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A UNIFORM CENTRAL LIMIT THEOREM FOR
NONUNIFORM ¢-MIXING RANDOM FIELDS'

By DoNGCHING CHEN

Beijing Normal University

A sufficient condition is given for a sequence of partial-sum set-indexed
processes with nonuniform ¢-mixing condition to converge to Brownian
motion. The main result (Theorem 1.1) is an extension of the similar
results of Goldie and Greenwood by weakening the ¢-mixing condition. An
application (Corollary 4.2) to certain Gibbs fields is given.

1. Introduction. At first we introduce some notation. Let Z be the set of
all integers, {£,, t € Z%) be a random field on a d-dimensional integer lattice
and Z, be the set of all positive integers. Let t + 8 := (¢, + 54,...,%5 + 52),
fort = (¢,,...,t,)and s = (sy,...,s)) € Z* For m € Z , let

Jm = {(ll/m,-..,ld/m):lj €Z+, lJSm,J = 1""’d)’
G = {(abl:a,b < [0,1]7),

d
Cm,.i = q(ji_m_l’ji], j=(j1,...,jd) EJm,
i=

where a = (a,...,ay), b=1(by,...,by), a;,b;€[0,1], i=1,...,d, and
(a,b] = [T% (a;, b;]. For A, B € G, we define d (A, B) = |A » B|, with A2 B
the symmetric difference and |A| the Lebesgue measure of A. It can be proved
that d,(,-) is a metric on G and that G is a complete metric space. Now,
* from a random field {¢,, t € Z¢} we form the partial-sum process of nth level
as

lAnC,;l
Z,(A)=n"@2Yy — 2 (¢.-Ef;), Ae€GneZ,
jEJn |Cn’j|
where nj = (njy,...,nj;). Let C(G) be the space of all continuous functions

on G with supremum norm || fllg = sup, < ¢lf(A)l, f € C(G). It is known that
C(@) is a complete countably compact space. Let CA(G) be the set of every-
where additive elements in C(G), namely, elements f such that f(A U B) =
f(A) + f(B) — f(A N B) whenever A, B, AN B, AU B € G. It can be shown
that for fixed w, Z,(-) € CA(G). A Brownian motion on G with parameter o is
a random element Z(-) of CA(G) whose finite-dimensional laws are Gaussian
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with EZ(A) = 0 and EZ(A)Z(B) = 0%|/A N B|. While o =1, we call Z(:) a
standard Brownian motion on G.

Dudley [6] showed that if G satisfies a certain metric entropy condition,
the Brownian motion on G is well defined. For every ¢ > 0 there is a finite
set N(G,¢) € G, which we take to have minimal cardinality e”®, such
that for every A € G, there exist A", A€ N(G,¢), with A"c A cA* and
[A*N A7| < &. The function H is called the metric entropy (with inclusion).
Its exponent is

. log H(¢)
T Tog(1/e)
In what follows, for our G with metric d (-, - ), its metric entropy exponent
r =0, and the Brownian motion on G is well-defined. A survey of metric
entropy appears in the introduction of [1].

Now let us introduce the nonuniform ¢-mixing condition. The condition
was first introduced by Dobrushin and Nahapetian [5] and it is stronger than
the Bolthausen mixing condition [3]. The nonuniform mixing condition is
considered because of Dobrushin’s assertion [4] that the uniform condition (cf.
[8, 9] is not satisfied even for some simple examples of Gibbs random fields.

DEFINITION 1.1. We say that the random field {¢,, t € Z%) satisfies the
nonuniform ¢-mixing condition if, for A; ¢ Z¢, |A;| < «, i = 1,2, there exists
a nonnegative real function ¢, (-) depending only on |A,|, such that

Eco(A,), Feo(Ay), P(F)>0
and ¢, (a) > 0 as a — », where |A| is the cardinality of A, 0(A) is the
o-algebra generated by &, t € A, and d(A;, A,) = min{llt; — t,|l: t; € A,
i = 1,2} with Euclidean norm || - ||.

Now we can state our main theorem.

THEOREM 1.1. Suppose the strictly stationary random field {¢,, t € Z%)
satisfies the nonuniform ¢-mixing condition and

there exists a nonnegative real function ¢(-) on R!, such
(1.1.1) that for any A € Z%, |A| <, ¢, (") < |Al¢("), and for some

6>0,
lim sup (¢(r))1/2r(38+4)d/8‘< ®,
r-ow,reR*
(1.1.2) - Elgl*"? <,
(1.1.3) 0<o?= 3 Cov(&, &) <=,

tezd

where 0 is the zero vector in Z°.
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Then the partial-sum processes of the random field converge weakly to the
Brownian motion with parameter o, as n — «. The weak convergence is in
CA(G).

Theorem 1.1 is an extension of the similar results of [8] and [9] by weaken-
ing the ¢-mixing condition and omitting the B-mixing condition. A similar
result for uniform p-mixing random fields with finite 2 + § moment was
obtained by Goldie and Greenwood [8, 9] as well. To the author’s knowledge it
is an open problem whether the similar result is held under the Bolthausen’s
mixing condition in [3]. There is a survey paper [10] of the central limit
problem for set-indexed partial-sum processes, which was written by Goldie
and Morrow.

In Section 2 we shall prove the convergence of finite dimensional distribu-
tions by a result of [8] and an idea of Nahapetian [11]. In Section 3 we shall
show tightness by modifying the method of Goldie and Greenwood [8, 9]. The
method was initiated by Bass [2]. In Section 4 we shall give an application to
certain Gibbs fields.

2. Convergence of finite dimensional distributions. The main result
of this section is the following theorem.

THEOREM 2.1. Suppose {¢,, t € Z9)} satisfies the conditions of Theorem 1.1.
Then the finite dimensional distributions of the partial-sum processes of the
random field converge to the corresponding finite dimensional distributions of
Brownian motion with parameter o.

Without loss of generality we assume that o = 1 in what follows.

ProrosiTiON 2.2. Under the conditions of Theorem 1.1 we have

Y (6(lkl)) " < .

kez9\0

Proor. Without loss of generality we assume that ¢(-) is nonincreasing.
Then

T (sk)2=F L (s(lkl))"

keZ\0 r=1rz|kll<r+1
<Y Crd'1(¢(r))1/2,
r=1
where C is a constant depending only on d. By (1.1.1), if r is large enough,
there is a D such that
ri=i(¢(r))? <Dr 179, g =2(d - 1) + (4/8) > 0.
Then the proposition is obtained by L3_;7r"1*9 <. O
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Now we give some more notation. For n = (n,,...,n,) € Z%, denote by A,
the rectangle with center at the origin and with length of sides 2n;, [n,/n ;| <
C, i,j=1,...,d, where C is a constant; n — © means min{n;: i=

1,...,d} > .

PROPOSITION 2.3. Suppose {¢,, t € Z%) satisfies the conditions of Theorem
1.1. Then for any series A,, n — ©, we have

where Var(-) is the variance of the random variable.

Proor. Let A, :={s€ A, ls;l <1 —n;'Hn, i=1,...,d)}. Obviously,
lim |[A,|/IA,l = 1.
n—oo

By the stationary condition,

A Var £ &)= IR E Covlé b

teA, teA,seA,

=AY Y Cov(&gs és—¢)

teA, s:|s;—¢t;l<nl/?,i=1,..., d,s€A,

+|An|_1 Z Z Cov(&g,és—¢)

teA,NA, s€eA,

+ IA,,I_1 Y Y Cov(&g, €5-¢)

teA, s:|s;—¢t;|>nl2,i=1,...,d,8€A,

= Il + 12 + 13.
Condition (1.1.3) implies
I, = (IXLl/1AL) )y Cov(£o,éx) = 1,

k: |k;)<nl/?,i=1,...,d
Z COV(go, §k) - 0’

k: lk;l>nV2,i=1,...,d

I3 =< (lA’n'/lAnl) Z Cov(§0, gs—t) - 0’
s:ls;—¢t|>nl/2,i=1,...,d

as n — «, Using Lemma 1 in [11], Proposition 2.1 and condition (1.1.1),
|Cov( &0, é-o)| < 2(o(lls — tl))/*Var(&,), s,t ez,
T (¢(lls = tl))"* <o, s,t ez,

SE€EA,
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Then, as n — o,

< (Aa N Aal/IAG) Z (8(lIsl)* -

s€Z\0

Combining all of these, we complete the proof of the proposition. O

LEMMA 2.4. Suppose {¢,, t € Z%) satisfies the conditions of Theorem 1.1.
Then there exists a constant CV such that

EZ2(A)/IA| < CD Var(¢,), A€G.

Proor. For A € G,

JAnC,
2y =n-am g B20 e, g
jed, IC" jl
=n"@/D Y |nA N nC, ;l(£4y — Ekny),

jed,

where nA = {nt: t € A}. Noting that #{j €J,: ANC,; # ®}/InA| > 1 as
n — «, by a method analogous to that used in the proof of Proposition 2.3, we
get that there exists a constant C® such that, for large n,

EZ2(A) < n~?C®lnA| Var(&,) = CV|A| Var(&,). o

LEMMA 2.5. Assume {£,, t € Z% satisfies the conditions of Theorem 1.1.
Then there exists a constant C® such that, for large n,

E|IZ,(A)**? < COIAI®*P72,  AeG.
Proor. Let
AN, ={ied,:0<IANC,;l <n™?,
A, = {j €J,:IANE, ;| = n'd}.
For any A € G, A,, is a rectangle and

jed,
=n" @B ¥ (b~ Eéyy) + L InA N nC, l(¢,5 — E€yy)
JjeA, jen,
= I, + I,.
By Lemma 5 in [11], there exists a constant C, (dependmg on d) such that
) 2+8
- E Z (§nj _ Efnj) < CdlAn|(2+8)/2-
JeA,

Noting that A/, is a union of (d — 1)-dimensional rectangles, we denote these
rectangles by A(‘) i=1,...,2d. Thus, A, = £2¢, A9, and for each A®> we can
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apply Lemma 5 of [11], that is, there exists a constant C such that

E| Y. (é,;— E&,;)nA N nC, |l < C|AD|@+D/2,
jeA®

i=1,...,2d.
Thus,

2+8

2d
Z,(A)=1+ Y 1L,
i=1

2d 2
E|IZ,(A)P" < E(Il + Y ni)

i=1

2d 8

I+ Y II,

i=1

2d 2d
< Ca’dE(If + Y 11%)(|11|5 + Y III,.I‘S),

i=1 i=1
where C; , is a constant depending on & and d. Therefore,

2d 2d
E|Z,(A)** < ca,d(E|11|2+5 + ¥ EIIL** + Y E(I3IL,P)

i=1 i=1
2d 2d
+ ¥ ELP)+ ¥ E(|11|811§)).
i), i, =1 =t
But

2+8 - 2+34, 2+8)/2
E|L " < Cy(n=@/D) 7 |A |72,

EIIL|**® < C:i(n‘(d/z))2+8|A(i)|(2+8)/2’
E(I%llltla) < (EIII|2+5)2/(2+5)(EIIIi|2+8)5/(2+8)

< (Cd)z/(2+a)|An|(C&)a/(2+a)|A(i)|8/2(n*(d/2))2+5,
E(ITZIILI%) < CllA®| [APP/2(n=@/2)**?,

2+6
’

B(IIL ) < (Ca)™* (o)™ * NN A, /% (n™(/2)

i,j= 1,..l.,2d.
These imply that

EIII|2+8|A|—(2+6)/2 < Ca(lAnl/lnAl)(2+8)/2 N C,s,

EIIL 1417272 < C,(1A01/InAl)* 7 ~ 0,
E(I%IIIjIS)lAl’_(2+8)/2 - 0,

E(IIZILP) A =@ *272 - o,

E(I1,1°112)lA|"#*>72 - o,
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as n — », Then, if n is large enough, there exists a constant C® depending
on d and §, such that

ElZn(A)|2+3 < CDAEC+/2, q

LEMMA 2.6. Suppose {£,, t € Z%) satisfies the condition of Theorem 1.1.
Then {ZX(A)/|A}ycg, n»1 is uniformly integrable.

|2*? < » and Lemma

Proor. The lemma follows immediately from E[&,
2.5. 0

THEOREM 2.7. Suppose {Z,()}, ., is a series of additive processes in CA(G)
and satisfies the following conditions:

(2.7.1) {Z2(A)/IA1},.o1 acc s uniformly integrable.
(2.7.2) EZ,(C) >0 asn >, CEeQq.
(2.7.3) EZ2(C) » IC| asn > »,C €@G.
For any C,,...,C, € G, d(C;,C) > 0,i+j,i,j=1,...,k,
forany z,,...,2, € R', as n - x,
(2.7.4)

P(Z,(Cy) <21y...,Z,(Cy) < 2) — ﬁp(z,,(ci) <z;) =0,
i=1

where d(C;, Cj) = inf{|it; — thI: t,€C;,t; e CJ-}.
Then the finite dimensional distributions of Z,(-) converge to the corre-
sponding finite dimensional distribution of standard Brownian motion.

Proor. See Corollary 3.3 of [8]. O

Proor oF THEOREM 2.1. We assume that o = 1, E{, = 0. We need only to
check the conditions of Theorem 2.7 for the partial-sum processes of the
random field. Lemma 2.6 implies that condition (2.7.1) is satisfied. Condition
(2.7.2) obviously is satisfied. The proof of condition (2.7.3) is an analogue
of the proof of Corollary 1.4 of [9]. Now we check condition (2.7.4). It is
enough to check for the case k2 = 2. For the case k > 2, it is analogous. Let
r=d(C,Cy) >0, A, :={Z,(C) <2} and B, :={Z,(C,) < 2,}. By Lemma 1
of [11],

\E(Iy Ip) — El, Elp | < 2(¢uc,(nr))"” < 2nlCil(6(nr))"?,
where I, is the characteristic function of the set A. By condition (1.1.1),

nd(qb(nr)')l/2 -0 asn — o.

Then, as n — =,

|P(Z,(Cy) <2z,Z,(C,) <2z,) — P(Z,(C,y) < zl)P(Z,,(C"2) <z)—-0. 0O
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3. The proof of tightness.

LemMA 3.1. Suppose {¢,, t € Z% satisfies the conditions of Theorem 1.1.
Then for any A > 0,

(311) limlmsuwpP(  sup  1Z,(4) = Z(B) >A)=0.
A,BeG,|AsBl<v

This is the main result of this section. The proof is lengthy. We assume that
o=1 E¢{( =0.For 0 <u <v <, define

vNO e

M, (%,0) = n~@Pg,  Hu < nd/CrDp=@Dlg | <o), jed,
I[AnC,
Z,(A,u,v) = Z —_— (nn’j(u,v) - Enn’j(u,v)).
jed, |C’n,j|

PRrOPOSITION 3.2. Assume the conditions of Lemma 3.1 are satisfied. Then
asn - », U(I%, a,) - 0, a.s., EU,(I% a,©) —> 0, where I* =[0,1]%, a > 0
and

[AnC, ;l
U(A,u,v) =Y ————’Llnn,j(u,v)l.
jed, IC'n,jI

Proor. We use Bass’s technique [2]. For k =(k,,...,k;) € Z‘i, let
(k) == max{k,,..., k;} and ¥(i,a) = sup{k € Z,: ak?/@1*D < 4+ 1}. It is
well known that #{k € Z%: u(k) = r} < Cr¢1, where C is a positive constant
depending on d.

Z I{l +1> a(u(k))d/(2(1+8))}(ﬂ(k))_(d/2)
kezd

= Z Z I{i +1> ard/(2(1+5))} /2
r=1{j: uG)=r}

=CY I{i + 1> qré/@1+d}pd-2y/d
r=1

< C(‘I’(i,a))d/Z < Ca—l(i + 1)1+8.
Thus,
Y ElEJ{a(u(k) Y < 18y < oh(u(k) "V
kezd

<L )y (i+ 1)P(i < lg) <i + 1)(p(k) " @?

k i+1>a(uk)d/@a+o)

(3.2.1) < Z I:% I{i +1> a(M(k))d/(2(1+8))}(;L(k))—(d/z)]

i=0 )
X(i+1)P(i<ép=<i+1)

<Ca 'Y (i+1)*7P(i<lggl <i+1)

i=0
2+86

< Ca 'E(J£ol +1)"77 < oo,
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Then for £ > 0, there exists n,(w), such that
Y & {a(p(k) Y < g < @l /(u(k) < .

k: p(K)>n;
From this,
U(I%a,©)< Y Ika{and/(2(1+3’) < &l < oo}ln—(d/Z)'
uEk)<n,

Thus, as n - », U(I% a,») - 0, a.s. Analogously, we can obtain
EU,(I%,a,%) - 0. ]

For convenience let G, := {A\B: A, B € G, |A \ B| < v}. Then, in order to
prove (3.1.1), we need only prove
(3.2.2) 11m limsupP(lIZ,llg, > A) = 0.

Since Z,(A) = Z,(A,0,a) + Z,(A, a,x), moreover,

1Z,(A,a,®) < U,(I% a,®) + EU,(I% a,®).
Therefore by Proposition 3.2, in order to prove (3.2.2), we need only prove
(3.2.3) hm limsupP(lIZ,(A,0,a)llg, > 1) = 0.

n—>oo

Let p, [n(2+5’/ @a+8] [r] is the integer part of r and m, == n/@2p,).
We divide Id in the following two ways: C, ,, 1€ J, and 02}!7 pledy, .
There are 2°C,, , in each C, ;. Denote by I, .; the ith CZ}7 j inC,
led,,jed,, Let

U In,l,i’ i=1,...,2d.
led,
Then
2d
Z,(,0,a) = Z Z,( nIn,i’()’a)'
i=1
Here, we follow the notation and method of [9]. To prove (3.2.3), we need only
prove for certain i, i = 1,...,29,

(3.2.4) hm llmsupP(IIZn( NI, ;,0,a)lg >1)=0.
Now,
Zn('nIn,i’()’a): Z Zn(.nIn,l,i’O’a)
led,
[-NnI,,;nC,;

n,l,i

LT G
Pn Et ’

X (1,300, @) — En, ;(0,a)),
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where S(n,Li)={ed, C,;NI,,;# ®. It is obvious that for i. €
S(n,Li)1,ed,,s=121# 1,, we have [j; — joll = (m,/n).
We construct a new series of processes {£,3};c sn,1,i 1 € Jp,» such that the

distribution of each process {£,;};jc s(,1,i) coincides with that of {¢, iesmiy
and for different 1 € J, , the new processes are independent of each other. Let

M j(u,v) = n“(d/z).fnjl{u < ndd/QA+Np =@/ | < v}, ied,,

lANnI,,;nC,;

Vn,l(A7 u’v) = Z IC I (T)n,j(u’v) - Eﬁn,j(u7v))’
jeSn,1,i) n,j
led,,
Zn(A,u,v) =y Vn,l(A,u,v),
lern
[ANnI,,;nC,l
W(Auv)= X il (), 1€,
iesSn,1,1) IG5l
U(A,u,v)= Y W, (A u,v).
leJPn

PROPOSITION 3.3. Assume the condition of Lemma 3.1 is satisfied. Then
”L(Zn( ‘N In,i’ 07 a)) - L(Zn( T 0, a))”Var - 07

as n — », where L(£) is the distribution function of ¢ and ||+ lvar is the total
variance norm of the distribution function.

REMARK. Proposition 3.3 replaces the same result of [9], page 834, but uses
condition (1.1.1) (nonuniform ¢-mixing).

Proor oF ProposiTiON 3.3. By definition,

1/(2 d
#S(n,l,i) < [4/_5”_)_} ~ 9-dpds/@1+8)

where @, ~ b, means lim, ., a,/b, = 1. By Lemma 1 of [11],
IL(V, (5 u,v0),1€ J,.)
—L(V, 1 (1w, 0))L(Voa(u,0),1# 1,1 € J, Mvar
<2 sup IE(1415) — E(I)E(Ip)

Aca(V, (-, u,0)),
Bea(V, (-, u,v),1#1;,1€d, )

< 2C(bpsmni(ma — 1)) < 20#8(n,L,i)(¢(m, - 1))"*

< 2C(2—dnd8/(2(1 +8)))(¢(2—dn8/(2(1+3))))1/2’
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where
I ‘N In,l,i N Cn,jl
IC, ;!

Voa(u,v) = > ('On,j(U, v) — Enn,j(u,v)).

jeSn,L,i)
Analogously,
”L(Vn,l( U, U), le Jpn) - ]._[ L(Vn,l( U, U))”Var
led,

Kpi-1y/2]
<2c27¢ nd8/(2(1+a»(¢(2‘dna/(2(1+a»))1/22 Y ok
k=1

< C'2_dn(4+35)d/(2(1 +s))(¢(2 —dna/(2(1+a))) )1/2

< C’K(4+35)d/3(¢(K))1/2, K = 9=d p8/@(1+8)

From condition (1.1.1), we obtain that as n — «, the last term converges to
zero. Thus, as n — «,

IL(V,1(+5u,0),1€d, ) - l[} L(V, (-, u,0))llver = 0.
€ Pn

This implies
”L(Zn(.nIn,i’O,a)) _L(Zn("oy a))”Var—') 0~ O

By Proposition 3.3, in order to prove (3.2.4), we need only prove

(3.2.5) lim limsupP(lZ,(-,0,a)llg,> 1) =0.
a,v\O

n-—ow

For the purpose of using the Bernstein inequality (cf. [9]), we need an
almost sure bound. By definition,

an,l(A’ u, U)I < 2vn—d8/(2(1+3» E lIn,l,i N Cn,jl/ICn,jl
jeSn, L)

— 2vn—da/(2(1+8))nd|In’l,i|
= Qun—/@a+Mpd(2p )¢ < 20,
By Lemma 2.4
Var(Z,(A,u,v))

Y Var(V, (4, u,v))
l1ed,,

Z Var(Zn(A N I;t,l,i’ u, v))
led,

Y CIANnI,, | <CIAl
led,

IN

Analogously, we have
(W, (A, u,v)l <v as.
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and
Var(Un(A, u,v)) < ClAl
Finally,
EU,(A,u,v) =EU(ANI, ;, u,v)
< Z (IA N Cn,jI/ICn,jl)Elnn,j(uyv)|2+8

jed,
< lAlu_(1+8)C'E|7]n’j( u, v)|2+8
< |Alu=A+DCElg, 2.

Now we return to the proof of (3.2.5). We shall choose A,, a;,8,,i =0,1,2,...,
later so that

AN0, 4) A <A,

i=0
3.2.6
( ) 60 =v, 8i N 0,
a,=a, a; N 0.

For A € G, there exist A;,, Af€ N(G,$,) (cf. the definition of metric en-
tropy) so that A, cAc A/, [Af\ A,;| <§,. Then

Zn(A’O’a) =Zn(AO’O7a) + Z (Zn(Ai+1707ai) _Zn(Ai’O’ai))
i=1

+ ) (Zn(A’ai’ai—l) _Zn(Ai’ai’ai—l))'
i=1

The remainder of the proof is the analogue of the nesting part of the tightness
proof in Section 5.6 of [9]. We need only note that for our G the metric entropy
exponent r = 0. We omit the details. O

Proor or THEOREM 1.1. Analogously to the proof of Theorem 1.1 of [9] we
need only prove the following:

(a) for each element A of some countably dense set in G, the family
{Z,(A)}, ., is tight;
(b) for every A > 0,
lin(l) limsupP(lIZ,llg, > A) = 0.
VN

n—oo

(a) follows from Theorem 2.1 and (b) follows from Lemma 3.1. O

4. An application. In this section we use Theorem 1.1 to prove a uni-
form central limit theorem for certain Gibbs fields. We consider the Gibbs
fields of the Ising model. The Ising model is a famous model in statistical
physics and has great physical significance.
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Let S ={—1, +1}, u be the counting measure on S and f be a positive
number. E‘et D ={A cZ?% |A| < ©}. We need to introduce the measurablf
space (SZ°, F'), where F is the product o-algebra. For any A € D and ¢ € S%°,
define

,(£) = {ffsft if A = {s,t), s — tll = 1,

0 otherwise,

where ¢, is the projection of ¢ at site s. We call {®,, A € D} the potential of
the Ising model. Let {(8®),, A € D} be the potential, such that '

(B®)A(&) = BDy(£), AeD,ec8%, 8>0.

DEFINITION 4.1. A probability measure P on (SZ “ F)is called a Gibbs field
of the potential {(8®),, A € D), if for any t € Z¢, ¢ € SZ°, B > 0,

P(¢lé,,s+t,se€Z?) = (1 + exp(2 Yy beA(f)))—l.

teA

THEOREM 4.1 (cf. [7], Chapter V). For {(B®),, A € D}, B > 0, there exists a
Be > 0 (d > 1) such that for each B, 0 < B < B, the Gibbs field of {(BD),,
A € D} exists uniquely and is strictly stationary.

COROLLARY 4.2. Suppose the distribution of the random field {¢,, t € Z%) is
the Gibbs field of the potential {(B®P),, A € D}, 0 < B < B,,. Then, the partial-
sum processes of {¢&;, t € ZY}Z (A), A € G, converge weakly to the Brownian
motion on G with parameter o. Here,

0<a%= ) Cov(&, &) <.

tezd

Proor. We need only check that the conditions of Theorem 1.1 are satis-
fied for {£,, t € Z9). By Lemma V.7.1 of [7], we know 0 < o < . The station-
ary property follows from Theorem 4.1. Condition (1.1.2) follows from the
result of Chapter V of [7]. In what follows we check condition (1.1.1).

We check that the potential {(8®),, A € D}, 0 < B < B,,, is in the class N,
(cf. [11], page 534). Note that

B2l = r 2Bf=4dB f<w=,

k: [kl=1,kez?

Yy [AlsuplB®@,( )l = 0.
A:0cAeD, |Al>2

Then we know that conditions 1-and 2 (cf. [11], page 534) of N, are satisfied.
Thus {(B®),, A € D} € N,. Furthermore, {(8®),, A € D}, 0 < <p,, are
finite range potentials. Thus, by the discussion on page 534 of [11], we know
that the Gibbs fields of {(B®),, A € D}, 0 < B < B,,, satisfy the nonuniform
¢-mixing condition (i.e., the u.s.m. condition of [11]) and ¢,(r) < |Al¢(r),
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where ¢(r) is decreasing exponentially to zero as r — o, which means that
condition (1.1.1) is satisfied. This ends the proof of the corollary. O

REMARK. To the author’s knowledge there is no similar result of Corollary
4.2 for other Gibbs fields in the class N,. The difficulty is to prove 0 < ¢ < «,
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