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THE RUIN PROBLEM FOR FINITE MARKOV CHAINS

By THoMAS HOGLUND

Royal Institute of Techndlogy, Stockholm

We derive an asymptotic approximation of the joint distribu-
tion prob(N(u) —n € A,Sy(,)—u €B) as n and u — . Here N(u) =
min{n; S, > u} denotes the first passage time for a random walk of the
form S, =X7%_Uy(&,_1, &), where &, &, ... is a finite Markov chain
and where {U,(i, j)J;—, is a sequence of independent random variables.
The approximation holds for all sets B and a fairly large class of sets A.

1. Introduction and results. Consider a Markovian random walk of the
form

(1.1) S, = Y U,(ép-15&r)» n>0, '
k=1

and the first passage time
(1.2) N(u) = min{n > 0; S, > u}.

Here {£,);_, is an irreducible and stationary Markov chain with finite state
space {1,2,...,r}, and U,(i, j) are integer-valued random variables such that
the matrices {U,(i, j)} ;_1, # = 1,2,..., have a common distribution and are
independent of each other and of the Markov chain.

Let A c Z (the integers) and B c Z, (the positive integers) and put

(1.8) Z,j(n,u) = prob(N(u) €n +A,Sy,, €Eu+ B, {nuy = Jléo = i).

We shall in this paper determine the asymptotic behaviour of Z,;(n,u) as n
and u tend to infinity. The approximation is valid for all B c Z, and for a
fairly large class of sets A.

If we let r = 1, we get the corresponding result for ordinary random walks
(on Z). The other extreme is when U(i, j) is a deterministic function of (i, j).

The more general problem of estimating the probability that a two-dimen-
sional random walk (T, S,);_; hits the set (n,u) + A X B the first time
S, > u can be treated by the same method [see Héglund (1990a) for the
corresponding problem for independent random variables].

Miller (1962a, b) considered the case A = Z, B = Z_ and found the asymp-
totic behaviour of prob(N(u) < «) as u — « using a Wiener—Hopf factori-
zation. Presman (1969) used a similar technique to study the asymptotic
"behaviour of prob(N(z) <n) (A ={...,— 2,— 1,0}, B = Z,). This technique
was further developed by Arndt (1981, 1982). He obtained upper bounds for
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prob(N(u) < =), prob(N(u) < n) and their difference and he gave conditions
under which explicit calculations are possible.

Let (p;;) stand for the transition probability matrix and define the (matrix-
valued) probability density of U,, P(u) = (P;;(u)), by

Pj(u) = prob(U,(&,_1,&,) = u, &, =Jlép_1 = i)

(1.4) = prob(Uy(i, j) = u)p;;.

The approximation will be expressed in terms of quantities related to the
matrices P(0) = (P;;(0)), 6 € O, where

(1.5) pij(o) =Y e™P;;(u) = p;;Ee’ V")
u

and where © denotes the interior of the set of § € R for which this matrix is
finite. The set ® is then an open interval which we shall assume is nonempty.

The matrix P() is thus a positive and irreducible matrix whose coefficients
are analytic in 6; and hence P(6) has a maximal positive eigenvalue A(9)
corresponding to strictly positive left and right eigenvectors o(6) = {0;(6)} and
p(8) = {p;(9)}. This eigenvalue is simple and analytic in ® and 0;(6) and p,(6)
can be chosen to be analytic in ®. We shall use the normalization o(9)
p(6) = 1.

A subscript 0 on probabilities and expectations indicates that the underlying
probability measure is given by the initial distribution

(1.6) proby(£, =) = 0;(6)p,(6),
and the cylinder set probabilities
proby(Up(ér_1,€r) = up, & =iy, k=1,...,nlé = io)
_ ﬁ e’ P, (uy)p;(0)
=1 A0)p, (0)

We shall write m(6) for the expectation of Uy (&, £;) with respect to this
measure:

(1.8) m(8) = E,Uy(&, &) = o(8) - P'(8)p(8) /A(6).

LEMMA 1.1. The function m satisfies m(0) = X(8)/A(6) and m'(6) > O for
all 8 unless prob(U (i, j) = a + v(j) — v(i)) = 1 for some integer a and some
sequence v(1),...,v(r).

(1.7)

Proor. Differentiating the identity
(1.9) B(0)p(6) = A(6)p(0),

we get

(110)  P(8)p(6) + B(6)5'(6) = X(8)p(6) + A(0)4(0).
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Multiply (scalar product) by (8) and observe that

(1.11) o (8) - B(0)p/(8) = M(8)a(9) - (6).

The equality of the lemma follows. The inequality is Theorem 1.2 of Keilson
and Wishart (1964). O

The approximation will depend on the support of the distribution,
L(n,u) = (L;;(n, u)), of the first strict ascending ladder point (N, Sy):

(1.12) Lu(n,s) =pr0b(N=n,SN=S,§N =j|§0=i).

Here and below N = N(0). This distribution defines a certain groﬁp G(L) c 72
A complication here is that L need not be irreducible even though P is. We
shall avoid this complication simply by assuming irreducibility. Define with
t=(n,uw),

(1.13) L@y = X L(t) - L(2),

t+ ety =t

that is, L** is the distribution of the kth strict ascending ladder point. Put

(1.14) Si;(L) = U {(n,s); L (n, s) > 0}
k=1
and let G,;(L) denote the smallest subgroup of Z2 that contains all the
differences ¢, — t,, t, € S;,(L), t, € S;,(L). It turns out that if L is irre-
ducible [i.e., the matrix ¥ ,L(¢) is irreducible], then the groups G, AL) =G(L)
do not depend on i, j and S;;(L) c v(i) — v(j) + G(L) for some sequence
v(1),...,v(r) in Z2 [see Lemma 1.1 in Hoglund (1990b)].
Let

_GbprOb:(N < w’ SN Z b’ §N =j)
E§Sy

(1.15) w;(b,0) =e Pj(o)_l,

where the star indicates that the underlying probability distribution is given
by the transition probabilities (1.7), but the initial distribution (1.6) which is
stationary for prob,(¢, = jl¢, = i) is replaced by the initial distribution which
is stationary for proby(N < «, &y = jl&, = ©):

(1.16) proby (£, = i) = a;*(0)p;(6).

Here o*() is the unique left positive eigenvector of the matrix
XL, e L(n,u)/M0)", that satisfies o*(8) - p(8) = 1.

We shall determine the asymptotic behaviour of Z(r, u) when (n, ©) tends
to infinity in the cone

(1.17) {(r,7m(8));7 > 0,0 € ®, m(6) > 0}.

It follows from Lemma 1.1 that the equation m(f) = u/n has a unique
solution 6 = 6(u/n) when (n, u) belongs to this cone. We shall also need the
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set
A={oe®; Y A(())a<oo}
acA
(1.18) {06®;A(0) > 1} ifinf A= —o, sup A < o,

={0 ifinf A > —, sup A < o,
{6 €®;1(0) <1} ifinfA> —o,sup A = w,

Note that A° does not stand for the complement of A but

Ac = {0e 0; ¥ A60)° <oo}.

acA°

THEOREM 1.2. Suppose that L is irreducible and that G(L) = 72 If
m(6) > 0, then probo(N < ®) = 1 and the expressions (1.15) are well-defined.

Let n and u — » in the cone (1.17) in such a way that 6 = G(u/n) stays
within but away from the boundary of the set {§ € ®; m(8) > 0,0 € A U A°}.

G) If 8(u/n) € A, then
Z;,(n,u) = M8)" e (2mnQ(8))*p:(d)
(1.19) .
( L A0 T (5,8 + o(l)),

ac€A
uniformly in 0(u/n) Here 0 < Q(6) < x is as in (3.18).

(i) If 6(u/n) € A° and if there is a k € ® such that A(x) = 1 and m(k) > 0,
then

(1.20) Z,;(n,u) =e—~"p,.(,<)( Y w,(b, ) +o(1)),

beB

uniformly in 6(u/n).

The theorem will be proved in the following sections.

Write I for the interval I = {m(6);0 € 0, m(8) > 0}. The function m(6) is
strictly increasing and hence the approximation (i) holds for u/n € m(A) NI
and the approximation (i) for u/n € m(A°) N I. Furthermore, log A(9) is
convex and A(0) = 1. So if m(0) > 0, then « = 0, and if m(0) < 0, then there
is a possibility that A(x) = 1 for some « > 0, and then m(k) is necessarily
positive.

Thus, for example, if we let A={...,-2,-1,0}, B=27,, we get an
approximation for

prob( max S, > u).

The approximation (i) holds when m(x) <u/n €I and (ii) holds when
m(x) > u/n € I. Here we assumed the existence of «.
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The condition G(L) = Z2 is just a normalization; see the comment around
formula (1.14) in Héglund (1990b).
Theorem 1.2(ii) is applicable to the case A = Z.

CoROLLARY 1.3. Suppose that L is irreducible and that G(L) = 72,
If 0 € ® and if there is a k € ® such that (k) = 1 and m(x) > 0, then
prob (N < ) = 1, w;(b, k) are well defined and

prob(N(u) < o, SN(u) Eu+ B}fN(u) =-I|§0 = l)

= ep,()( T 0,(b,) + (D))

beB

(1.21)

asu — x,

Thus in particular,
(1.22) prob( Sy, = u + slé, = i) > probg(Sy = s)/E§Sy

for s =1,2,... when m(0) > 0. Here we used the fact that we can take
p;(0) = 1 for all :.

It follows from Proposition 2.3 that the corollary holds as it stands under
the slightly weaker assumption {x € Z; (n,u) € G(L)} = Z.

In Section 2 we shall express the approximations in quantities that are only
implicitly determined by P via L. In Section 3 we relate some of these
quantities to the corresponding ones for P, which I think is preferable.

The above approximations are of the form e "¥n~1/2D or e "¥D. The
exponent H is directly given by P and u/n, but D only implicitly. I think that
it is possible to express even this directly via an analogue, Spitzer’s formula
when B = Z, but I have not done this. See formula (2.13) in Hoglund (1990a)
for the corresponding expressions for ordinary random walks.

2. The implicit solution. The idea of the proof is to show that Z is of
the form (2.9) for some suitably chosen F and then simply apply a renewal
theorem to the right-hand side of this identity to get an approximation for Z.

Let Z§(n,u), u > 0, denote the probability (1.3) in the special case when
A = {0}, B = {s} and define Z;;(n,u) = 0 for u < 0.

The event N(u) = n, Sy, = % + 8, éy, =J occurs if and only if either
N@O) =n, Sy =u +s, éyg)=J or else there is an m <n, v<u and a
k €{1,...,r} such that N(0) = m, Syq, =V, £xp) = * and then N(u) =n,
SN = U + 8, Ena) =]J.

Therefore

(2.1) Z’(n,u) =F°(n,u) + L+xZ°(n,u).
Here

prob(N =n,Sy=u +s,éy =jlég=1i) foru=>0,

2.2) Ff(n,u) =
(22) J( ) {O for u <0,
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and the star denotes convolution
(2.3) L*Z(n,u) =Y, L(m,v)Z%(n — m,u —v).

m,v

The equation (2.1) implies

h—1
(2.4) Z*= Y L« F®+ L"«Z¢
k=0
for h=1,2,.... Observe that supp(L) c[1,») X [1,0) and hence that

supp(L"*) c [h,®) X [h,»); use the fact that Z°(n,u) =0 when n <0 or
u < 0 and conclude that L** * Z%(n,u) = 0 for all & > min(n, u + 1).
Therefore

(2.5) Z° =R+« F*,

where _

(2.6) R= Y L"*.
n=0

Let A, B and Z be as in (1.3) and note that
Z Z Zs(k’u) =Z(n7u)7

k—neA seB

(2.7 Y Y Fi(k,u)

k—neA seB
=prob(N-n€A,Sy—ue€B,éy=jlé =1i)
for u > 0. The identity (2.9) therefore follows from (2.5) with
Fj(n,u)
(2.8) _ {prob(N -n€A,Sy—u€B,éy=jlé,=1i) foru=0,
0 for u < 0.

LEMMA 2.1. The probabilities (1.3) satisfy
(2.9) Z=RxF
forallAcZ BcZ,.

First some notation: Let
(2.10) I’:l‘](n’ 0) = Z Z e""+0uLij(n, u) = E(enN+0SN3j(§N)I§0 = i),

where §;(£) = 1if £ = and 8,(£) = 0if £ # j. Let furthermore ®” denote the
interior of the set of ¢ = (7, 0) € R2 for which L(¢) < . (We do not exclude
the possibility ®X = & in this section.) Assume that ﬁ({ ) is irreducible and
write A({) for its maximal positive eigenvalue and o(¢) and p({) for the
corresponding left and, respectively, right positive eigenvectors, normalized in
such a way that o(¢) - p(¢) = 1. The symbols A, p and o thus have another
meaning in this section than that in the introduction.
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Let
ML) ML)
(2.11) X(&) = (3:A(L),9,A(¢)) and X'(¢) = an? am 40
. 1 'v2 a2A(£) 82)l({)
6 dn 362

denote the gradient and the second order derivative matrix.
We shall determine the asymptotic behaviour of Z(n, u) when (n, u) tends
to infinity in the cone

(2.12) {TX(£);7> 0,0 € ©F,A(2) = 1).
The probability measure corresponding to that given by (1.6) and (1.7) is
prob, (¢ = i) = a;({)pi({),

(2.13) prob,(N =n,8y =u,éy =jlég = i)
_ em”euLij(n’u)pj({)
)‘(Z)Pi(f)

It is seen in the same way as in the proof of Lemma 1.1 that X({) =
(E,N, E,Sy), where E, stands for expectation with respect to the previous
probability measure. The probabilistic intepretation of X'({) is, however, more
complicated. .

The set that corresponds to A is

(2.14) A= {n; Y e < 00}

acA
and instead of 6(u /n) we shall consider {(n, u) which is the unique ¢ = {(n, u)
for which A({) = 1 and X(¢) and (n, u) have the same direction. See Lemma
1.4 in Héglund (1990b).
PROPOSITION 2.2. Assume that L is irreducible and that G(L) = Z2. Put
(2.15)  ¢;;(b,¢) = e *p(¢)prob,(N <, Sy = b, &y =) /p;({).

Let u and n - » in the cone (2.12) in such a way that { = {(n,u) =
(i(n,u),8(n,u) stays within but away from the boundary of the set of
¢ = (n, 0) determined by

(2.16) (€@L, (9,000, X()#0, nedud.
Q) If %(n,u) €A, then

Zij(n" u) = e_ﬁn_éu(z'”T(z)C(Z))
(217) (Z e naz U(b {)+O(1))
acA

-1/2
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uniformly in {(n,u). Here T({) is determined by (n,u) = TX() and C(¢) =
X(Q) - X(§)7X(Q). The existence of X'({)~! is part of the conclusion.

Gi) If (n,u) € A° and if there is @ k > 0 such that AMO0,x) =1 and
9,A1(0,x) > 0, then

(2.18)  Z(n,u) = e_Kuaz)t(O,K)_l( Y c(b,(0,x)) + 0(1))
beB
uniformly in {(n,u).
The case A = Z will be needed in the proof. In this case the functions Z and

F will depend only on the variable # and we can replace L in the identities
(2.6) and (2.9) by L,(u) = £, L(n, u), the marginal distribution for S,,.

PrOPOSITION 2.3. Assume that L is irreducible and that G(L,) = Z. If
(0,0) € O and if there is a (0, k) € OL such that M0, ) = 1 and 3,M(0, k) > 0,
then '

prob(N(u) < oo, SN(u) €Eu+ B7§N(u) =j|§0 = l)

— e 9,A(0, K)‘l( T ¢,(5,(0, ) + 0(1))

beB

(2.19)

as u — o,

ProoF oF ProposITION 2.3. It follows from Lemma 2.1 and the one-dimen-
sional version of Theorem 1.5 in Héglund (1990b) that the expression to the
left in (2.19) equals :

(2.20) e (3,(0, K))‘I(Z p.(0,k)0,(0,k) F,;(k) + 0(1)),
provided the sums
(2:21) F’;ij(o) =X e’ F;;(u) = E(eostj('fN)lfo = i)

are convergent for 6 in a neighbourhood of «. Here F,;j(u) = F,;(n,u) as
defined in (2.8) but with A = Z.

We shall use a superscript to indicate the dependence on the set B. A
change of the order of summation yields

FE0)= L e ®Y Y L, ;(m,v)

beB v=>b m
(2.22) Y X (e” -1)L;(m,v)/(e*—1) if6+0,
F'Z:“f _ m v
< 5(0) ) ZvLij(m’v) if § =0,

and these sums are convergent for all (0, 0) in L since this set is open and
since (0,0) € OL.
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That the sum in (2.20) equals the sum in (2.19) follows from the second
identity in (2.13) with { = (0,«). O

Proor oF PrROPOSITION 2.2. The proof of part (i) is similar to the proof of
Proposition 2.3. We use the two-dimensional version of the above mentioned
theorem and have to verify that the sums

(2.23) ﬁ'ij({) =)y ) enn+0uFij(n’ u) = E(e"NHSN‘Sj(fN)"fo = i)

are convergent for { in the set determined by (2.16).

In this case,
FE) =L e ™Y e ®Y ¥ e+ %L, (m,v)
ac€A beB ' m v>b
<F3+(¢)
(2.24)

Y Y em(e® - 1)L, ;(m,v)/(e’ = 1) if6+0,
= e"’la X m v
agA Y. ¥ e"uvL;;(m,v) if =0,
m v

and these sums are convergent for all { in the set (2.16) since this set is open.
The remainder of part (i) follows from the second identity in (2.13).
In order to prove part (ii), note that

(2.25) ZA(n,u) + Z%(n,u) = Z%(n,u).

Here we used a superscript to indicate the dependence on A. We can apply
part (i) to Z4°(n, u) and Proposition 2.3 to Z%(n, u). Furthermore,

(2.26)  WH(n,u)n+0(n,u)u = m?x{nn +0u;A(L) =1} = ku
and hence Z4(n,u) = Z%(n, u)1 + O(n=1/2)).
3. Proof of the explicit version. We shall need an auxiliary function
G(n,u) = (G;;(n, u)), where for n > 0,
(3.1) G;;(n,u) =prob(N >n,S, =u,¢, =jl¢ =1i).

Here S, =0 and hence G(0,u) = 6(0,u), where 8(n,u) # 0 only when
(n,u) = (0,0) and equals I, the identity matrix, in that case. Let us agree that
both G(n, u) and L(n, u) equal 0 when n < 0.

By an obvious modification of the argument [page 599 in Feller (1971)]:

{N=n,S,=u,¢, =j}
(3‘2) = U U ({N>n_ l’Sn—1=t’§n—1=k}

k=1t<0

N{U(k,&,) =u—t, £, =j})



RUIN FOR MARKOV CHAINS 1307
for © > 0 and hence
(3.3) L(n,u) =Y G(n—-1,t)P(u—1t), u>0.
t
In a similar way we obtain

(34) G(n,u)=06(n,u)+ Y G(n—-1,t)P(u—-1t), u<O,

and hence

(3.5) L(n,u) + G(n,u) =8(n,u) + Y, G(n —1,t)P(u — t)

for all u«. )
Define L(%, 6) as in (2.10) and
(3.6) G(n,0) = L ™Y e™G(n,u).
n=0 u

Lemma 3.1. If 6 € ®, m(6) > 0 and e"\(0) = 1, then G converges in a
neighbourhood of the point (7, 0).
Let | = inf,_¢ A0), then (—=x,log(1/1)) X © c OF,

Proor. Let 6 < 6, then
G(n,0) <Y ¥ eme®™P*(u) < ¥ ¥ eme” P (u)

n u<0 n u
(3.7 N
=Y e™P(0)".
n
The latter sum converges if and only if ,e"A(6')" < «, that is, if e"A(8’) < 1.
But log A has positive derivative m(8) at the point 6 and hence A(8") < A()
when ¢’ is less than but sufficiently close to 6.
In the same way we see that Aﬁ(n,f)) converges if e""A(8') < 1 for some
6’ > 0. It follows from (3.8) that L(7, #) converges if G(n, 0) does. Therefore
L(n, 8) converges if e"A(8’) < 1 for some ¢'. O

We get from (3.5),

(8.8) L(n,6) + G(n,6) =1+ e"G(n,0)P(6)
or
(3.9) G(n,0)(I—e"P(6)) =I1-L(n,9).

We shall compare the two chains defined by (1.7) and (1.6), respectively,
with (2.13). In order to keep clear the difference between the two chains we
shall add a subscript or superscript P and, respectively, L.
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Let { = (n, 6). The mean-value vector m*({) = (Ef'N, E}'Sy) is defined by
(Z )

EfN=0"%(¢) - P (£)/AL($),
(3.10) '

oL
E{LSN="L(§) ({)

P (&) /AL(8).

THEOREM 3.2. Assume that mF(9) > 0.

(1) The variables N and S, are proper with respect to prob, and
E(tN|¢y =i) < o for somet > 1and all i € X.
(i) Ap(n,6) = 1 if and only if e"Ap(6) = 1.
(iii) If e"Ap(0) = 1, then EFN <  and

ELSy = mP(0)ELN,
(3.11) p™(¢) =p"(9),
o (£)G(¢) = EfNa*(6).

& = i)=1.

The first of the identities (3.11), which is a Markov version of Wald’s
identity, is certainly related to the generalized Wald’s identity of Franken and
Lisek (1982). Note that it implies that m%({) has the same direction as the
vector (1, mP(#)) which is what we shall need. The identity (3.12) is a special
case of Folgerung 1 of Kiichler and Semjonov (1979). We shall not use it but it
serves as an intermediate step in the proof.

Gv)

—-N oszgN( )

(3.12) (0

E\Ap(6)

Proor oF THEOREM 3.2. Put {, = (n(6),6), where n(6) is defined by
e"®A(0) = 1.
The identity (3.9) yields

(3.13) (I - L(£))e"(6) =0,

that is, (3.12) holds and hence N and S, are proper. The remalnder of ()
follows from Lemma 3.1 and the observation that L({) converges whenever
G(Q) < o [let ¢ = e"™Ap(0)].

Another consequence of (3.9) is that pZ(£,) = pP(8) and A;({,) = 1 [recall
that A,({) is the only eigenvalue that has positive eigenvectors]. L(¢) increases
strictly with n and the same must be true for A;({) because

(3.14) AL(S) = max min —(—2{)&)
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[see Wielandt (1950)]. Therefore sign(A({) — 1) = sign(e”A(#) — 1) and hence
(ii) follows.
The identity

(3.15) o (£6)G (L) (1 — Ap(6) " P(8)) = 0
follows from (3.9) and hence there is a positive number ¢ such that
(3.16) a(£0)G(&) = ca® ().

Differentiate (3.9) with respect to 7. Multiply by o 2(¢,) and pZ(¢,) from the
left and right and conclude that

(3.17) ¢=ELN.

The remaining identity follows in the same way after differentiation of (3.9)
with respect to 6. O

We shall finally use the results of this section to show how Theorem 1.2
follows from Proposition 2.2.

ProOOF OF THEOREM 1.2. Assume m(0) > 0. Define () by e"®A(9) = 1. It
follows from Theorem 3.2(ii) that AL(n, #) = 1 if and only if n = n(6).

Lemma 3.1 implies that (n(6),8) € ®F and (%(6),0) € OL, for all 6 in the
open set {# € ®; m(0) > 0}. Thus in partlcular E Sy < .

Theorem 3. 2(111) implies that X, (¢) # 0, 6(n, u) = 0(u/n), T({) = n/EEN
and pX({) = pF (0. .

It is clear that n(8) € 4 if and only if 6 € A.

The condition on L implies that dim G(L) = 2 and hence that X}({) is
strictly positive definite [see Lemma 1.2 in Héglund (1990b)]. The constant @
is thus given by

Xp(£) - X($) TIXL(0)
3.18) Q 0) = 2 )
( ( ) E{N(EZSN)

where ¢ = (1(0), 0).
The identity

(3.19) cij(b,g)/E*SN=pf’(0)wj(b,0)

follows from the fact that p(¢) = pf(6) and o;%({) = *(8), when e"A(9) =
0O

REFERENCES

ARNDT, K. (1981). Properties of limit functionals of a random walk on finite Markov chains. Math.
Operationsforsch. Statist. Ser. Statist. 12 85-100. (In Russian.)

ARNDT, K. (1982). Finding in explicit form the distribution of the supremum of a random walk on
a Markov chain. Predel’nye Teoremy Teorii Veroyatnoste i Smezhnye Voprosy, Tr. Inst.
Mat. 1 139-146. (In Russian.)



1310 T. HOGLUND

FELLER, W. (1971). An Introduction to Probability Theory and its Applications 2, 2nd ed. Wiley,
New York.

FRANKEN, P. and Lisek, B. (1982). On Wald’s identity for dependent variables. Z. Wahrsch. Verw.
Gebiete 60 143-150.

HocLunD, T. (1990a). An asymptotic expression for the probability of ruin within finite time.
Ann. Probab. 18 378-389.

Ho6cLunD, T. (1990b). A multidimensional renewal theorem for finite Markov chains. Ark. Mat.
28 273-287.

Karo, T. (1966). Permutation Theory for Linear Operators. Springer, New York.

KEILSON, J. and WISHART, D. M. G. (1964). A central limit theorem for processes defined on a finite
Markov chain. Proc. Cambridge Philos. Soc. 60 547-567.

KUCHLER, 1. and SEMJoNoOv, A. (1979). Die Waldsche Fundamentaliden titéit und ein sequentieller
Quotientest fiir eine zufillige Irrfahrt iiber einen homogenen irreduziblen Markovschen
Kette mit endilichem Zustandsraum. Math. Operationsforsch. Statist. Ser. Statist. 10
319-331.

MILLER, H. D. (1961). A convexity property in the theory of random variables defined on a finite
Markov chain. Ann. Math. Statist. 32 1261-1270.

MILLER, H. D. (1962a). A matrix factorization problem in the theory of random variables defined
on a finite Markov chain. Proc. Cambridge Philos. Soc. 58 268-285.

MILLER, H. D. (1962b). Absorption probabilities for sums of random variables deﬁned on a finite
Markov chain. Proc. Cambridge Philos. Soc. 58 286-298.

PresmaN, E. L. (1969). Factorization methods and boundary problems for sums of random
variables given on Markov chains. Izv. Akad. Nauk SSSR Ser. Mat. 33 815-852.

WIELANDT, H. (1950). Unzerlegbare nicht-negative Matrizen. Math. Z. 52 642-648.

DEPARTMENT OF MATHEMATICS
RovAL INSTITUTE OF TECHNOLOGY
S-100 44 STOCKHOLM

SWEDEN



