~p $/(1 —8) asn —> oforeach0 <s < 1.

Using the dlagona.hzatlon technique we can extract from any subsequence a
further subsequence n’' on which

(2.29) Tu,ins] > /(1 —s) as.asn’ > oforeach0 <s <1.

Since both sides of (2.29) are monotone, and since the limit on the right is
continuous, we have from (2.29) that

(2.30) 7, [ns; > 8/(1 —s) uniformly oneach[0,1 —8]as n' - .

Since the sample paths of Z are uniformly continuous on any [0, M], we thus
have

0

max P

(2.31)  1ci<n(i-9

i/n
2(7y;) _Z(l—i/n) -
asn »> oforeach0 <6 < 1.
We next note that
(2.32) W(s) = (1 -s)Z(s/(1 - s)), 0<s<l,
is a Brownian bridge. Moreover, (2.31) is just a statement that
(2.33) max )IR’,“”- -W(i/n) -, 0 asn — oforeach0 <d <1.

l1<i<n(1-8
Now,
P( max |R%| > 2e)
n(l-8)<i<n
——-P( max |R};| > 28)
1<i<né
<P(lWlo=¢) + P RY, — W(i >
(IWI3 = ¢) (12}‘;",‘,5' %= W(i/n)l 2 ¢)
(2.34) -0 asé—0.
Combining (2.33) and (2.34) gives
(2.35) max |R};, —W(i/n)l -, 0 asn — .
l<i<n

It is an elementary application of Mills’ ratio to “fill in the gaps” in (2.35) by
showing that both

(2.36) max. IW(i/(n + 1)) - W(i/n)l >, 0 and |W-W,l-,0,
where W.() = W((n + l)t]/(n + 1)). These combine with (2.35) to give
(2.37) IR* — WI| -,0 asn - x,
where R}, = R}, 41y for 0 < < 1. This is (1.7). D
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We now return to the proof of Theorem 1.1.

Now, for m =[(1 — 8)n] the Shorack-Smythe monotone inequality [see
Shorack and Wellner (1986), page 844] gives (with Log 2 = 1 V log k)

(2.38) A iD= )l g c (A3, U AS,)
. = | max > ,
r 1<k<m (\/ELogk)/n € 1n Zn
where
k n —E(T,,
Acln = max Z [ : i : nt)] > Mg
L'].Sksn'l i=1 ﬁLOgl
and
Eon|E(T,;) — tn;
A, =| max |) [E(T.) ] >M,
| 1<k<m |2} Vi Log i

Applying the Hajek—Rényi inequality [see Shorack and Wellner (1986), page
873] to the martingale of (2.16) and then, using (2.15) and (2.24), we have

[T, - B(T,)]"
i(Logi)®

m n2E

e i=1
64 ™ n?
<—Y —EG;;
s i—1i(Logi)
2048 ™ n? 1( n )4—
M? i=1i(Logi)2 n?\n—1i
2048 ( =» 1 -
cn
0*M?2 \ [y i(Logi)®

<e,

IA

(2.39)

for M, large enough, provided (1.4) holds. [ Note: It is only in (2.39) that (1.4)
is invoked anywhere in this proof.] We now turn to Aj,. Now, for k <m =
[(1 — 6)n], we have

k n[Ei(Tni) - tni]
Vi Log i
k n[Ei(Gr?i) - tni]

i=1

i=1

nk
=;Z

i=1

\/TLogi

l+1

Z gm(J)

fLogi
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n )2 n
i=1 (n_l n—l+1

I
S| =
M=
gl\’)

i=1
Al (g ] foe
L)
i B )

L = el o e
%inz{(nii)z(n—rz+ 1);11-_ (nii)(n—’;+ l)nil

-5 e (= oes

Jj=1
2.40 o)+ Ly " "\
(240) = 0,(1) ;i=11/i_Logi(n—i)(n—i+1)
n-—i "‘1051),,,
X{[l_n_l]_ng n }

0.1 1k n n o \2 n
B p()_;i=1ﬁLogi(n—i)(n—i+l)

X[iil ¢2p,~1 (i-1) J

i1 n n(n—1)

0,1 - 235 " ) (2 )
=% n,~=1\/i-L0gi(n—i)(n—i+1
i—lc'zl -1

x Y 24 0(1)
j=1 7
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1 i-1
i d,p
Xk: 1 n 2 \/77 ng Dnj O 1
= . +
Z \/_Logz(n—l) i1 »(1)
n
j2
(241)  =- Y b, Z 1+ 0,(1),

i=1

where d,; = = c2. — 1 and where we note (2.1) to understand the choice of the

notation Z? in (2.41). We can apply the Kolmogorov and Hajek-Rényi
inequalities to conclude, since the 0,(1) term in (2. 41) is 0,(1) uniformly in n,
that for M, large enough we have, with €y = L7 41b,) ~ and YD =ZD -

VAR that
k
P(45,) < P| max | 6,281 + 0,(1) zMs)
=m|;_1
k M,
< P| max |) b,; ftd21>— +e
l<k=<m i= 2
k-1 k-1 g
b o [ e e T, 0|2 | o
sk=mli=1 i=1
k M
<P| max e, Y@|> —
]_<k5m 1 lzl nl ni 4
k M,
+P| max YO|>— | +e
(lsksm—l mk+l g 4 )

BT

32

IA

16 m-1
2 Var[ V@] + i gi_e3J+1\hw[Y;?4-+e

7 n123 \@w[Y%@]-Fe

IA

32007 ,,

IA

|

128007 ,
06M2

(2.43) < 2¢

3207 ,, i 1 n 22'”}51 1 n n
M J-=2\/;L7L0gj(n—j) Zin-1ln-in—-i+1

2

1m 1
;‘122 Vj/n

+ &

+ ¢
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for M, sufficiently large, by (1.1). [The technicalities of the steps leéding to
(2.42) were redone after D. Mason pointed out the need.] Thus

(2.44) P(A3) <3¢ forall n, provided M, is large enough

and (1.4) holds.
We thus have

P(B,) = P| max MEEET) 2Lt )

1<k<m (k/n)1/2 v

<P(B,NnA,) +P(AS)

< y’«: p |Z(Eani) - Z7(Tke,)|
i=1 || [VE (Logk)aM,/n]"*
k1/2—v 1
> M, NA,| + 3e
Vn' [ VE (Log k)4M,/n]""
2”5 ‘/_8 JAVZEL
<12 PIN(0,1) > — + 3¢
ho1 (0.1) 3 2 ]/Log
M k1/2 2v
<12 ex + 3¢
k21 p( 72 Logk )
(2.45) < 4e,

if M, is large enough and if 0 < v < 1. Thus, (2.45) and (2.1) show that

n*|R%(k/(n + 1)) — (1 — k/n)Z(Zkt,,)]
1<k<m (k/n)1/2 v

(2.46) = 0,(1).

“Filling in the gaps” in (2.46) and replacing ©%_, t,; by (k/n)/(1 — k/n) is
simple; it is essentially the same as showing (2.36). We thus have shown that

J®E - (- D2/ -n)|°
I/2-v l1/ns 1)

(2.47) = 0,(1),

for any 0 < 6 < 1, where
(2.48) Wy(2) =(1-1¢)Z(¢/(1 —t)) for0 <¢ < 1is aBrownian bridge.

We will now digress and verify that R* satisfies (1.6). Note that establishing
(1.6) carries with it the implication that 6 = 0 is permitted in (2.47).
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DIGRESSION TO PROVE THAT R¥ SATISFIES (1.6). Now

i) e

nl/4

=

P(B, )=P
(B.) (15%125—1 log n

[RE(R/(n +1))/(1 = k/n) = Z(Eh1 )]
=P| max
1<k<n-1 1/(1 - k/n)
log n
|2(Z41 Ti) = Z(Edos b)) log n
- P( L<hon-1 1/(1 - k/n) = 2M -
n_1 k k 2M  logn
< z T,.|—-Z )l = NA,
(2.49) kgl ’ (E’l ) (i§1 ) (1-k/n) n/* )
+ P(AS),

where the Shorack—Smythe monotone inequality [see Shorack and Wellner

(1986), page 844] gives
AS,
! L Log( k)| = 4M,
— ———— Log(n - > 4M,
n(1-k/n)? g

E ( - tni)

| (2.50) [1<k<n 1

c (45, YV A43,),

where
¢ = k 1 1 L . .
Al = 1<k<n 1l§1{ _Ei(Tni)} ;(—lTn)g og(n —1)|| =M,
and

k T 1
Ain = o 2 (T t""}/ [\/z—a—;wn—w] }

Reﬁeating the argument of (2.38) to (2.44) with (Vi Logi)/n replaced by
{n=Y1 - i/n)"31/2 Log(n — i) gives

(2.51) P(A%) < 3¢ for all n provided M, is large enough.
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- 1/2
/[4M [Log?(n - kl ]
n(l-~k/n)
oM 1 [Log?(n—) | |
ogn og%(n — .
= (1-k/n) n'/* /[4M n(l - k/n)® } A |+ P(4)

As in (2.45), we find from (2.49) that

n—1

pin < £ £ 0] o[ £

n-1 VM 1 logn

<12Y P|N(0,1) > e o | +
k-1 3 (1-k/n)’" (Log(n - k))
n-1 M 1 (log n)?

= 12 _—— + 3

= ,El e"p( 18 V1 k/n Log(n — k)| "

(2.52) <4e
if M =M, is large enough. We leave “filling in the gaps” a la (2.36) to the

reader. Thus R¥ satisfies (1.6). O
As indicated earlier, this implies that (2.47) can be improved to
(2.58)  nol(RE — Wo) /IV2 7"l jns1y = O,(1) forall0 < v <}

for the Brownian bridge W,. But we must be more precise than this. Note
from (2.39), (2.40) and Shorack and Wellner [(1986), (11) on page 134 with all
q; = 1], (2.42), (2.45), (2.51) and (2.52) that we in fact have

P(n* (RS — Wo) /I " i 41y = M,)
(2.54) < & + (Absolute constant)c? /M2 < 2¢

for M, large enough; and note that the first ¢ in (2.54) [see the series prior to
(2.45) and (2.52)] is completely independent of the c,;’s.
We now return to the proof of Theorem 1.1. We need only symmetrize

(2.53).

Consider an urn containing the numbers c,,,...,c,,. Let my, =[(n +
1)/2]and m,, =n — m,,. Let a,,,...,a,,  denote a random sample of size
m,, from c,,,...,c,,; andlet b,,,...,b,,, denote the c,;’s not sampled. Let

(255) dni = (a’ni - an)/o'a,n and I;ni = (bnz - En)/ab,n

[recall the notation used in (1.1)]. Now put the @,;’s in Urn, and the b,,’s in

Urn,. We first embed the é,;’s in a Brownian bridge B, as in (2.54); but note

that this embedding is conditional on the values of the a,;’s sampled from the

‘c,i’s. That is, if
: mo,+1t) 5

(2.56) Ron(t) = X

i=1 my,

for0<t<1,
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then by (2.54) we may suppose that R, is embedded in a Brownian bridge B,
in such a way that

P(m,(,)n“(ROn - BO)/II/2_V|H/("10"+1) 2 Mslani,s)

(2.57) <e+ Kat /M2 < 2
for M, large. However, for M, large enough we have
(2.58) P(a% = Mict) <.

Thus, the conditional probability statement in (2.57) can be improved to
(2.59) P(n*l(Ro, = Bo) /T2 "Il yn+1y = M,) < 26 + KM!c* /M2 < 3¢

for M, large enough; it is understood in this that R, is the embedded finite
sampling process of randomly chosen a,,,...,a,,, that have been centered
and scaled to produce d,;’s.

We similarly embed

[(m1n+1)t] 5 .

in an independent Brownian bridge B,; that is, subscript 1 may replace
subscript 0 in (2.59). We may also suppose that

(2.60) - R,, =

22 :n=0f Qi 4 2
(2.61) P|n” — Z| > M, | <& + (absolute constant)c,/M;
n
for a N(0,1) rv Z independent of B, and B,. Now, for 0 < ¢ < 3, we have
[(n+1)¢] C.: [(n+1)¢] a,;
2.62 R,(t) = - = —
(2.62) = T E- L 7

B \/—m [(nil)t] a,, —a, .
n i=1 VmOno'a,n o
n Ztr";oi'ani [(n + l)t]

+
myp, ‘/E n

Mo, n+1
= n IROn m, ¢ aa,n

(2.63)
n_ 2L a,; [(n+ 1)¢]
* 2my, Vn n
1
= _E{Bo(zt)} "1+ 1-Zt + Egu(t)
(2.64) = %BO(Zt) + Zt + Eo,(2),
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where (2.59) and (2.61) show that
(2.65) P(n*lEq, /T2 |1 /Cn 1y = M,)

< 3¢ + (absolute constant)c? /M2 < 4¢

for M, sufficiently large. Also, for ; < ¢ < 1, we have

(n+1)] o . nz+1 C. . [(n+lz)§1—t)] bm,
(266) R (t)= Y —==- = = - I
i=1 ‘/'7 i=[(n+1e]+1 ‘/’7 i=1 \/’;
mln ] [(n+1)X1-8)] bni —_ Bn
= - T [Ob,n
n i=1 mlnab,n
n L7b,; [(n+1)(1-1)]
my, ‘/’7 n
mo [ R n+1 1—+
- n 1in my, ( ) Ob,n
(2.67)
n 2LMa, [(n+1)(1-1t)]
+
2m1n ‘/; n
1
(2.68) = _WBl(z(l —t)) +Z(1 —t) + E,(2),
where we likewise have E,, satisfying (2.65). Now,
1 1
E—Bo(zt) +tZ for0 <t < 5,
(2.69) W) = -

—%Blm(l -t)+(1-¢t)Z for% <t<l1

is easily shown to be a Brownian bridge; recall that the Brownian bridges B,
and B; and the N(0, 1) rv Z are independent. If we also let

Eon(t) for0<t<3,

Ei(t) fory<t<1

incorporate the error terms of (2.64) and (2.68), then (2.65) shows that
(2.71)  P(n’lE,/(I(1 = D)2 IR/ = M,) < 4 + 2KMct/M? < 6¢
for M, sufficiently large. Since :

(2.72) E,=R, - W,

“this establishes (1.5).

Thus, all results for R, have been proved. To prove (1.10) and (1.11) for W,,,
use the identity (1.9) and follow the short Csérgé and Horvath (1986) proof
that the version of (1.10) with W, — W replaced by W(G,)) — W holds. You will

(2.70) E(t) =
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"also need to use the “in-probability linear bound on G,” of Shorack and
Wellner [(1986), page 419] to replace I(1 — I) by G,(1 - G,). O

The referee has indicated that Theorem 1B of Komlés, Major and Tusnady
(1976) gives “an almost complete proof of Theorem 1.1 in a special case.”
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