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ON THE ALMOST SURE BEHAVIOR OF SUMS OF IID
RANDOM VARIABLES IN HILBERT SPACE

By Uwe EINMAHL

Indiana University

We study the almost sure behavior of sums of iid random variables
satisfying the bounded LIL in Hilbert space. We show that the almost sure
behavior is different from the Gaussian case, whenever the second strong
moments are infinite. A law of the £ times iterated logarithm is established
which refines the bounded LIL. The interesting feature here is that con-
trary to the known conditions for the bounded LIL, one needs not only
moment type conditions but also a nice structure of the covariance opera-
tor.

1. Introduction. One of the classical results of probability is the
Hartman-Wintner law of the iterated logarithm (LIL) which states that one
has for any sequence of independent, identically distributed (iid) random
variables (r.v.’s) {X,} with E[X;]=0 and o?:= E[X?] < «» almost surely
(a.s.),

n
(1.1) limsup + ). X;/y/2nLyn =o,
n—o j=1

where Lt := log(t V e), Lyt := L(Lt), t > 0.
From (1.1), it immediately follows that

/V2nLyn =0 a.s.

(1.2) lim sup

n-—ow

L X
j=1

Moreover, it is known that the conditions E[X] = 0 and E[X?] < « are
also necessary for (1.2) to hold.

Considering this so-called two-sided version of the LIL, it is natural to ask
whether a generalization to multidimensional random vectors, or even to
random variables taking values in infinite-dimensional Hilbert spaces is possi-
ble.

From now on let X, X;, X,,... be iid r.v.’s taking values in a separable
Hilbert space H with norm | ‘|| and scalar product (:,-). Further, set
S, =X} X;,neN.
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1228 U. EINMAHL
The following basic result is due to de Acosta and Kuelbs [3].

THEOREM. Suppose that X is an H-valued r.v. satisfying

(1.3) E[X]=0, E[IXI’/LIXI] <=

and

(1.4) E[(X,y))] <=, yeH.
Then we have

(1.5) limsupl|S,ll/y/2rLyn = o,

where o? == sup(E[(X, y)*I: llyll < 1}.

Using the aforementioned converse to the Hartman—-Wintner LIL, it is easy
to see that the conditions (1.3) and (1.4) are also necessary for (1.5) to hold.
This means that the previous theorem is the exact analogue of the
Hartman-Wintner LIL in Hilbert space.

The Hartman-Wintner LIL, however, has one shortcoming: It gives only an
incomplete description of the almost sure behavior of sums of iid r.v.’s. A
thorough investigation of the almost sure behavior requires the determination
of lower and upper classes. This concept is due to Lévy and we now give the
relevant definitions for sums of H-valued random variables. The basic observa-
tion is that one has for any sequence a, 1~ almost surely,

(1.6) IS, <a, eventually
or
(1.7) IS,ll > a, infinitely often (i.o.).

This can be easily seen when using the 0-1 law of Hewitt—Savage. In the
first case one says that {a,} belongs to the upper class, whereas in the second
case {a,} belongs to the lower class.

From (1.5) it now follows that {oc(anL,n)'/?} belongs to the upper class
(lower class) whenever a > 2 (a < 2). But it is not clear at all what type of
sequence, for instance, {0(2nL,n)'/?} is.

Feller [10] established an integral test for lower and upper classes, which
applies to any sequence of iid real-valued r.v.’s with mean zero and finite
variance, thereby substantially refining the Hartman—-Wintner LIL. From his
work it follows that sums of iid r.v.’s behave like sums of standard normal
r.v.’s whenever the following condition is fulfilled:

(1.8) E[X1{IX| 2 ¢}] = O((Lyt)™") ast - w.
Moreover, the almost sure behavior is different if one has
LE[X?1{X| = t}] > = ast — o.
This means that (1.8) provides a sharp condition.
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The first result on lower and upper classes for sums of iid H-valued r.v.’s is
due to Kuelbs [15]. From his work it follows that one has if X is a Gaussian
mean zero r.v., for any eventually nondecreasing function ¢: (0, %) — (0, »):

P{IISnII > o-\/er)(n) i.o.} =0 or =1

1.9 o d 2
(19 accordingas d)(:) exp(—d)(;z)

n=1

)<oo or = o,

where d is the dimension of the eigenspace of cov(X) (= covariance operator
of X) corresponding to o? which is an eigenvalue of cov(X) in this case.

A typical application of (1.9) is the following refinement of (1.5), the exact
formulation of which requires some additional notation.

We define recursively for ¢t > 0 and k > 3, L.t := L(L,_,t). Further set
ay =2, a3 =d+2,a,=2,k>4andput fora €Rand k& > 3,

E—1 1/2
b x(t) = ( Y oLt + ath) . t>0.

j=2
Then, we can infer from (1.9) for all 2 > 3,

P{IS,I > oVn ¢, 4(n)io} =0 or =1

(1.10) )
accordingas a > a, ora < a,.

In a recent paper ([6]), it has been shown that (1.9) and consequently (1.10)
remain true for any H-valued mean zero r.v. satisfying the conditions

(1.11) E[IXI?] <

and
(112) E[(X,9)’1{I(X,9)l 2 t}] = O((Lyt) ") ast—>w,yeV,

where V is the d-dimensional eigenspace corresponding to the (largest) eigen-
value o2 of cov(X).

Condition (1.12) is the Hilbert space analogue of condition (1.8) and it is
clear from Feller’s work that this is an essential requirement for sums of iid
r.v.’s behaving like sums of iid Gaussian r.v.’s. The importance of (1.11),
however, is less clear, and it is the purpose of the present paper to investigate
the almost sure behavior of sums of iid r.v.’s with E[||X||?] = «. Before we
state our results, we still would like to mention a phenomenon in connection
with infinite-dimensional LIL results which will be of fundamental importance
for our work. It is clear that we have now to consider the covariance operator
instead of the variance. From condition (1.4), which is necessary for the LIL in
Hilbert space, it follows that it exists as a bounded self-adjoint, positive
semidefinite operator. If it is even a compact operator, one can prove a
compact LIL which refines the bounded LIL (1.5). A necessary and sufficient
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condition for the covariance operator being compact is

113y (X0%yli<1)
is a uniformly integrable family of random variables.

It is obvious from (1.13) that assumption (1.11) also implies that cov(X) is
compact. This means that this assumption has two effects: First, it enables us
to control the tails of the distributions of the random variables {X,} which is
essential for any result on almost sure behavior. Second, it guarantees that the
covariance operators behave nicely. This last property will be essential in the
present setting. It will turn out that moment type conditions are not sufficient
in order to obtain a nice almost sure behavior for sums of iid r.v.’s with
E[|1 X]|?] = . One also needs that, at least to a certain extent, the covariance
operators behave like compact ones.

2. The main results. Let now X be an H-valued r.v. satisfying

(2.1) E[X]=0, E[IXI’/L,IXI] <
and
(2.2) E[(X,y)"] <=, yeH.

Set o2 := sup{E[(X, y)?I: llyll < 1}.
Suppose that

(2.3) o? is an eigenvalue of cov( X),
and that
(2.4) dim(V) = d < o,

where V is the eigenspace of cov(X) determined by the eigenvalue o2. Fur-
ther, let W be the orthogonal complement of V and suppose that there exists a
p jTE_[O, 1) such that

(2.5) E[(X,5)] <po?, Iyl<1, yeWw.

Note that conditions (2.3)-(2.5) are always satisfied when cov(X) is a
compact operator. Finally, assume again that for any y € V,

(2.6) E[(X,9)*1{I(X,5)l = 8}] =O((Lyt)™") ast— .

We then have the following extension of (1.10) which might be called the
law of the % times iterated logarithm.

THEOREM 1. Let X be an H-valued r.v. satisfying conditions (2.1)—-(2.6)
and let k > 3. Suppose that

(2.7) E[IXIP1{IX] < t})] = o(L,t) ast — .
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Then we have
P{IIS,,II > m/'r;d)a,k(n) i.o.} =0 or =1

according as a > a,, or a < a,.

It is easy to see that condition (2.7) holds true whenever
(2.8) E[IXI?/LIXI] < .

The next result shows that condition (2.7) is sharp. Namely, we have:

THEOREM 2. Let X be an H-valued r.v. satisfying conditions (2.1)—(2.6)
and let k > 3. Suppose that

liminf E[| XI*1{IX|l < ¢}] /Lt = B > 0.
t—> o

Then we have
P(IIS, Il > oVn ¢, , io}=1,

whenever a < a;, + CB, where C is a positive constant depending on the
distribution of X.

We note that if the covariance operator of X is compact, a possible choice of
C is given by C = 1/0% Moreover, it is immediate from Theorem 2 that we
have for any a > 0,

P{IS,Il > oVn ¢, ,(n)io0.} =1

if E[IXI*H{IX| < #}]/Lyt —> © as t — o,
Before we state our last result, we still have to introduce some notation.
Let 3,: H— H, n € N be a sequence of self-adjoint positive semidefinite
operators which is defined by the relation

(2.9) (x,2,9) = E[(x, X,)(9, X,)], =,y €H,

where X/ = X, l{|X,ll <c,}, ¢, = Vn /(Lyn)% n € N.

Since the random variables X are bounded, it follows that the operators
3., have finite traces which implies that they are compact.

Let 02, >0%,> -+ be the positive eigenvalues of 3, arranged in a

nonincreasing order and taking into account the multiplicities. If there are
only finitely many positive eigenvalues, we set ¢;%, = 0 for large enough i.

Put
1 = o?
'yn = [— Z log(ﬁ) \Y2 1, nEN,

2 d+1 0~ 0,
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and note that it is well defined since the first term is

1 = o2 1

X oo
<5 X = X o,

<
2 2 2
2, 3+10° 0, 20%(1 - p) i=d+1

The last series is finite, since 2, has a finite trace.
We are now in a position to formulate Theorem 3, which comes very close to
an integral test.

THEOREM 3. Let X be an H-valued r.v. satisfying conditions (2.1)-(2.5).
Then we have for any eventually nondecreasing function ¢: (0, o) — (0, ®):

P{IIS, Il > oVn ¢(n) i.0.}=0,
$(n)*

n

(&)

] 1 2
whenever Y exp(— Ed;(n) + 'y,,) < oo,
n=1

Moreover, under the additional assumption (2.6) it follows that
P{IS, > oVné(n) i.o.}=1,
(B) = ¢(n)"

whenever Y.

n=1 n

eXP(— %tlﬁ(n)2 + Yn) = .

- Theorems 1 and 2 can be easily inferred from Theorem 3 so that we have
only to prove the latter result. The proof of the upper class part (A) of
Theorem 3 is very similar to that in [6]. In order to prove the lower class part
(B), however, we have to use an entirely different method. Whereas it was
possible in [6] to bypass the difficulties which one encounters when giving a
direct proof for lower class results by using a strong approximation argument,
we must now return to the classical approach developed by Erdés [8] and Feller
[9, 10]. This method is based on a combination of sharp exponential inequali-
ties with ““direct” calculations of the probabilities involved.

In order to extend this approach to H-valued random variables, we first
derive precise bounds for probabilities of the type P{|Y|l > ¢}, where Y is a
Gaussian mean zero r.v. (see Section 3). Then we show that the almost sure
behavior of the sums S, is equivalent to the behavior of sums of appropriately
defined bounded r.v.’s which we obtain from the original sequence {X,} by
truncation (see Section 5). Using the central limit theorem in Hilbert space, we
then can apply the results of Section 3 in the proof of both the lower class part
(B) (see Section 6) and the upper class part (A) (see Section 7). In order to
guarantee that one can disregard the error terms in the normal approxima-
tion, we need some auxiliary results which are detailed in Section 4. In Section
8, we finally give an example demonstrating that moment type conditions are
not sufficient for a nice almost sure behavior if E[|| X||?] = «. Some results on
the behavior of eigenvalues of covariance operators which we decisively need in
Sections 6 and 7 can be found in the Appendix to this paper.
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3. Some results on Gaussian random variables. Let Y be a nonde-
generate Gaussian mean zero r.v. with covariance operator 3, say. Denote the
largest eigenvalue of 3 by o? and let d be the dimension of the corresponding
eigenspace. Let 02, 1 <i < d' be the positive eigenvalues of 3, arranged in a
nonincreasing order and taking into account the multiplicities. Further, if
d' <o, put 02 =0, i > d'. Note that we always have 0> =02 1 <i <d and
o <o%i>d.

Denote the density of ||Y||? by g. Then it follows from [17] that

(3.1) lim (g(2)/2%/2 Lexp(~2z/202)) = (202) " /*T(d/2) 'K(3),
where
(3.2) K(3) = ﬁ (1 -o2/0%) "2,

' i=d+1

The main purpose of this section is to refine (3.1) so as to obtain explicit
bounds for g. The method used here is similar to that of Hoeffding [13].

Let {e;} be a sequence of orthonormal eigenvectors corresponding to the
eigenvalues {0;%}. Then we have with probability 1,

(3.3) Y= Z (Y,e;)e; = E a;n;é;,
i=1 i=1

where {7,} is a sequence of independent standard normal r.v.’s.
Put

Z’=0'22d:"7i2’ Z:= f: o?nt.
i=1 i=d+1
Then Z, Z are independent r.v.’s such that
(3.4) IYI’=Z+Z as.
Denoting the densities of Z and Z by f, and f, respectively, it is clear that
(35) fu(2) = (20%) °T(d/2)"'2/* Lexp(~2/20%), 2> 0,
and also that

(3.6) g2)= [ fuz -9 F(y)dy,  z>o.
We infer
(3.7) 8(2) = fu(2) [ (1 - y/2)"* L exp(y/202) f(y) dy.

We first consider the case where the multiplicity d of the eigenvalue o2 is
at least 2.
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LemMma 1. Ifd > 2, we have

(@) g(2) < K()fy(2), z> 0.
M) g(2) = 1K) f(2), z = 24dElY°1/Q - 62, /0.

Proor. Using the independence of the 7,’s and the assumption d > 2, we
immediately get from (3.7)

8(2) <fu(2) [ “exp(y/202) f(y) dy

= fu(2)E| T1 exp(o?n?/20?)
i=d+1

= fa(2) - K(2).
In order to establish the lower bound, we first note that

ftwexp(y/Zoz)f(y) dy < t_lE[Zexp(Z/20'2)].

From the definition of Z, it is easy to see that

E[Zexp(Z/2o-2)]

- ¥ E[ofn? exp(on/20%)] T1 Elexp(ofn/20%)]
i=d+1 injl

=K(3) ¥ 0',-2(1 - a',-z/crz)_1

i=d+1
<K)E[IYI?](1 - 02,,/0%) .
We thus have shown for ¢ > 0,
(3.8) [twexp(y/%z)f(y) dy < K()E[IYIP](1 - 0f,,/0%) 't
Next observe that
foz/d exp(y/20°) f(y) dy — foz/d(l - 5/2)"" " exp(y/20%) f(y) dy

d
2

< fz/dy

3 exp(y/20?) f(y) dy

1. _
< gfo/dexp(y/zoz)f(y) dy.

We infer that

fo Y1~ y/2)Y* T exp(y/20%) F(y) dy = & fo *? exp(y/202) f(y) dy,
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which on account of (3.8) is
> ;K (3)

provided z/d > 2E[|Y|’I(1 — Z2,,/0?~". The last bound in conjunction with
(3.7) implies (b). O

We now want to prove a related result if d = 1. For that purpose, we need a
further lemma.

LEmMMA 2. Let {n,} be a sequence of independent standard normal r.v.’s
and let {o?} be a sequence of nonnegative real numbers.
Set

Z, =Y o?n?,  Zy=2Z, +an, wherea>0,meN.
i=1

Let g, be the density of Z;, i = 1, 2.
Then we have:

(@) g(2) <1 +a/02)/2g)(2), z> 0.
() g(2) = g,(2)exp(—az/20,:), z > 0.

Proor. Denoting the density of Z, — 202 by h we have
(3.9) g:(2) = [ h(z - x)o; %"V exp(~x/202) dx/V2m
0
and

(310)  gy(2) = [ h(z — x)5; V2 exp(~x/2G2) dx/V2m ,
0

where 62 = 02 + a. Comparing (3.9) and (3.10), we immediately obtain the

assertion. O

LemMa 3. Ifd = 1, we have:

(@) g(2) < 18K(SXo/05)%f(2), z > 16E[Y|°1Q — 02/0®) 2
®) g(2) = 1K) f((2), z = 2E[IY )1 — o2 /a®) 1.

Proor. Using the representation (3.7), we get
(311) g(2)/f(2) <2K(3) + [ (1=3/2)" exp(y/20%) () dy-
Set

Y= (e + 022)/2)1/2(77292 +mges) + X oyme;,
i-4

and denote the density of [|¥||? by f.
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Then it follows from Lemma 2(a) that

(3.12) f(3) < (0/0)°f(3), >0
Applying Lemma 1(a), we obtain
(3.13) f(y) <2K(3)o2exp(-y/(c% +0})), >0,

where K(3) = IT7_,(1 — 262/(0% + 0})~ V2.
Combining (3.12) and (3.13), we find that

[3 22/4(1 —y/2) " exp(y/20%) f(y) dy

< 2K(%)o3” [32/4(1 —y/2) " exp(~(o? - 0f)y/40%) dy

< 2K(2)o5?% exp(—3(0? — 0F)z/160*)z.
It is easily checked that

K($) < exp( ¥ 02/(o? - oF)
i=4

< exp( E[IYI?] /(® - 02)).
We infer
K(3)exp(—3(0? — 0%)z/160*%)z
< exp(—(0? - 02)z/80%)z if 2 > 16E[IYI?](1 - 02/0?) .
Using the trivial inequality exp(—¢) < 2/t2, we see that the last term is
<802 ifz> 16E[IYI?](1 - 02/02) " > 160502 — o)

Since K(3) > 1, the last inequality in conjunction with (3.11) implies (a).
To prove (b), we first infer from (3.7),

-2

(3.14) £(2) > ([ exp(0/207) F(2) ) o).
Noticing that (3.8) remains true if d = 1, we find that
(3.15) [ ex(y/20%) () dy < 3K(2),

provided z > 2E[[Y |21 — 02/a?)~L.
Combining (3.14) and (3.15), we obtain (b). O

Lemma 1 and Lemma 3 imply the following theorem which is less accurate,
but still precise enough for the purpose of proving Theorem 3.
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THEOREM 4. We have for z > 16 dE[|Y |’1(1 - 02, /0?2
iK(3) < g(2) /fu(2) < 18K(3)0? /3.

From Theorem 4 we now infer:

THEOREM 5. We have for x > 5Vd (E[IIY I’D/2/(1 — o2, ,/0?):

(@ PIYll = x} < Co/03)? K Xx/0)? 2 exp(—x2/202).

) PIYll = x} > C,K(EXx/0)? % exp(—x2/20%), where C,, i =1,2 are
positive constants depending on d.

© P(IYll > x + B/x} < P{Y|l > x}, whenever B > 402 log(120/3).

@ P(IY]l > x — 8 < 144(0/0;)? exp(tx /oD P{IY ] > a1}, 0 < £ < 0.

Proor. Parts (a) and (b) follow from an integration of the inequalities of
Theorem 4 and the known fact that

Cyt?=2 exp(—t2/2) z‘fjxd/z‘l exp(—x/2) dx > C,t% 2 exp(—t%/2), t=>1,
t

where Cj;, C, are constants depending on d.
To prove (c), observe that

PIYIl > x + B/x)
< P(IYI* 2 2% + 26) = | “g(t + 2p) dt.
Using the inequalities of Theorem 4, we obtain
g(t +2B) /g(t) < 12(0/a3)" exp(—B/a?)(1 + 28/t)"
< 72(a/03)" exp(—B/o2)exp(dB/t)

< 72(0'/0'3)2 exp(—B/20?), t>x%>2do?.

The last term is less than ; whenever g > 202 log(14402/02). Integrating
the previous inequality, we obtain (c). The proof of (d) is similar. O

We finally note the following exponential inequality, which is not so precise
as that of Theorem 5(a). It will come in handy since it is easier to apply.

LemMMA 4. We have for t > 2(E[||Y|I?]'/2

P(IYll = ¢} < exp(—¢t2/802).
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Proor. Without loss of generality, we assume o2 = 1. Then using the
representation (3.3), we obtain

P{||Y||2t}sE[exp( Eo- )]exp(——tz)

]f[ 0?/2) 12 exp(—t%/4)

I/\

(1-
({ o?/4(1 - a,?/z)} - t2/4)
exp

(2E[IY1?] - £2)/4), t=0,
from which the assertion easily follows. O

4. Auxiliary results. We need the following inequalities for sums of
independent random variables with finite third moments which can be inferred
from the proof of Theorem 2.1(A), [16].

LemMa 5. Let X,,..., X, be independent H-valued r.v.’s with E[X;] =
E[llX; 1] < « and let Yl, ., Y, be independent Gaussian mean zero r.v. s
with cov(X ) =cow(Y};), j = 1,...,n. Then we have for s,t > 0

(a) P{ Zn‘, X; zs} sP{ i Y| =s —t} +At73 ) E[||X 1],
Jj=1 j=1 Jj=1

(b) P{ Zn‘, X; 28} ZP{ Zn‘, Y[l =s+ t} - At™3 Zn‘, E[IIXJ-II3],
j=1 Jj=1 Jj=1

where A is a universal constant.

For the proof of part (a), refer to Lemma A, [6]. The proof of (b) is similar.

Combining Lemma 4 and Lemma 5, we obtain the following Fuk—-Nagaev-
type inequality in Hilbert space. A related inequality has been proved in [4].
Lemma 6, however, is sharper since A, is defined in terms of the weak second
moments.

LEMmA 6. Let X, .. X be independent H-valued mean zero r.v.’s with
ENXIPl <, j=1,.
Then, we have for s 2 4(2 -1 ENX,12D12

Al

where A, = sup{Z?_;E[(X;,y)*]: llyll < 1} and A’ is a universal constant.

n n
Z > s} < exp(—s2/32A,) + As™% ) E[||Xj||3]’
i Jj=1
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Proor. Let Yj,...,Y, be independent Gaussian mean zero r.v.’s with
cov(Y)) = cov(X;), j = 1,...,n. Applying Lemma 5 with ¢ = s/2, we get

P{ Y X; ZS}SP{ Yy,
j=1 j=1

Using Lemma 4 we obtain for
T

> 8/2} < exp(—s?/32A,).

n

> s/2} +84s72 ¥ E[IX,1°].
j=1

1/2

s/2>2|E

{

Combining the last two inequalities, we obtain the assertion. O

- 2( Y E[IIlelzl)l/Z:

Jj=1

LY
Jj=1

n
LY
Jj=1

The next two lemmas will be frequently used in the remaining part of the
paper and we include them in this section for the sake of easy reference.

LEMMA 7. Let X be an H-valued mean zero r.v. satisfying the assumptions
(2.1) and (2.6). Then we have:

(@ E[IXIPHIXI < &}] = o(Lyt) as ¢t — .

() E[(X,y*1{IX|| =] = O(Lyt) D ast > o,y V.

Proor. Since E[||X||?/L,lIX|l] < «, there exists a nondecreasing function
g: [0,0) > [1,) such that

(4.1) g(t) =o(Lyt)ast >
and
(4.2) E[I1XI?/g(1X1)] < .

Using (4.1) and (4.2), we find that
E[IXIP1{IXI < ¢}] < E[IXI?/gl X1 g(¢) = o(Lt)

as t — o, thereby proving (a).
To establish (b), we note that

E[(X,y)"1{1XI = t}]
< E[(X,5)"1{IX] = ¢, (X, y)| < t/Lyt}]
+ E[(X, )’ I Xl = £, I(X, )| = t/Lyt}]
< P{IXIl = £}¢2/(Lyt)* + E[(X,5)"1{( X, 5)| = t/Lyt)|,
where both terms are O((L,t)~') on account of (2.1) and (2.6). O
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LEMMA 8. Let X be an H-valued r.v. satisfying (2.1). Let {n;} be a
subsequence of N such that for an appropriate constant a > 0 and large
enough j,

(4.3) exp(a/(Lj)*) <n;/n;_, < 4.
Then we have

Y (L) E[IXIPL{IXI| < e(n)}] /y/n; <,
j=1
where c(t) ==Vt /(Lyt)% t > 0.
Proor. To simplify our notation, we set p, = P{c(n;_;) < X| < c(n;)},

i € N, where n,:= 0.
Then it is easy to see that

}5 (L) E[IXIP1{IX I < e(n)}] /y/n;
=

(Lj)**n;1/ Z e(n;)’p;
i=1

C(n ) p,Z (Lj)**n;'72.

iMsEMs

Jj=i
For large enough i we have
d N8/2 _1p iR 85X e
L (Lj)*n; 1 T < - L (L) TRy (ny =),
Jj=i J J-1 Jj=i

where we use (4.3).
Noticing that Lyn; ~ Lj as j — o, which follows from (4.3), we see that the

last term is

<K [ (Lyx)/*x %?dx,

ni1

where K, > 0. Using the fact that
fw(sz)7/2x—3/2 dx = O((L2t)7/2t—1/2) ast — o,
t

we obtain for some constant K, > 0,

.21(Lf)3/2"51/2E["X"31{"X|| <c(n))}]

j=

<K; T e(n)*pini VH(Lyn,) "
i=1

<K, Z c(ni)zpi/L2ni’
i=1

where the last series is finite on account of (2.1). O
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5. A truncation argument. We now introduce a sequence {X'} of inde-
pendent bounded mean zero r.v.’s as follows.

We set X! =X, 1{|X,ll <c(n), X, =X, — E[X,], n €N, where c(¢) :==
ﬁ /(L,t)%, t > 0. We denote the corresponding partial sums by S;,, n € N and
S,,neN.

The purpose of this section is to show that, in a certain sense, the almost
sure behavior of the sums S, is equivalent to that of the (bounded) sums S/,
neN.

The proof would be much easier if we could set c(¢) = \/tLyt, ¢t > 0. But
this is not possible since Lemma 8 would not be true any longer. This lemma,
however, will be decisive in Sections 6 and 7, where it enables us to control the
error terms when using the normal approximation.

In order to make sure that the partial sum sequence {S’} has the desired
property, we shall employ a double truncation argument which goes back to
Feller [10], where it was given for symmetric real-valued r.v.’s. The extension
thereof to (not necessarily symmetric) H-valued r.v.’s can be found in [6]. We
now have to show that Feller’s argument can also be utilized for r.v.’s
satisfying only (2.1) and (2.2), but not necessarily E[||X I?] < ». Since the
proof is similar to that of [7], it will be enough to only indicate the main
arguments.

We set

Xy =X 1{IX,1>d(n)}, Xy=X;-E[X}],
X,=X,-X,-X;, X,=X,-E[X;], neN,
where d(t) == \/tL,t, t > 0. Let Sy, 87, Si, 8%, n € N be the corresponding

partial sums.
We first note:

LEMMA 9. We have
(5.1) Y E[IXIL{IXI > e(n)}]n~2(Lyn) ™ < .
n=1

In particular,
n

(5.2) Y E[IXIL{IXII> e(j)}] = o(Vn (Lyn)®) asn - w.

Jj=1

Proor. Using integration by parts, we obtain from assumption (2.1),

(5.3) A "E[NXIL(IX] > 2}](Lyu) "  du < .
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We infer
f (e(n) —c(n — D)E[IXIN{IXII > ¢(n)}]/Layc(n) < =,
n=1

from which (5.1) easily follows.
A straightforward application of the Kronecker lemma yields (5.2). O

We set

= ; E[IXI{I1XI > ¢(/)}].

Using exactly the same arguments as in the proof of Lemma 3, [7], we obtain:

LEmMA 10. We have

w.n"32(Lyn) "% < .
n 2

n=1
Next we need:

LeMMA 11. We have with probability 1
S,-8 = o(‘/ann) asn — .

Proor. Applying the Borel-Cantelli lemma, it is readily seen that

(5.4) Sy =0(1) as.
Moreover, it follows from Lemmas 2 and 3, [5] that
(5.5) E[S}]=o({nLsn) asn - .

[Note that P{|X|| > u} = o(Lyu/u®) as u — © on account of (2.1).] Thus, it
suffices to show

(5.6) S; =o(ynLyn) as.

Employing Lemma 7(a), we find that
E[18:1] < E[18717]"
< (nE[IXIPL{1X] < d(n)}])"*

=o((nLyn)"?) asn - .

Using standard arguments, it is readily seen that (5.6) would follow if we
were able to show for any & > 0,

(5.7) Y P{II§;{j -5 I> €277 Lj} < o,
Jj=2

where n; = 2/ -1,j>1
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Since we have E[||X?]®] < 8E[IX|*1{IX| < dG))], i € N, it follows from
Lemma 6 that it is enough to show

(5.8) Y E[IXIPL{IX] < d(i)}]/d(i)® <
i=1

and

(5.9) Zw: exp| —£227/Lj /32 Zi d"iz) < oo,
j=1 n;_1+1

where 62 = sup{E[(X7, )]: llyll < 1}.
(5.8) is immediate from Lemma 1, [5], so that it remains to show (5.9).
Using the trivial inequalities ¢ < o2 and

62 < E[IX;1%] < E[IXIPL{IXI| < d(i)}]/e(n;—),  nj_y <i,
we obtain

22 exp(—£22ij/32 Y &,.2) <64e72 Y d(n;) e(n;_) "
=

nj_1+1 Jj=2
nj

x ¥ E[IXIPL{IXI < d(i)}] 7o,
n;j_,+1

which is convergent on account of (5.8). O
We are now in a position to show:
LEmMMA 12. We have
P(IIS, - S, > Vn /Lyn, ISl > oy/nLyn 0.} = 0.
ProoF. From (5.2) and Lemma 11, it follows that
(5.10) S, =8, =o(Vn(Lyn)°) as.
Set m(n) = [n/(Lyn)*L,neN,n,=2*—-1 k€N,
N, = {k € N: E[IIS;I] < Vn /2L,n forall n € (n,_y,n,]},

Ny = N =N,
ng ~ ng
G,= U (A,, N C,,), H~= U C,
n,_1+1 n, 1+1

where An = U Z=m(n){Xk +X3}, C, = {||§;,|I > a\/ann }.
Arguing as in [7], one can prove that it suffices to show

(5.11) Y P(G,) <

keN;
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and

(5.12) Y P(H,) <.
keN,

Using the same arguments as in [7], we obtain for large enough &,

—_ g
P(G,) < Z P{X, + X,}P{ max |[|S,|l > sz/z m},
l=m, n=ng
where m, = m(2*~1).
Since E[|IS, |l = o(;/nLyn) as n — =, we can use a standard symmetriza-
tion argument to show that for large %,

o
P{ max |5, |l > 2"/2 VLE } < 4P{ max IS} > —2*/2VLk },
l<n<n, l<n<n, 16

where Sy :=L7_¢; X and {¢;} is a Rademacher sequence independent of the
sequence {X ‘).

Applying the Hoffmann-Jgrgensen inequality ([14], (3.3), page 164) and the
Lévy inequality for symmetric r.v.’s, we obtain for large enough &,

1
P{ max IS} > —2”/2\/L_k}

].Snsnk 6

< 2P{||s* > zmm}

1 4
< 32P{|IS* > —2’°/2\/17} )

144
Lemma 6 now implies for large enough %,
1
PISz)1> 72/ Ik |

< k70 + AE[IIXIPL{IX|l < c(n,)}] ni V/2(Lk) ~*2,

where & and A are positive constants.
Recalling Lemma 7(a), it is easy to see that

E[IXIP1{IX]l < ¢(ny)}] = o(c(ns) Lk) = o(n¥?(Lk) ™) ask > o.

Thus it suffices to show, in order to prove (5.11),

) ng
(5.13) Y (L) ¥ P{X] #0} <o
k=1 l=m,
and
© ng
(5.14) Y (LE) 2 Y P{X) + 0} <.
k=1 l=m,,
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[Note that P{X, + X}} < P(X} # 0} + P(X} + 0}]
Using the inequality P(X] # 0} < E[l|X}1°]/¢()?, we get for some k, € N:

) n,,
Y (Lk)™ ¥ P{X] +0)
k=k, I=m,
o ng
< ¥ (k) ¥ E[Ix1°)/yIET°
k=k, l=m,

E[IX71°] /y/nLan”,

where k(n) := [Ln /log(2)], ky(n) = max{k: m, < n}.

Since ky(n) — ky(n) = O(Lyn) as n — o, it easily follows from Lemma 1,
[5] that the last series is convergent, thereby establishing (5.13).
The proof of (5.14) is similar. To prove (5.12), we first infer from Lemma 10
that )

(5.15) Y (L) " <,
keN,

w [ky(n)
<Y (Z (Lk)~*

n=1 kl(n)

Moreover, we have for large enough %,
—_ g
P(H,) < P{ max S| > —2%/2 Lk } < (Lk)™%.
l<n<n, 4

It is now clear from (5.15) that (5.12) is true and our proof of Lemma 12 is
complete. O

Combining the two previous lemmas, we finally get:

LEmMA 13. We have

P(IS, = S, = Vn /Lyn, IS, 1l > Soy/nLyn i.0.}=0.

6. The lower class part. It is enough to prove this part for the special
case where o? = 1. We first define a subsequence {n ;} by the following
recursion:

nl = 1’
n;= min{n:n znj_lexp(a&n/Lj)}, Jj=2,

where 7, == E[|| X|*1{| X|| < c(r)}] V 1 and « > 2 is a constant which will be
specified later.

The function ¢ is defined as in the previous sections, that is, c(¢) =
Vt /(Lyt), t > 0.

Note that {n} is well defined since we have on account of Lemma 7(a) for
any C > 0, n/exp(C¥,) - © as n — . From the above definition it follows
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that
(61)  exp(af,/Lj) <n;/n;_, < exp(2a7, /Lj), j=z2.
To see this observe that
nj—1<n;_ exp(ay,,_/Lj),
which implies that
ny=(n; = 1)(1+1/(n; - 1)) s n,_; exp(af, (L) '+ (G- 17
<n;_, exp(2a&nj/Lj).

We use the trivial inequalities n; >jand Lj <j -1, j > 2.
We now need an upper bound for n;. First observe that on account of
Lemma 7(a), there exists a j, such that

(6.2) ¥, < Lyon/4a, nxn;.
Let g > 4 be an integer such that n; < q’, j <Jjo- Then it follows that
(6.3) n;<q’ forall jeN.

To establish (6.3), we use an induction argument. We have to show that for
any j ZJ 0

nj.<q’*t ifn;<q’.

Recalling the definition of our subsequence {n;}, we see that it suffices to

show

(6.4) exp(a&qju/L(j + 1)) <gq.

This follows from (6.2) after some calculation. Combining (6.1), (6.3) with
Lemma 7(a), we find that

(6.5) nj./n;j—>1 asj— .

Moreover, one can infer from (6.1) that

(6.6) n; > exp(a(j - 1)/Lj)
and
(6.7) Lon; > 3Lj, j=1.

We now consider the r.v.’s { X} which have been defined in Section 5. After
the subsequence {n;} has been introduced, we are in a position to give the
decisive portion of the proof of Theorem 3(B). It is divided into two parts. First
we show that

(6.8) Y P(A) == P(limsuij) >C,>0,
j=1 jeN
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where
A= {Ynjw(n;) <18, Il < fn; ((n)) + B/0(n,))},  JEN,
and ¢ is an eventually nondecreasing function such that for large enough ¢,

(6.9) $VLt <u(t) <2y/Lyt.

B is a positive constant which will be specified later.
Second, we prove that

= y(n)? (1, .
(6.10) n2=1 . exp( g¥(n) +7,.)
implies
(6.11) f P(A)) = .

Jj=1

Combining these two parts of the proof, we see that we have for any
function ¢ as before which satisfies (6.9) and (6.10),

(6.12) P(IS,II> Vny(n)io.) = C,.
Now let ¢ be an eventually nondecreasing function such that
(6.13) VLot <d(t) < 3yLyt, t=0,
and
= ¢(n)" 1. )
1 - — + = oo,
(6.14) L S0 exp( - gan) + ) =

Arguing as in Section 5, [7], we obtain from Lemma 13
(6.15) P(IS,l > Vr¢(n)io.) = P(IIS,II > Vry(n)io.),

where ¢(¢) = ¢(t) + 1/¢(8), t = 0.
It is now easily checked that this function ¢ satisfies (6.9) and (6.10). We
infer from (6.12) and (6.15)

(6.16) P(IS,II> Vne(n)io.) = C,.

But this means that this probability is different from 0, whence it has to be
equal to 1. Thus, the assertion follows for all functions satisfying (6.13). Using
a standard argument we can finally remove this additional assumption (see, for
instance, Lemma 1, [10]).

It remains to show (6.8), and (6.9) = (6.10). To simplify our notation, we set
M; = E[IXIPHIXIl < c(n)}], j €N.
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ParT 1 [Proof of (6.8)]. Let & <[ be two fixed integers. We first need a
lower bound for P(U!_, A,). To that end we note that

l l l
(2] -2 Gla- 0.4

p

=k

——

P(A,) - zl) P(A,.Aj)}

j=i+1

-~

l
> E’kP(Ai)(l - le P(Bj,i))’

j=i+1
where

B, = {I5,, = Syl > Yn;(n)) = yr; (w(n)) + B/b(n))}.
We now derive upper bounds for P(B; ;).

Case 1. n; <4n,.
Recalling (6.9) it is readily seen that

W(n;)/9(n;) < 2(Lyn;/Lyn;)* < 4.

We infer
Vniw(ng) = Y, (4(n;) + B/9(ny))
> (Y7 = v ) (n;) = 4ymB/u(ny)
= %(ﬁ — yn; Jw(n))

provided a > 48p.
The last inequality can be easily verified when using (6.7), (6.9) and

J
(6.17) n/n;—1> « Z“&,,Z/Lj,
=i

which in turn follows from (6.1).
Since n;/n; < 4 we obtain, by again using (6.7) and (6.9),

%(‘/E - ‘/n_i)*b(nj) > f5y/n; —ni(n;/n; - 1)"*VIj .

A straightforward calculation shows that we have

n; 1/2

m=n;+1
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whenever a > 482. Therefore, it is possible to apply Lemma 6 and get

P(B;;) < exp(— EZ—-Im(nj/ni - 1)Lj) +AM;/\n; —n;,
where we use the trivial inequality,
E[IX, "] <8M;, jeN,
which is immediate from the Hélder inequality. Note also that
Vrsb(n;) = yn, (6(n;) + B/b(n,)) = 4y/n; = n; .
Using (6.17), we obtain for £ < i <j such that n;<4n,
(6.18) P(B,,) <37 + AMyIj //n},
provided a > 21og(3)482% v 48p.

CasE 2. 4n;<n; < 4n(Li)
In this case we have for large enough £,

Vi (ng) = yn; (w(n;) + B/w(n,))

> 3y/n; (¥(n)) = B/w(n;))

> §y/nv(n;).
Applying Lemma 6, (6.7) and (6.9), we obtain

P(B; ) < P(IS;, - 5l = 1 /n;u(n)))
<jTV1% + 512A'M,/ /n;,

provided % has been chosen so large that

¥(n;) 2 16,72, j=k.

[Such a k exists on account of Lemma 7(a).]
To simplify our notation we set

I(i) = {j:4n, < n; < 4n,(Li)*).
Using (6.1), it is easily seen that we have
#1(i) < C(a)LiL,i,

where C(a) is a positive constant depending on a.
We get for £ > & (say) and i > &,

(6.19) L P(B;,) <k V1% +5124° ¥ M,/ /n;.

jeI@) NG (6))



1250 U. EINMAHL

CasE 8. n; > 4n (L)
In this case we have for large enough %,

(6.20) \/n_jl/’(nj) - \/n—i(‘//(ni) + B/'/’(ni)) = \/n_j('/’(nj) - l/l/J(nj))-
We now need the following lemma which is the most difficult part of the
proof of (6.8).

LeEmMMA 14. We have for large enough n, 0 < m < n and an appropriate
choice of B,

P(IS;, - S,/ = v (w(r) — 1/4(n)))
< K\(P(Vrny(n) IS, < Vn (4(n) + B/b(n)))
+E[IXIPL{I1XI| < c(n)}]¢(n)*/Vn),

where K is a positive constant depending on the distribution of X.

Proor. For technical reasons we prove Lemma 14 under the additional
assumption

(6.21) cov(X) has at least three positive eigenvalues in case it is compact.

If (6.21) does not hold, it follows that cov( X) has a finite trace and the proof
which would be much easier could be based on (3.1). So we can assume from
now on w.l.o.g. that (6.21) holds.

We start the proof with an application of Lemma 5 which leads to

P(IS, - 8,1 = Vr (¢(n) - 1/4(n))}

ry

J=m+1

(6.22) < P{ = Vn ($(n) — 2/¥(n))

+ BAE[IXIP1{I Xl < c(n)}]w(n)®/Vn,

where {I7j’} is a sequence of independent Gaussian mean zero r.v.’s with
cov(Y}) = cov(X}), j € N. _ _

Let iy, =Wy, = W3, = - be the eigenvalues of cov(Z,), where Z =
X 117j'/ Vn and further let {e} ;€5 ;€5 .5 ...} be a corresponding sequence
of orthonormal eigenvectors so that we have

72 . ’ 172 ,
(6.23) Z, =Y (i) " nel, as,
i=1

where 7; ,, i € N are independent standard normal r.v.’s.
Set

d ©

s 1/2

Zn = Z n’i,neg,n + Z (#',i,n) n,i,neg,n'
i=1 i=d+1
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Then it is easy to see that
n
cov( Y Yj’/w/;) < cov(Z,) < cov(Z,),
Jj=m+1

where we use the notation I'; < T, whenever I, T, are self-adjoint operators
such that I, — I is positive semidefinite.
Employing the inequality of Anderson [2], we get

7
Jj=m+1
< P{IZ,Il> w(n) - 2/¢(n)).

Next observe that since cov(Z,) < 3, < cov(X), we have on account of Lemma
A.lb,

2 Vn (¥(n) - 2/¢(n))

d
(6.24)

Ka+1,, <p <1,
and also
E[IZ ] =d+ ¥ ¥,<d+ ¥ o2, <d+E[IXIP1{IX] < e(n)}],
i=d+1 i=d+1
which on account of Lemma 7(a) is
o(Lyn) asn — o,
Further note that for some constant K, > 0,
(6.25) liminf i3 , > K,

n-—>w

where we need assumption (6.21).
Using Theorem 5(d) we obtain for large enough n and some K; > 0,

(6.26) P{IZ,ll = y(n) — 2/¢(n)} < KsP{IZ,]l = ¢(n) + 1/¢(n)}.

Moreover, Theorem 5(c) enables us to find a constant 8 > 1 such that for
large enough n,

P(IZ,Il = y(n) + 1/4(n)}

< 2P{u(n) + 1/¥(n) <1Z,ll < ¥(n) + B/w(n)).

We now need a lower bound for 4, ,. Set T, :== (3, + -+ +3,)/n, and let
K1,n = Mg, = - be the eigenvalues of T,.
Then it is easy to see that

(6.27)

_ 1z - 1"
leov(Z;,) = Tl < — X 113, - cov( X))l < — & IE[ X}]II%
niy n .-,

J
Using Lemma A.1(a) in conjunction with the subsequent Lemma 15, we obtain

(6.28) Wy — g ol =0(1/Lyn) asn — .



1252 U. EINMAHL

Since the operator sequence 2 ,, n € N is eventually increasing, it follows
for large enough n that

1 n
- Z 212 1_1/L2n)2m ’
n1=m

n

where m, .= [n/L,n].
Applying Lemma A.1(a), we find that

(6.29) Han=(1-— 1/L2n)0'dz,mn.

Lemma A.2(a) along with Lemma 7(b) finally implies for some K, > 0,
(6.30) 1-0}, <K,Lsn.

Combining (6.28)-(6.30), we see that for some positive constant Kj,
(6.31) Wa,n 21— Ks/Lyn.

We denote the densities of IIZ;,II2 and ||Z,|® by g, and &, respectively.
Applying Lemma 2(b) d times we obtain for some positive constant K

(6.32) &.(2) < K¢g,(2), z2<5Lyn.
An integration of this inequality shows that we have for large enough n,
P{y(n) + 1/¢(n) <|IZ,ll < y(n) + B/¢(n)}
< KgP{y(n) + 1/¢(n) <|IZ,l < ¥(n) + B/¥(n)}.
A second application of Lemma 5 yields
P{y(n) + 1/4(n) <IZ,ll < ¥(n) + B/¢(n))
(6.34) < P{Vnu(n) <II5,l < Vr (4(n) + B/¥(n)))
+ 16AE[IXIPL{I Xl < c(n)}|¢(n)°/Vn,

where B := B + 1. Combining (6.22), (6.24), (6.26), (6.27), (6.33) and (6.34) we
obtain the assertion. O

(6.33)

LemMA 15. Let X be a mean zero r.v. with E[| X|?/L,IIX|l] < c.
Then we have as n — «,

i IE[X1{IX]l < c()}]I? = o(n/(LG)z).

Jj=1

ProoF. Set m, = [n/(L,n)3]. Using Lemma 7(a), it is easy to see that as

n—)oo,

%" IE[X1{1XIl < c(H}] | < E; E[IIXI|21{IIX'I| <c(n)}]
j=1 j=1

=o(m,Lyn) = o(n/(LG)z).
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Moreover, we have on account of E[X] = 0,

Y IE[XL{IX] < c(DHIP < nE[IXIL{IXI > o(m,))]?
j=m,
= o(n/(LG)z) asn — o,
since E[|| X|?/L,I1 Xl < . O

Using Lemma 14 and relation (6.20), we see that if % is large enough for
k <i <j such that n; > 4n,(Li)® we have

(6.35) P(B;,) < Ki(P(A,) + Mj(n,)°/\/n; ).

We are now in a position to conclude the proof of (6.8). We set a =
210g(3)48%(B + 1), where B has to be chosen in accordance with Lemma 14.
Then we obtain from (6.18), (6.19) and (6.35) for large enough k2 and all [ > &

1 1 1
() £ronft-xmmfor Lo
i=k i=k i=k
where K, > 0 and ¢, = £5_, M;y(n;)*/ y/n;, k = 1.
From Lemma 8 in conjunction with (6.3) and (6.9), it follows that {¢,} is a
null sequence. Thus, we have for 2 > &, (say) and [ > &

(6.36) P( LlJAi) > Zl: P(Ai)(% —Kozl: P(Ai))'
i=k i=k i=k

It is easy to see that
(6.37) P(A,) >0 ask — .

(Use, for instance, Lemma 6 and notice Lemma 8.) Since we have, at the same
time, X%_,P(A,) = », we can find for any & > k,, (say) an [, > k such that

lk
(6.38) (12K,) ' < ¥ P(A,) < (6K,) .
i=k
Combining (6.36) and (6.38) we get for large enough &,
Ly

P( G A,.) > P( U A,.) > (72K,) "' = C,.
i=k

i=k

But this implies

P(limsupAi) = I}im P( DA,- = C,,
- \i=k

ieN

thereby completing part 1 of our proof.
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PART 2 [Proof of (6.10) = (6.11)]. (i) We now assume that (6.10) holds.
Recalling Lemma 14 and Lemma 8, it is readily seen that it suffices to show

(6.39) 3 P{IS, |2 /n; (6(n;) = 1/6(n)))} = =.
j=1

Using Lemmas 5 and 8, it is obvious that (6.39) would follow if we were able
to show

(6.40) ¥ P(IZ,1> v(n,) - 1/26(n)) = =,
j=1

where Z, n_€ N is defined as in the proof of Lemma 14.
(ii) Let {Z,} be a sequence of Gaussian mean zero random variables such
that

cov(Z,) =n"! i {3;—cov(X})}, neN.
i1

Suppose also that Z, is independent of Z', and set Z/, :=Z + Z_, n € N.
Then it is easy to see that

P{IZ, | = ¢(n;) — 1/44(n;)}
< P(IZ;,)1 = w(n)) = 1/20(n))} + P{IZ, |2 1/44(n))}.
Since [lcov(X}) — 3/l < IE[X;1I%, i € N, we obtain from Lemma 15
leov(Z, Il = o((Li) %) as j - e

Using this relation in conjunction with Lemma 4, we find that

(6.41)

T P(IZ,)ll = 1/44(n,)} <.
j=1
In view of (6.41), it is enough to prove that
(6.42) Y P{IZ, )l = ¢(n)) — 1/44(n;)} = .
j=1

(iii) Let {Y,} be a sequence of independent Gaussian mean zero r.v.’s with
cov(Y)) = 3., n € N. We want to show that (6.42) follows from

(6.43) ¥ P{IY; Il > w(n))} = .
j=1
Note that we have

cov(Z,) =n"1 i 3, <3, =cov(Y)).
i=1
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Let {Y,} be a sequence of Gaussian mean zero r.v.’s with cov(¥,) =3, —
cov(Z!) and suppose that Z] and Y, are independent, n € N. Then we have

2(Z,+7Y,)=2(Y), neN,
and it is easy to see that
P(IY; Il = w(n,)} < P{I%, | = 1/46(n;)}
+P(IZ; Il = w(n;) = 1/4u(n,)}.
Introduce two subsequences N;, N, € N as follows:
Ny = {j € N: E[IY, 7] < 1/(L)*},
Ny =N - N,.

(6.44)

Using Lemma 4, (6.7) and (6.9), it is readily seen that

(6.45) Y P{IIY’,,jll > 1/4,1,(nj)} < o,

JEN;
We now show that

(6.46) ¥ PIY, )l = ¢(n;)} <.

JEN,

In order to establish (6.46), we first prove
(6.47) ilE[IIYnsz] /(Lj)? < .
j=
From the definition of Y,,j, it is clear that
n,E[IY, I?] < z; E[IIX|12 {e(i) <Xl < e(n))}],

so that (6.47) follows from the subsequent Lemma 16.
Using relation (6.47) and the definition of our subsequence N,, we infer

(6.48) Y (L) f <o

JEN,

Employing Lemma 4, it is now easy to see that (6.46) is true. Combining
(6.43) and (6.46), we find that

Y Pyl = y(n,)} =

JEN;
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which by virtue of (6.44) and (6.45) implies
L Pliz, = ¢(n;) = 1/44(n;)} = .

JEN;

Thus we have shown that (6.43) implies (6.42).
(iv) Let {e; ,: i €N} be a sequence of orthonormal eigenvectors of X,
corresponding to the eigenvalues {a'f,,: i € N} so that we have

[
[
Yn - E a'i,nni,nei,n a.s.,
i=1

where 7, ,, i € N is a sequence of independent standard normal r.v.’s.
Set

d o
Yn = Z ni,nei,n + Z Ui,nni,nei,n'
i=1 i=d+1

Denote the densities of ||Y!||? and ||Y,[|? by g, and & ,, respectively.
Since we have on account of Lemma 7(b),

1-02,=0((L;n)"") asn—-w», 1s<i<d,
we obtain from Lemma 2(b)
(6.49) h,(2) <Cg,(2), z<164(n)?, neN,

where C is a positive constant.
It is obvious from (6.49) that (6.43) and consequently the assertion would
follow if we were able to show that (6.8) implies

(6.50) fIP{¢(nj) <Y, |l < 4¥(n))} = .
. j=
(v) We first note that on account of Lemma 4, (6.7) and (6.9),

ilP{IIYndI > 4y(n;)} <o
j=

so that (6.50) is equivalent to

(6.51) L P{I%,)1 2 v(n)) - =
j=

From Theorem 5(b), it follows that we have for some constant C, > 0 and
for large enough j,

(652) P, = w(n))} = Cor(n,))* " exp( - 39(n;)* + 7, ).



SUMS OF IID R.V.’S IN HILBERT SPACE 1257

Next observe that for an appropriate j, € N,

i ¥(n)? exp(—3u(n)® + v,)/ny,

n;,+1

ST T ) em(- b + ) e,

J=jon=n;+1
VRS ]

2 d 2 —]
< T v(n)?ep(-30(n) + v, )it T 1/n
J=Jo n=nj+1

< E t/f(nj)d eXP(—%'l'(nj)z + Ynj+1)1°g(nj+1/nj)'yn_jil’

J=Jo
which is, on account of (6.1), (6.3), and (6.9),
<10a ¥ ¢(n;)" " exp( = 30(n,)* + Ya,, )T,/ Yoy v
J=Jo
It is easy to see that 7,/v, = O(1) as n > «, so that we have

(6.53) E o) emp( =3y (n)" + 7, ) =
j=
From the definition of y,, it immediately follows that

Yajr = Yo, < E[1XIP1{e(n;) <X < e(ny0)}]/2(1 - p), jeN.
Using this inequality along with our assumption (2.1), we find that

Y (Y, — Wa,)/Li <o
Jj=1

Employing a similar argument as in part (iii), we infer that
d-2
T () Pexp(—Fu(n)t + ) <.
I Ynjpy ™ Yny2 1

This means, in view of (6.53),
Y l»[’(nj)d_2 exp(—%z/z(nj)z + ’Ynj) = .
j=1

Recalling (6.52), we see that (6.51) is true.

LeEMMA 16. Let X be an H-valued r.v. such that E[|| X | /L,|| X|]] < . Then

we have
n

f ny i (Lj)~* Z E[IXIP1{e(i) < I1XIl < e(n;)}] < .
j=1

i=1



1258 U. EINMAHL

Proor. Set p, = P{c(k — 1) < || Xl < c(k)}, & € N.
Then it is easy to see that '

T E[IXIP1{e(i) <Xl < e(n))}] < ¥ ke(k)’ps.
i=1 k=1
Moreover, we have

¥ ( > kc(k)zpk)/n,-(Lj)Z

j=1\k=1

IA

% ( r n;l(Lj)‘z)kc(k)zpk

k=1\jin;>k
= Z 5kkc(k)2pk-
k=1

Since we know that E[||X|>/L,l X[ < =, it now suffices to show
8, = O((kLyk)™") ask — o,
First note that L,k < L,n; < 2Lj if n; > k and & is large enough. From
the definition of our subsequence {n }, it follows that
n;—n;_12n;_/Lj>n;/2Lj

for large enough j.
We infer

8 <4(Lk)™" ¥ nj%(n;—n;_y)

Jin;jzk
<4(Lok) ™ [ 272 dx = 8(RLyk) !
k/2
provided % is large enough. O

REMARK. The reader may have noticed that one could improve Theorem 3
to an integral test if one were able to prove (6.8) for the subsequence
[exp(@j/Lj)] rather than the sequence {n;}. However, our approach does not
yield any useful bounds for P(A;A;) in this case if n;/n; is small [see the
proof of (6.18)].

7. The upper class part. Without loss of generality, we assume that
o?=1and »
cov( X) has at least three positive eigenvalues
in case it is a compact operator.

Using the same arguments as in Section 2.2, [6], it is readily seen from our
extension of Feller’s truncation lemma to the present setting that it is enough

(7.1)
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to prove

(7.2) P{IS,ll = Vn (¢(n) — 1/Lyn)i0} =0,
whenever ¢ is an eventually nondecreasing function such that
(7.3) 3VLot <o(t) <2y/Lyt, t=0,

and

(1.4) 3 no(m)exp(~36(n)° + ) <=

We need the following Lévy-type inequality which is implicitly contained in
Lemma 2.7, [1].

LemMma 17. Let X,,..., X, be independent mean zero random variables in

Hilbert space. Suppose that E[(X;,y)?] < a2, llyll < 1,1 <j < n. Then we have
forl<m <nandx >0, :
> x} < 2P{

3
Y X;
1
Set n; = [exp(j/Lj)], j = 1. In view of Borel-Cantelli, it is clear that in
order to establish (7.2) it suffices to show

(7.5) Yy P{ max |IS,|l > \/Z(d’(n,) - 1/L2nj+l)} < .
j=1 nj<n<nj.,

P{ max

m<k<n

n
L X
1

>x — \/2(m—n)o-}.

Using Lemma 17 and (7.3), we obtain for large enough j,

P{ max IS}l > \/n; (¢(n;) — 1/L2”j+1)}

n;<n<n;.

< 2P(IS;, 1= yn,.: (6(n)) - Ki/d(n)))},

where K is a positive constant.
A straightforward application of Lemma 5 shows that it is enough to prove

(7.6) '§1P{ ‘Ji1 Y| = \/nj+1(¢(nj) - Kz/d’(nj))} <@
Jj= i=

and

7.7) Y 6(n,) E[IXIPLIXI < e(n,.0)}] /Y701 <=
j=1

where K, =K,; + 1 and v} is a sequence of independent Gaussian mean
zero r.v.’s with cov(Y))) = cov(X,), n € N.
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Let the sequence {Y,} be defined as in Section 6, Part 2(iv). Applying the
inequality of Anderson [2], it follows that

Nj+1
Ly
i=1

P{ . 2 Yrji (d’("q) - Kz/d’(nj))}

< P(IY,, I = ¢(n,) - Ky/9(n))},

which on account of Theorem 5(a) and (7.1) is
< Kyp(n,) " exp( - 36(n,)* + v,,..);

where K is a positive constant.
Arguing as in Section 6, we find that

Y ¢(n)* exp(—3(n,)* + v,,,) <,
j=1

whenever (7.4) holds true.
This implies (7.6). Relation (7.7) follows immediately from Lemma 8.

8. An example. The purpose of this section is to provide the following.

ExamMpLE. Let g be a continuous nondecreasing function such that

() g(t) > ast—>w»
and

(i) g(t) = O(Lyt) ast > .

Let H be an infinite-dimensional separable Hilbert space. There exists a
mean zero r.v. X with E[||X|?/g(IXID] <« and E[(X,y)21=Iyl% yeH
such that we have for any a > 0,

P{IS, Il > Vn ¢, 5(n) i0.} = 1.

Proor. Our example is a modification of that one given in Theorem 7.1,
[12]. Let {e,} be a complete sequence of orthonormal vectors in H.
We set

(8.1) X =Y &ey,
k=1
where {£,} is a sequence of independent r.v.’s such that for & > 1,
P{fk =z ak} =1/2a,,
P{§,=0}=1-1/qa,

and a, = h(ak?)?, where h:[g(0),®) — [0, ») is the inverse function of g and
a = g(1).
Since the ¢,’s are independent r.v.’s, it follows that

(8'3) E[(X’x)(Xay)] =(x’y), x,y € H.

(8.2)
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Further observe that
E[IXIP/g(1XI)] < ¥ E[¢2/g(&))] = (1/a) ¥ k™% < .
k=1 k=1

Set Vy == spanfe;, ..., ey} and let II be the projection onto V.

Let XM =TI(X), XM =TIy(X,), k€N and set SV :=x7_ XM,
neN.

It is easily checked that X satisfies the assumptions of the theorem in [6]
and we obtain on account of (8.3),

(8.4) P{IS™II > Vn ¢y 5(n)i0.} = 1.

Since IS{™|l < 18, and N can be chosen arbitrarily large, the assertion is
an immediate consequence of (8.4). O

It is clear that the law of the three times iterated logarithm fails in the
previous example, since assumption (2.4) is not satisfied. We note that one can
construct related examples when o2 is not attained as an eigenvalue, or when
condition (2.5) is not satisfied. But since this is more difficult than above, it
will be done somewhere else.

APPENDIX

LEmMMA A.l. Let 5;: H — H be compact, self-adjoint positive semidefinite
operators, j =1,2. Let o?;, 1<i<d;, be the positive eigenvalues of 3;
arranged in a nonincreasing order and taking into account the multiplicities.

Further, ifd; < ®, set 0?; =0, d; <i <, j =1,2. Then we have:

@ lo?, — o2 <112, — Z,ll, i e N
(b) Under the additional assumption that %, — %, is positive semidefinite,
it follows that o?; < 0%, i € N.

Proor. Let {e; ;: i € N} be an orthonormal system of eigenvectors corre-
sponding to the eigenvalues {0?;: i € N} of 3, j = 1,2.

Further put V, ; = spanfe; ;; 1 <i <k} and let W, ; be its orthogonal
complement, k €N, j = 1,2.

Then it is easy to see that for j = 1,2 and k2 > 1,

(A.l) (x, ij) = U]?’Jllxllza x € Vk,j
and
(A.2) (x,3;2) <ol jllxl?,  xeW,;.

Let %2 > 2 be fixed and let II,: H—»V,_, , be the orthogonal projection
onto V,_, ,. Consider the restriction

Tk = Hklvk,1: Vk,l - Vk—1,2'
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Since k& = dim(V, ;) >k — 1 =dim(V,_, ,), we find by using a standard
argument from linear algebra that

1 < dim(T, Y{0}) = dim(V, ; N W,_, ,).
This means that there exists an ¥ € H such that
(A3) xeV, , N"nW,_;, and [zl =1.
Using relations (A.1) and (A.2), we find that
0f1— 02 < (%, (31— 3p)%) <2, - Z,ll.
An obvious modification of the above argument shows
0fy =02, <%, -3, k=2

Thus, we have proven part (a) for 2 > 2.
Choosing ¥ according to (A.3), we also see that

021 —0fy < (%,(3;-3,)%) <0, k=>2,

whenever 2, — 3, is positive semidefinite.

If B = 1, the assertion easily follows from the known fact that the largest
eigenvalue of a self-adjoint positive semidefinite operator is equal to the
operator norm. O

A slight modification of the proof of Lemma A.1 yields:

Lemma A.2. Let 3;: H— H, j=1,2 be bounded self-adjoint positive
semidefinite operators, j = 1,2. Suppose that 3., is compact and that a2 = ||3,||
is an eigenvalue of 3,. If the corresponding eigenspace V of 3., is finite-
dimensional, we have for the eigenvalue sequence {aflz ieN}of 3,

() lo?, = a?l < sup (v, (32— Z)v)l, i=1,...,d,
e

where d = dim(V).
(b) Under the additional assumption that 3., — 3., is positive semidefinite,
we also have '

o2, < sup (w,3,w), ix=d+1,
llewll=1
we

where W is the orthogonal complement of V.
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