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L, RATES OF CONVERGENCE FOR ATTRACTIVE
REVERSIBLE NEAREST PARTICLE SYSTEMS:
THE CRITICAL CASE!

By THomAS M. LIGGETT
University of California, Los Angeles

Reversible nearest particle systems are certain one-dimensional inter-
acting particle systems whose transition rates are determined by a probabil-
ity density B(n) with finite mean on the positive integers. The reversible
measure for such a system is the distribution v of the stationary renewal
process corresponding to this density. In an earlier paper, we proved under
certain regularity conditions that the system converges exponentially
rapidly in Ly(v) if and only if the system is supercritical. This in turn is
equivalent to B(n) having exponential tails. In this paper, we consider the
critical case, and give moment conditions on B(n) which are separately
necessary and sufficient for the convergence of the process in L,(v) at a
specified algebraic rate. In order to do so, we develop conditions on the
generator of a general Markov process which correspond to algebraic L,
convergence of the process. The use of these conditions is also illustrated in
the context of birth and death chains on the positive integers.

1. Introduction. Exponential convergence to equilibrium in the L, sense
has been proved for a number of interacting particle systems in recent years.
Examples are the stochastic Ising model [see, e.g., Holley (1985) and Aizenman
and Holley (1987)] and attractive reversible nearest particle systems [Liggett
(1989a)]. The result for nearest particle systems says roughly that exponential
L, convergence occurs if and only if the process is supercritical. In this paper,
we examine the sense in which one can say that the convergence occurs at an
algebraic rate if the process is critical.

Nearest particle systems were introduced by Spitzer (1977). They are
Markov processes on the set of configurations 7 € {0, 1}? which satisfy

L n(x) = ¥ n(x) =

x>0 x<0
The process makes transitions 1 — 0 at rate one and 0 — 1 at site x at a rate
B(l,r), where ! and r are the distance from x to the nearest sites to the left
and right, respectively, at which there is a one. The birth rate g(l,r) is
assumed to be a bounded, nonnegative symmetric function defined for positive
integers / and r. The process is attractive if (I, r) is a decreasing function of
! and r. It is said to survive if it has an invariant probability measure. A
nearest particle system which survives is said to be supercritical if there is a
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936 T. M. LIGGETT

A < 1 so that the system with birth rates AB(l, r) also survives. Otherwise, it
is said to be critical. ‘

Spitzer’s theorem asserts that a nearest particle system with strictly posi-
tive birth rates is reversible with respect to some probability measure v if and
only if

B(1)B(r)
(1‘1) B(l’r) ﬁ(l+r)

for some positive probability density B(n) on the positive integers with finite
mean M. The reversible measure v is then the stationary renewal measure
corresponding to this density. A reversible nearest particle system is attractive
if and only if the density is logconvex and we then let
_ B(n+1)

(1.2) p = lim Bn)
which exists by monotonicity and satisfies 0 < p < 1. An easy consequence of
Spitzer’s theorem is that an attractive reversible nearest particle system is
supercritical if p < 1 and critical if p = 1. For these and other basic results
about nearest particle system, see Chapter VII of Liggett (1985).

A Markov process with semigroup S(¢) and invariant probability measure v
is said to converge exponentially rapidly in L,(v) if there exists an £ > 0 so
that

(1.3) “S(t)f— [fdv f- [fdv

for all f € L,(v). In Liggett (1989a), we proved under some additional regular-
ity assumptions on the density B(n) that an attractive reversible nearest
particle system converges exponentially in L,(v), where v is the stationary
renewal measure corresponding to 8, if and only if the process is supercritical.
Furthermore, the largest ¢ for which (1.3) holds for all f € L,(v) satisfies the
bounds

< e—et
2

2

B (1) 2 2 ad 2 -

—=(1- <e<4(1- n?B(n)p~".

o, 7P (1-p) El B(n)p

This suggests that some sort of algebraic L, convergence should occur in the

critical case, with the algebraic rate depending on the size of the tails of p(n).
It is natural to say that a Markov process with semigroup S(¢) and

invariant probability measure v converges algebraically rapidly in Ly(v) if

there exists an a > 0 so that

2
(1.4) “S(t)f— [fav LS Vif)

for all £ > 0 and some V( f) which is finite for sufficiently many f € L,(v). An
immediate difficulty arises in deciding what V( f) should be and for which f’s
it should be finite. We will see in Section 2 that for a reversible process, if (1.4)
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holds with V(f) = || fII* or with V(f) equalling the Dirichlet form of f, then
the process actually converges exponentially rapidly in L,(v). On the other
side of the picture, it is an easy consequence of the spectral theorem that any
process for which v is an extremal reversible measure satisfies (1.4) with a
V(f) which is finite for a dense set of f’s. The problem is that neither this
dense set nor the V() can be determined unless the spectral decomposition of
the process is known explicitly.

A further difficulty comes from the fact that the exponent « in (1.4) will in
general depend on the choice of V(f). For example, J. D. Deuschel has shown
(private communication) that the critical Ornstein-Uhlenbeck process which
he considered in Deuschel (1989) has the following property: If d > 2 and
1 < g < d/2, then there are two positive constants ¢, and ¢, so that

¢y 2 Bf 2q9/(qg+1)
————— < sup “S(t)f— fdv|l: Y sup . =1
7T Jrav: B, = |5
Ca
= J@2o-1

for t > 1. Here v is one of the reversible Gaussian measures identified in
Section 2 of Deuschel (1989). We conclude that in order for an algebraic
convergence result to be meaningful, the V(f) in (1.4) should be given
explicitly. [See also Deuschel (1991).]

In this paper, we will prove the following result, which clarifies this situa-
tion for one class of interacting particle systems. The two parts of the theorem
are proved in Sections 3 and 4, respectively. Parts of the proofs draw heavily
on the approach used in Liggett (1989a) for the supercritical case.

In the following statement, let

B(n) = ¥ B(k)

k=n

be the tail probabilities for 8 and

v(£) = {E supl f(n) - F(m)]}

x

be the square of the triple norm used in Chapter I of Liggett (1985). As usual,
7, is the configuration obtained from 7 by flipping the value of the coordinate
n(x). Note that V(f) < » for any function which depends on finitely many
coordinates and that our choice of V(f) is analogous to the one used by
Deuschel if his ¢ is one.

THEOREM 1.5. Let S(¢) be the semigroup for the critical attractive re-
versible nearest particle system determined by the density B and let v be the
corresponding renewal measure. Fix q > 1.
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(1) Suppose that B(m + n) is totally positive of order three and B(n)
satisfies

L,.yB(n)
o W NB(N)
and
B2(n)
(1.7) = B(2n) <
If
(1.8) Y k2 ?B(k) < w,
k=1
then there is a constant C so that
2 V(f)
(1.9) ’S(t)f— [fdv S C
for all continuous functions f.
(i) Suppose that
1.10 inf B(n) >0
. n
(110 " nB(n)
and
B*(n)
(1.11) § B(2n) < o,

If there is a constant C so that (1.9) holds for all f which depend on finitely
many coordinates, then

™M

EB(k) < o
k=1

forall a < q — 2.

ReEMARKS. (i) Note that assumptions (1.6), (1.7), (1.10) and (1.11) are all
satisfied if

C
B(n) gl

for some a > 2.

(ii) For more on total positivity, see Karlin (1968). For connections with
renewal theory, see Liggett (1989b). The logconvexity of B(n) is equivalent to
total positivity of order two of B(n + m). Thus the total positivity assumption
in part (i) of the theorem is slightly stronger than the logconvexity assump-
tion. It is automatically satisfied if B(n) = Cn~* for some a > 2.
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(iii) There is a substantial gap between the moment conditions appearing in
the two parts of Theorem 1.5. It would be of considerable interest to close this
gap.

(iv) It would also be of interest to determine whether (1.9) ever holds in the
critical case with V(f) = sup, ,|f(n) — f()I.

The first step in the proof of Theorem 1.5 is to establish a characterization
of algebraic L, convergence in terms of the generator of the process. This is
carried out for general Markov processes in Section 2. In that section, we also
illustrate the use of this characterization in the context of birth and death
chains on the nonnegative integers. A special case of the result proved
there is the following. Suppose the chain goes from % to & — 1 at rate one
and from k& — 1 to k at rate 1 — ¢/k for k£ > 1. Then (1.4) holds with V(f) =
C sup,|f(k + 1) — f(k)|* for some constant C if 2a <c — 3, but not if
2a > ¢ — 3.

During a recent visit to UCLA, Marc Yor asked about potential applications
of results such as Theorem 1.5 which give rates of convergence to equilibrium
in the L, sense. We conclude this section by giving two simple applications.
The first provides a central limit theorem. Its proof is modeled after the proof
of the central limit theorem for the contact process given by Schonmann
(1986). The second is an ergodic theorem which resulted from communications
with Jeffrey Steif.

THEOREM 1.12. Let m, be an attractive reversible nearest particle system
with birth rates given by (1.1) in terms of the density B and take m, to be
distributed according to the invariant renewal measure v, so that m, is a
stationary process. Let f be a continuous increasing function on {0, 1}% which
satisfies V(f) < », [fdv = 0 and [f? dv > 0. Assume that B is totally positive
of order three and that (1.6) and (1.7) are satisfied. If B has a finite moment of
order greater than eight, then

1
— ds
7 fo f(ns)
converges in distribution as t - « to a nondegenerate normal law.

Proor. By Harris’ theorem on the preservation of positive correlations [see
Theorem 2.14 and Corollary 2.21 of Chapter II of Liggett (1985), for example],
the random variables {f(n,), ¢t > 0} are associated. Therefore by Newman’s
central limit theorem for stationary associated processes [see Newman and
Wright (1981) or Newman (1984), for example], in order to prove our result, it
is enough to prove that

[ Bf(no) f(m) dt = [ [£(n)S(¢) f(n) dvdt < =

But this is an immediate consequence of Theorem 5.7 of Liggett (1989a) and
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Theorem 2 of Liggett (1989b) in the supercritical case and of Theorem 1.5
(applied to an appropriate ¢ > 3) in the critical case. O

REMARK. An alternative approach to the proof of this theorem is to use the
Kipnis—Varadhan (1986) central limit theorem for functionals of reversible
Markov processes. This approach is potentially applicable to processes which
do not satisfy the assumptions of Harris’ theorem (e.g., exclusion processes).

THEOREM 1.13. Let m, be an attractive reversible nearest particle system
with birth rates given by (1.1) in terms of the density B. Let ., , denote the
distribution at time t if the initial configuration is n. Assume that B is totally
positive of order three and that (1.6) and (1.7) are satisfied. If B has a finite
moment of order greater than six, then for almost every n (with respect to the
invariant renewal measure v), u, , converges weakly to v.

ProoF. If f satisfies V(f) < o, then Theorem 5.7 of Liggett (1989a) and
Theorem 2 of Liggett (1989b) in the supercritical case and Theorem 1.5
(applied to an appropriate ¢ > 2) in the critical case imply that

. 2
L[[S(t)f—[fdv] dvdt < .
Since
d
25 f(m)

is uniformly bounded in ¢ and 7, it follows that

lim S(¢) f(m) = [fdv

for almost every 7. The result follows by applying this statement of a count-
able dense set of functions. O

2. A criterion for algebraic convergence. Consider a Markov process
on a complete separable metric space with finite invariant measure v, strongly
continuous semigroup S(¢) on L,(v) and generator  with domain D(Q2). A
necessary and sufficient condition for exponential convergence in L,(v) is that
there exists a constant C so that

2
2s—c/fnfalu

(2.1) ‘ f- ffdv

for all f € D(Q); see Theorem 2.3 of Liggett (1989a), for example. The main
result in this section provides an analogous condition on the generator which
characterizes algebraic L, convergence. It is based on Nash’s lemma and the
related results which have been proved by Stroock, Varopoulos and others in
recent years; see, for example, Carlen, Kusuoka and Stroock (1987) and the
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references given there. I am grateful to Dan Stroock for having provided me
with the original version of the following result and its proof.

THEOREM 2.2. Take 1 < p,q < © such that p~' + ¢~! = 1 and a function
V on Ly(v) satisfying 0 < V(f) < » and V(cf + d) = c®V(f) for all constants
c and d. Consider the following two statements:

(a) There exists a constant C so that

2 1/,
2.3) - [rav| < c[- frarar] v
2
for all f € D(Q).
(b) There exists a constant C so that
V(1)
(2.4) < P

for all f € Ly(v) and all t > 0.

(i) If (a) holds and V satisfies V[S(¢) f]1 < V(f) for all f € Ly(v) and all
t > 0, then (b) holds.

Gi) If (b) holds and the process is reversible with respect to v, then (a)
holds.

ReMarks. (@) If p = 1, then (2.3) becomes (2.1).
(ii) If (a) is satisfied with

2
vir) =|r- frav|, o v(r) = - [raray,

then (2.1) is satisfied and hence the rate of L, convergence is in fact exponen-
tial. Thus neither of these choices for V is useful.

(iii) The monotonicity assumption in the first part of the theorem is rather
natural in view of the following observation. If for some ¢ we define

’

2
V(f) = supt?~? S()f - [fdv
t>

then V(f) is automatically monotone.

(iv) In searching for V’s which satisfy the monotonicity assumption, one
might first think about squares of L, norms. These appear not to be particu-
larly useful in our context. Other potential choices are squares of the Besov
norms described in Chapter V of Stein (1970) and Chapter 2 of Triebel (1983),
for example. These are defined in terms of the semigroup as follows, for

appropriate r and s:
1/r
{ f K dt} .

This choice merely recasts the problem in another form, since (2.4) is then
immediate for some g (depending on r and s). In our applications, we will
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force the monotonicity property by applying Theorem 2.2, not to the V we are
interested in, which is not monotone, but to another V which is defined by
taking suprema over ¢. See the proofs of Theorem 2.10 and 1.5, for example.

Proor. (i) Take an f € D(Q) which satisfies [fdv = 0 and let f, = S(®)f.
Apply (2.3) to the function f, to get

d P _
E/f;dv =2[fQf,dv < —20-P{]f,2 dv} (V(f)) 7 .
Letting
F(t) = f f2dv
and using the monotonicity of V under the semigi'oup, we obtain

F(¢) < —2C~P[F()]°[V(£)] .

Therefore
d -p/q p -p 2p -pr/q
—[F(t)] = —=[F@)] "F(t) = —CP[V(f)] ™"
dt q q
Integrating this inequality from 0 to ¢ and discarding the boundary term at 0
gives

F(t) < V( f)C"{%;}q/p,

which is the required result since ¢/p = q — 1.
(ii) Take an f € D(Q) which satisfies [fdv = 0 and let f, = S(¢) f. Then

(2.5) fff,dv <l flall flls <N Fllay CV(F)E 7,

by Hélder’s inequality and (2.4). On the other hand, since the process is
reversible,

d d
o Jfef,dv=—[f.0fdv = [(2f)(S(s)2f)dv

sfzJos

2
>0,
2

so that

(26)  [ffdv=[f?dv+ fo’/fnfsduds 2 |IfI +¢[fOfdv.
Combining (2.5) and (2.6), we see that

(2.7) I3+ ¢ [ O fdv <l fllay/CV(F)E—
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for all ¢ > 0. The choice of ¢ which provides the best inequality is

. -2/fQ fdv /D
~IFINVCY(f) (g - 1)

Using this choice in (2.7) gives (2.3). O

Next we prove a simple result which will be useful in applying Theorem 2.2
to both birth and death chains and nearest particle systems.

ProOPOSITION 2.8. Suppose that 7 is a strictly positive probability density
on {0,1,2,...} and let

1 o
Y (k).

W(n)k=n

(2.9) o(n) =

For a function fon {0,1,2,...}, let

oo

var,(f) = ¥ {f(n) - élf(k)v(k)} (n)

n=1

be the variance of f relative to w. Then

var,(£) <4 T |7k + 1) = £ Flo(b)]*n(k).

PrRoOOF. Square out the following sum and use the Schwarz inequality to
obtain

¥ w(n){ S f(k+ 1) —f(k)l}
n=0 k=0

<2Y m(n) T 1FG+1) - FDIIf(k+1) - f(R)|
n=0

O0<j<k<n

) k
= 2k20| f(k+1) = f(k)|o(k)m(k) Z:ol fG+1) -f()l
- -

< 2(?, | F(k + 1) = f(R) [o(R)]*m (k)
=0

k=0 \j=0

@ k 2 172
XZ{ZIf(jH)-f(j)I} w<k>) .
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Squaring this and dividing gives

iow(n){éol f(k+1) - f(k)l} < 4kt'_°0| f(k + 1) = (&) o (B)]) 7 (k).

This gives the required result when combined with

oo

var,(f) =% ¥ w(j)m(k)[ (k) — f(I)]*

J, k=0

k-1 2
) w(j)v(k){Zhlf(Hl)-f(i)I . 0

0<j<k i=j

The following theorem illustrates the use of Theorem 2.2 in the context of
birth and death chains. Rates of convergence in a different sense for birth and
death chains have been proved by Lindvall (1979). Versions of those results for
one-dimensional diffusions are contained in Lindvall (1983). In Section 3 of
Liggett (1989a), we proved that a positive recurrent birth and death chain
whose transition rates are bounded above and below by positive constants
converges exponentially rapidly in L, if and only if its stationary distribution
has exponential tails in the sense that o(n) is uniformly bounded. (Note that
the sufficiency of this condition for exponential convergence is an immediate
consequence of Proposition 2.8.) We see next that algebraic L, convergence is
associated with algebraic decay of the stationary distribution.

THEOREM 2.10. Consider a positive recurrent birth and death chain X, on
{0,1,2,...} with transition rates q(i, j) and invariant measure w(n). Define
V(f) = sup,| f(k + 1) — f(R)I? and fix q with 1 < q < .

(i) Suppose that inf; q(i,i + 1) > 0, that the o defined in (2.9) satisfies
sup, o(n)/n < » and that

(2.11) sup ¥ |E**1X, — E*X, "k (k) < o.
t>0 k=0

Then there is a constant C so that
(2.12) var(S(t) f) < CV( f)e—e

for all f € Ly(w) and all t > 0.
(ii) Suppose that sup; q(i,i + 1) < = and that there is a constant C so that
(2.12) is satisfied for all f € Ly(m) and all t > 0. Then

kom(k) < o
0

TMs

for all a < 2q.
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Proor. (i) The V(f) we are using is not necessarily decreasing under the
action of the semigroup of the birth and death chain. Therefore, we define

VA(f) = sup Y 1S(8) F(k + 1) — S(2) (k) "R (k),
t>0 k=0

which does satisfy this monotonicity property by definition. The result will
therefore follow from part (i) of Theorem 2.2 provided that we verify condition
(2.3) with V replaced by V* and then show that

(2.13) V*(f) <CV(f)
for some constant C. For the first of these, recall that

L f(k)Qf(k)m(k)

k>0

= = X [f(k+1) = f(R)]’q(k, k + 1)m(k)

k>0

(2.14)

[see Proposition 3.3 of Liggett (1989a), for example]. By Proposition 2.8 and
Holder’s inequality,

1/p
var,(f) < 4{ T I f(k+1) —f(k)|2w(k)}

k>0
1/q
><{ T | f(k+1) —f(k)|2[«r(k)]2"7r(k)} .
k>0

Together with (2.14) and the assumptions on ¢(i,i + 1) and o(n), this gives
(2.3) with V() replaced by V*(f). In order to check (2.13), write

| £(J) — (k)| <|j — klsup;| f(i + 1) = f(i)l,
so that
1S(2) f(k +1) = S(2) (k)| =| E*"'f(X,) - E*f(X,)]
< E(Y, — X,)sup;| (i + 1) — f(3)],
where Y, and X, are two copies of the birth and death chain with initial states
k + 1 and k, respectively, which are coupled so that Y, > X, for all ¢£. Under
assumption (2.11), this gives (2.13).
(ii) A birth and death chain is automatically reversible, so part (ii) of
Theorem 2.2 applies. Applying (2.3) to the function
f(k) = (k AN)’
for a large positive y and using the assumption that the transition rates are
bounded above, we see that there is a constant C (depending on y) so that

N

N 2 vp 2/q
kz k¥m(k) < c{kzo[(k +1)7 — k7] w(k)} (N7 — (N - 1)},
=0 =

where again 1/p + 1/q = 1. Apply Holder’s inequality to the first term on the



946 T. M. LIGGETT

right-hand side, using the fact that (k¢ + 1)” — k” is asymptotic to a constant
multiple of £”~!, and then divide to obtain

N
{ 5 k¥m(h)
k=0

for some new constant C. This implies that

N
Y kem(k) < CN @rp(y—1/qGp=y+1)=-@y=a),
E=N/2

1-(2y-2)/2yp
} < CN@r-2/q

where again the value of C has been changed. The exponent of N converges to
a — 2q as y — «. Therefore, if a < 2¢g, we may choose the y so that this
exponent is negative. To finish the proof of (ii), simply replace N by 2™ and
sumon m. O

We conclude this section with a result which can be used to check assump-
tion (2.11) in many cases. .

PROPOSITION 2.15. Suppose the birth and death chain X, with transition
rates q(i,j) and invariant measure w(n) satisfies (i) L, nm(n) <~ and
Gi) q(i,i + 1) < q(i,i — 1) for each i > 0.

(a) Then E*X, < C(k + 1) for some constant C.

(b) If in addition

ingq(i,i—l) >0, supi[q(i,i—1)—q(i,i+1)] <» and
1>

i>0
supo(n)/n < o,
then there is a constant C so that
(2.16) 0 < E**1X, — E*X, < C[log(k + 2)]*/*
forallk >0 andt > 0.

Proor. (a) If f(k) =k, then Qf(k)=q(k,k+1) —q(k,k —1) <0 for
k>1and

(2.17) X, - fO‘Qf(Xs) ds
is a martingale. Let 7 be the hitting time of zero. Then
(2.18) E¥(X,,t<7)=E¥X,,,)=k+ Ek/OMth(XS) ds<k
and
(2.19) E¥ X, t>71) <sup, E°(X,) < Y jm(J) <.
j=0

Part (a) follows from (2.18) and (2.19).
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(b) The first inequality in (2.16) comes from the fact that X, is a monotone
process [see Definition 2.3 of Chapter II of Liggett (1985), for example]. For the
second inequality, let 7, be the hitting time of 2 and

F(t) = Ekfo’“r(xs) ds

for ¢t = 0, where r(k) = q(k,k — 1) — q(k,k + 1) > 0. Then by the Schwarz
inequality,

[F(t) — Fy(s)]* < E’“{]:\A:r(Xu) du} <(t- s)EkaTrZ(Xu) du

k .
= (t- E*[7Tr¥(X,)d
(2.20) (¢ S)EI fU (X,)du

EC e
<(t-s)% J—,Ekf’ r(X,)du
j=1 7

< C(t — s)log(k + 1).

Here the value of C is possibly different in the last two expressions. In the
next to last inequality, we have used the assumption that r(j) is at most a
constant multiple of 1/j, and in the last inequality, we have again used the
martingale in (2.17). Now,

F, . (t) = E’““{fwr(xs) ds, t > Tk} = EFFy(t — 1), t > 7]
Tk
by the nonnegativity of r and the strong Markov property, so that by (2.20),
Fi(t) = Fyii(t) < EFF[Fu(2) = Fy(t — ), t > 7]
(2.21) + F(t)P** Yt < 7,}
< Cllog(k + 1)]V2E** [ 1,12

Let Z, be the birth and death chain which from % goes to each of 2 — 1 and
k + 1 at rate q(k, & — 1). Then X, and Z, can be coupled together so that
X, < Z,. Z, is a time change of a simple symmetric random walk and its jump
rates are bounded below, so that

P*¥*Z >k foralls <t] <C/Vt

for some constant C. Therefore

(2.22) P* X >k foralls <t] <C/Vt
as well. An elementary computation gives
(2.23) E¥ 7, ]=0(k+1)/q(k + 1, k),

which by assumption is bounded by a constant multiple of k. By (2.22), we
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have

E* /7, = [ Pz, > u?) du = —[ P11, > v} ‘/_

1 k2 1
< 5/0 PE+r, > v} \/_ Pk“{a-k > v} dv

1 v 2k
This last expression is bounded by a constant multiple of log(k + 2) by (2.23).
Using this in (2.21) gives the bound
Fy() = Fy.y(#) < Cllog(k + 1)]¥*
for some constant C. To complete the proof, use this estimate in ‘
E¥Y X, t<7)—E¥(X,,t<7)=1+F,(t) — F,.(2)

which comes from (2.18) and then use (2.19). O

ReMaRks. (i) Combining Theorem 2.10 with Proposition 2.15, it follows
for example that if q(i,i — 1) =1 for all i > 1 and ¢q(i,i + 1) ~1 —¢/i for
large i, then (2.12) holds if 7 has a finite moment of order greater than 2q
and fails if 7 has an infinite moment of order less than 2q.

(ii) Loren Pitt has pointed out that, while the semigroup of a birth and
death chain does not necessarily decrease the Lipschitz norm, it does decrease
appropriately chosen weighted Lipschitz norms. For example, if the transition
rates are uniformly bounded and H(n) is a strictly positive sequence such that

H(n+1)gq(n+1,n+2)—H(n)q(n +1,n)
is nonincreasing, then the semigroup decreases
sup | f(n+1) = f(n)]
n=0 H(n) .

Using this observation, it is easy to use Theorem 2.2 and Proposition 2.8 to
show that (2.12) holds, with V(f) taken to be the square of this weighted
norm, provided that inf; ¢(i,i + 1) > 0, sup, o(n)/n < « and

i H2%(n)n®m(n) < .
n=0

For more on monotonicity of Lipschitz norms under diffusion semigroups, see
Herbst and Pitt (1991).
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3. The sufficient condition. This section is devoted to the proof of the
first part of Theorem 1.5. The hypotheses of that part will be assumed
throughout this section. The proof consists of two steps:

Step 1. Verify the assumptions of part (i) of Theorem 2.2 with V(f)
replaced by

vi(f) =sw ¥ [[S()f(n") = S(8) F()]*N2*(n) dv,
t> x

where N, (n) is the distance from x to the nearest site to the right of x at
which there is a one and 7* is the configuration obtained from 7 by replacing
n(x) by 0: n*(x) =0 and 7*(y) = n(y) for all y # x. Note the similarity
between this V* and the one used in the proof of Theorem 2.10. The mono-
tonicity of V* under the semigroup is automatic from its definition. Thus we
need only check the estimate in (2.3).

Step 2. Show that V*(f) is bounded above by a constant multiple of
V(f). It is this step which differs most from the analysis used in the supercriti-
cal case.

Proor oF Step 1. Following the approach in Sections 4 and 5 of Liggett
(1989a), define a probability measure = on Z*={0,1,2,...} by 7(0) = g(1)
and

gn+l)  g(n)
g(n) g(n — 1)
for n > 1, where g(n) is the renewal sequence associated with the density g.

Let u be the product measure on (Z*)? with marginal 7 on each coordinate.
Then define a mapping T: (Z*)? — {0,1}? by T(X) = 7, where

n(n)=1«X(n+k)<k forall k> 0.

By Theorem 4.6 of Liggett (1989a), the measure induced by p under T is the
renewal measure v. Therefore, if f € L,(v) and satisfies [fdv =0 and we
define a function F on (Z*)? by F(X) = f(T(X)), it follows that F € Ly(u),
fFdu = 0 and the corresponding L, norms agree.

Take such an f and write

(82) [fmydv=[F¥(X)du <3 L [L[F(X,0) = FOn(k) du,

where X, , is defined by X, ,(u) =k and X, ,(v) = X(v) for v # u. There
are various ways of seeing the inequality in (3.2). One way is to note that the
right-hand side is the Dirichlet form for the process on (Z*)Z in which each
coordinate, at independent exponential times with mean one, changes to a
value chosen from the measure 7. The inequality is then simply the statement
that this process has spectral gap equal to one [i.e., inequality (2.1) with
C = 1]. See Section 2 of Liggett (1989a), for example. Alternatively, one can

(3.1) w(n) =
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obtain it by induction on the number of variables from the fact that if U,, U,,
V, and V, are independent random vectors with the U’s identically distributed
and the V’s identically distributed and H is a function of two variables, then

E[H(U,,V;) - H({Uy, V,)]” < E[H(U, Vy) - H(Up, V)]’
+ E[H(U,, V) — H(U,, Vy)]%.
To check this inequality, simply square out the following expression:
0 < E[H(U,, V) + H(U,, Vy) — H(Up, V) — H(Up, V)]
Define o(n) as in (2.9) in terms of the m(n) in (3.1). Apply Proposition 2.8

to the coordinate X(u) with all other coordinates fixed to conclude that the
right side of (3.2) is bounded above by

4y, [[F(X,) - F(X)*e*(X(w)) dn,

where X, is defined by X,(x)=X(u)+1 and X, (v) =X(v) for v+ u.
Lemma 5.5 of Liggett (1989a) asserts that if n = T'(X), then T(X,) = n*~¥®),
So, we can break up the previous integral according to the value of X(u) to
obtain

(33) [fPdv<4T ¥ o¥(h) [#(T(X)*™*) - F(T(X))]" d.

ueZ k=0 j;X(u)=k)

Letting x = u — k, (3.3) can be rewritten as
(3.4) [f2dv < T [[£(n*) = f(m)]*Qu(n) dv,

where @,(n) is the conditional expectation (where X has distribution u)
(3.5) Q.(n) = 4E| ¥ 0*(R) L x@rny-nlT(X) =n|.
k=0

Next, we need to estimate @.(n). By Lemma 5.6 of Liggett (1989a), if
O<k<lrzl,9u—-0D=nu+r)=1landn(j)=0foru—-I1<j<u+r,
then

(3:6) P(X(u) = BIT(X) =) s =200 ¥ p(r + i)g(k - i)
. u) = =71)< ————— r+i -1i).
" = B Bm(0) S ¢
Fix 7 and x and let y = min{z > x: n(z) = 1}. Note that n(y) =1 and
T(X)=mn imply that X(y + k) <k for all k>0, so that X(x + k) <
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x+k—y <k for kR >y — x. So we can use (3.6) in (3.5) to obtain

y—x—1
Qn) =4 L o*(k)P(X(x+k)=kIT(X)=n)
(3.7) k=0
<4y§_12kﬂ_£ b ielh
T koo 7 )B(y—x)w(O) i=oﬂ(y x 1)g(k —i).

In order to continue, it is necessary to estimate 7(k)o-2(k). Since B(n + m)
is totally positive of order three, so is g(n + m), by Theorem 1 of Liggett
(1989b). So

g(n—-1) g(n) g(=)
g(n) g(n+1) g(»)|=0.
g(») 8(»)  g(x)

Expanding this determinant and adding and subtracting appropriate terms
yields

g(x)[g(n+1) —g(n)]* < [g(n + 1) — g()]

x[g(n + 1)g(n - 1) — g%(n)).
Combining this with the definitions of 7(n) in (3.1) and o(n) in (2.9), we
conclude that
g(n)[g(n - 1) - g(n)]”
g(n - D[g(n + 1g(n - 1) - g%(n)]

m(n)o?(n) =
(3.8)
_&mle(n+1) —g(=)]le(r - 1) - g(n)]”
T g(=)eg(n-Dlg(n+1) -g(n)]’

By assumption (1.7) and Theorem 2 of Liggett (1989b),

. g(n) —g(n+1)
now  B(n +2)

exists and is positive. Combining this with (3.7) and (3.8) gives the existence of
a constant C so that

YEIB(y-x-k) &
Q.(n) <C Eo W}Ef’(])-
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By assumption (1.6), there is a constant C so that

—x—1 o
Qx(‘n) < Cy Z B(y x k)(k + l)B(k + 1)
k=0

is B(y — x)
(39) _ y-x+17Z1B(y-x—k)B(k+1)
B 2 k=0 B(y_x) .

Note that the logconvexity of B(n) implies the logconvexity of B(n), since
B(n + 1)B(n — 1) — B%(n)

(3.10) =B(n - 1)B(n + 1) = B(n)B(n)
= kZ [B(n — 1)B(k + 1) — B(n)B(k)] = 0.
Therefore, )

B(y-x—k) B(k+1)
B(y—x+1) ~ B(2k+2)

fork+1<y—x — k. Using this in (3.9) together with assumption (1.7) gives
the existence of a constant C so that
B(y — x)

(3.11) Q:(n) <C(y—x+ I)B(_y——T)'

Using the logconvexity of B(n) again, note that
B*(n)= Y B(n+k)B(n+1)<p(n) ¥ B(n+k+l)

k,1>0 k,1>0

=B(n) X (k+1)B(n + k)

k>0

_B(m) Y T B(n + k)

1=0 k=1
= B(n)E,OB(n +1).

Therefore, assumption (1.6) implies that B(n) is bounded above by a constant
multiple of nB(n). Putting this in (3.11) gives our final bound on Q,(n):

Q.(m) < CN2(m)
for some constant C. Using this bound in (3.4) and then applying Hélder’s
inequality gives

[f2dv < CT [[F(n*) = F(m)]*N2(m) dv

< C{g JUf(n®) —f(n)]zdv}l/p

1/q
x{z JLf(n®) = F(m)]* N2 (n) dv} .
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This is the required estimate (2.3), since the expression in the first set of
braces is the Dirichlet form for the nearest particle system and the expression
in the second set is bounded above by V*(f). O

Proor oF STeEP 2. For x € Z, define

A (f)=sup|f(m,) —F(n)|
n

Then for any continuous f,

(312) [ £(m) = (O] < X In(x) = {(x)|A.(f)-

Fix x and n and let (n,, {,) be the basic coupling for two copies of the nearest
particle system with initial configurations 1 and n*, respectively. Then one
can apply (3.12) and the Schwarz inequality to obtain

[S(2) f(n*) = 5(2) F(m)]* = [E(f(m,) - F(L)Y?
< {Z au(N) Elmw) - )]}
< ¥ {Eln(w) - 4(u) ALV F)}2

u

Using this estimate in the definition of V*(f) and using the translation
invariance of the process and of v, we see that we need only show that

(313) sup & J[P{m(u) = 1) = P(ny(u) = 1)] ' Ng(n) dv < .

To do so, define the probability measures u; for i = 1,2, 3,4 by

/m(0) f(n) dv
ff( )dpy = (0 dv

Jf(m)m(0) Ng?(n) dv
/n(0)Ng4(n)dv ’

JF(n)duy = [F(n°) dis

JF(n)dps =

and
_ Jf(m)[1 — n(0)] Ng*(n) dv
J[1 = n(0)]Nge(n) dv

Note that the previous denominators are finite because of the moment as-
sumption (1.8). We claim that these measures are stochastically ordered,

(3.14) M1 < pg < pg < py

J () du,
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and that
(3.15) uS(t)1 and p,S(#)

as t increases. The middle inequality in (3.14) is clear, since u, is obtained
from pg by replacing m(0) by 0. To check the first and last inequalities in
(3.14), start by observing that the logconvexity of B(n) is equivalent to v
satisfying the hypothesis of the FKG Theorem [Corollary 2.12 in Chapter II of
Liggett (1985)]. This is easy to check directly and is done in a continuous time
context in Burton and Waymire (1986). Using this fact and

No(n Vv &) = No(m) A No({)
and
No(n A L) =2 No(n) V No({),

it follows that the hypotheses of Holley’s theorem [Theorem 2.9 in Chapter II
of Liggett (1985)] are satisfied for each of the pairs u;, u, and pg, u,. This
completes the proof of (3.14). To check (3.15), let S,(¢) be the semigroup for
the process on {n: 1(0) = 0} in which the transition rates are modified by
multiplying the original birth rates at x by zero if x = 0 and by

Ng?(n,)
BTN 1
No?(m)
if x #+ 0. Also, let S,(¢) be the semigroup for the process on {n: 7(0) = 1} in
which the transition rates are modified by setting the death rate at zero equal

to 0. Then u, is reversible for S,(¢) and u is reversible for S,(¢) and it follows
by coupling that

By =p1S1(t) S pS(2) < ugS(E) < pngSy(t) = py.

Statements (3.15) follow from this and the semigroup property of S(#).
Next, we perform the following computation:

fn(0)[P{n(u) = 1} — P"’(n,(u) = 1}| N3%(n) dv
J/n(0)Ng?(n) dv

= [P{n(u) = 1} dps — [P{n(u) = 1}dp,

(8.16) = an{'ﬂt(u) =1}dp, - an{nt(u) = 1}du,

< pafm:m(u) =1} —pyn:n(u) =1}

_ J[g(uh) — n(w)][1 — n(0)] N§?(n) dv
/[1 = n(0)]N§?(n) dv

Here the two equalities follow from the definition of the four u,’s and the two
inequalities follow from (3.14) and (3.15), respectively. So, in order to verify
(8.13), it suffices to show that the sum on u of the numerator on the right of
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(3.16) is finite. This follows from assumption (1.8), as the following computa-
tion shows. In the next equality, we partition the configuration space according
to the locations of the nearest ones to the left and right of 0, respectively.

T [lg(ub = n(w)I[1 = n(0)] N§(n) dv/v{n: n(0) = 1)

-1 —k
= X lqu(k+l){ Y eg(uh+ X [g(ul) —g(—k-u)]

k,l>1 u=-k+1 u=—
+ T [#(lu) ~g(u = )

< ¥ P(k+1)B(k+1) <o,
k,l>1

since g(n) is decreasing. O

4. The necessary condition. In this section, we will prove the second
part of Theorem 1.5. The hypotheses of that part of the theorem will be
assumed throughout this section. By part (ii) of Theorem 2.2, there is a
constant C so that

2 1/p
@0 |- fras], <[ fLror - reoras| o
x

for all f which depend on finitely many coordinates. If a(n) is an increasing
function on the positive integers which is equal to the constant a(w) for all
sufficiently large n, define the function A(7) on the space of configurations by
A(n) = 0if n(0) = 1, A(np) = a(l + r)if n(—1) = n(r) = 1 and n(x) = 0 for all
—1 < x < r. By Proposition 6.3 of Liggett (1989a),

0

(4.2) [Adv =M~ T a(n)B(n)(n - 1),
n=2

(4.3) [A?dv =M1 f a?(n)B(n)(n — 1),
n=2

T [[A(n*) - A(m)] dv

(44) =M T akm) T BB

l+r=n

+2M~1 ¥ [a(m+nr) = a(n)]*B(m)B(n)(n - 1).

m,n>1

It is not hard to check that
A (A) = a(») —a(lx] + 1)
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for x + 0, so that

(4.5) v(4) - {a(oo) +2 % [a(s) - a(n)]}z.
Now take a v > 0 such that

(4.6) Y n?71B(n) =

and let "

ay(n) =(n AN)".

(If there is no such vy, then there is nothing to prove.) Let A, be the
corresponding function on the configuration space. In the following lemmas,
we estimate the terms appearing on the right of (4.2), (4.3), (4.4) and (4.5),
when A is replaced by A,.

LEMMA 4.7. As N — o,

% 2
V(Ay) ~ {y - 1N7+1} .

Proor. This follows immediately from a Riemann sum approximation to
an integral

1 N ny\” 1 1
lim — — ) = Ydx = . O
NI_IPooan:"l{N} j;)x dx y+1

LEMMA 4.8. As N — o,

{[ANdu}2=o([A%Vdv).

Proor. For any positive integer L, apply the Schwarz inequality to obtain
L-1

éza(n)ﬁ(n)(n -1) < Zza(n)ﬁ(n)(n -1)

P 0 1/2
+( )zzaz(n)ﬁ(n)(n -1) gL(n -1)B(n)| .

Apply this to ay, square both sides and use (4.6) to conclude that

. {JAy dv)®
oo TIA% dy

Now let L —» «. O

< i (n—1)B(n).
n=L
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LEMMA 4.9. There is a constant C (independent of y and N) so that
T [[An(n*) = Ax(m)]*dv < C L a%(n)B(n).
u n=2

Proor. Since B(n) is logconvex,

B(r)B(2l) < B(H)B(L +r)

for ! < r. Therefore,

ntBA(1)
(4.10) H);:nB(l)ﬂ(") < 2B(n) l);_‘.l 520)

Using this and assumption (1.11) gives the inequality needed to bound the first
term on the right of (4.4). For the second term on the right of (4.4), consider
separately the summands corresponding to (i) m + n > N, (ii)) m <n and
m+n<Nand(Gi)) m>nand m + n <N:

(i) There is a constant C so that

Y [N”=n"1B(m)B(n)(n - 1)

m+n>N>n
N-1
(4.11) <N* );lﬁ(n)(n —1)B(N - n)
N-1 N-1 B2(n)
<CN?¥% B(n)B(N —n) <2CN*B(N .
<OV T B8N ) 30BN £

The first inequality in (4.11) comes from the definition of B(N — n), the
second from assumption (1.10) and the third from the argument that led to
(4.10), applied to B(n) [which is also logconvex by (3.10)] instead of B(n). By
(1.10) again,

B(n)-B(n+1) _B(») _C
B(n) B(n) ~ n’
so that
B(n +1) C
(4.12) N TS

Iterating this gives

B(2n) . (1 C)" )

B(n) n

Using this in (4.11) and using the fact that B(n) is summable (since B8 has a
finite mean) completes the proof of the required bound in case (i).
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(ii) There is a constant C so that

L Bms(m(n=D[(m+n) - n|?

<C Y  B(m)B(n)n*m

m<n,m+n<N

N
<CM ¥ n®B(n),
n=1
which gives the required bound in this case.
(iii) There is a constant C so that

Y B(m)B(r)(n—1)[(m+n) -]

m>n, m+n<N

<C ¥  B(m)B(n)m*n

m>n,m+n<N

N
<CM Y. m*B(m),
m=1
which gives the required bound in the final case.

The remainder of the proof of the second part of Theorem 1.5 is similar to
the proof of the second part of Theorem 2.10. By (4.1) applied to the functions
Ay and the estimates in Lemmas 4.7, 4.8 and 4.9, there is a constant C
independent of N so that

0 © 1/p
Y a%(n)B(n)(n-1) < CN(27+2)/‘7{ Y ai,(n)B(n)} .
n=2 n=2

Apply Holder’s inequality to the expression in brackets on the right side and
divide to conclude that

® 1-(2y/p(2y+1)
{ Y (nA N)2y+1[3(n)} < CN@r*2/q,
n=2
This implies that
g n°g(n) < CN @v(a+2-9)+2-q+aq)/Q@y+q),
n=N/2

where the value of C has been changed. The limit as y — « of the exponent on
the right is @ + 2 — g, so that if @ < g — 2, y can be chosen so that the
exponent is negative. To finish the proof, replace N by 2™ and sum on m. O
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