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COMPARISON OF STOCHASTIC AND DETERMINISTIC MODELS
OF A LINEAR CHEMICAL REACTION WITH DIFFUSION?

By DouGLAs BLoOUNT

Arizona State University

Particles placed in N cells on the unit interval give birth or die
according to linear rates. Adjacent cells are coupled by diffusion with a rate
proportional to N2, Cell numbers are divided by a density parameter to
represent concentrations, and the resulting space-time Markov process is
compared to a corresponding deterministic model, the solution to a partial
differential equation. The models are viewed as Hilbert space valued pro-
cesses and compared by means of a law of large numbers and central limit
theorem. New and nearly optimal results are obtained by exploiting the
Ornstein—Uhlenbeck type structure of the stochastic model.

Introduction. A chemical reaction with diffusion is often modeled by a
partial differential equation describing the evolution of the concentration of
the reactant as a function of time and space. In Arnold and Theodosopulu
(1980) a stochastic analogue of the usual model is constructed. They divide the
unit interval into N cells, allow particles to diffuse between cells by simple
random walks with jump rate proportional to N? and allow particles to be
produced or removed at polynomial rates prescribed by the corresponding
deterministic model. Cell numbers are divided by [/, a parameter proportional
to the initial number of particles in each cell. The rescaled quantities are
viewed as concentrations, and the resulting space-time Markov process is
compared to the deterministic model, a solution to a partial differential
equation. Without diffusion, the stochastic model may be viewed as N inde-
pendent density dependent birth and death processes of the type considered in
Kurtz (1971) and Ethier and Kurtz (1986). By coupling the cell processes
through diffusion, the model of Kurtz is extended to the spatially inhomoge-
neous case.

Arnold and Theodosopulu proved a law of large numbers in L,[0, 1] (square
integrable functions on [0, 1]). Their work has been improved and extended by
Kotelenez (see references) who has proved laws of large numbers and central
limit theorems for linear and nonlinear reactions. He assumes reflecting
boundary conditions and has extended the model to the n-dimensional unit
cube. For mathematical and notational simplicity, we use a one dimensional
“volume,” one reactant, and assume periodic boundary conditions. We state
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only the results of Kotelenez that can be directly compared with ours. Refer-
ences to related work can be found in Kotelenez (1987, 1988).

Let X™(¢) and ¢(¢) denote the stochastic and deterministic models, respec-
tively, and {H__} the Hilbert distribution spaces (see Section 2) with H, =
L,[0, 1]. For the linear model Kotelenez (1986a) has proved, assuming N — o,
that supy, 7| XV(@) — ¢(Dll- —p 0 if

2
T—>O fora =0 and NI —>x fora> 3.

He shows weak convergence of VNI (XY — ) - U in Dy__0,%) (Skorohod
topology) if @ > % and NI — », where U(#) is an infinite dimensional
Ornstein—Uhlenbeck process in CH_ﬂ[O, ®) for B > 3. For the linear model we

show supjo 7| XV(@#) — ¢(@)ll-o —p O if

l—>x as N—->x fora=0,

N .
W‘ﬁw fOI‘aE(O,g),
N o
gy 7 T

Nl > o ifa>3

and
VNI (XN —¢) 55 U in Dy_,[0,)if @ > } and NI - .

The primary tool in the work of Kotelenez is a maximal inequality for terms
of the form A(¢) = [(U(¢,s) dM(s) where M(s) is a Hilbert space valued
martingale and U(%, s) is an evolution operator on H, the Hilbert space. The
Doob-like inequality controls supy 7| A()llz in terms of E|M(T I%. In our
problem U(¢, s) is a contraction semigroup T'(¢ — s), and our improvement is
due mainly to development of a technique which exploits the smoothing effects
of the semigroup on the martingale M.

Note that all theorems, lemmas and numbered equations are considered on
the same numbering system.

1. The deterministic model. Following Kotelenez (1982a, 1986a) and
Arnold and Theodosopulu (1980) we describe the deterministic model.
For x € R let b(x) = b,x + by and d(x) = d,x where b,, by, d, > 0. Let

c(x) =b(x) —d(x).
A will denote the Laplacian and D the diffusion coefficient. Let r [0, 1]
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denote the space variable and ¢ € [0, ) the time. With periodic boundary
conditions the concentration of one reactant is the solution of the reaction
diffusion equation:

ay
5 (67) = DAY(t,7) + c(u(2, 1)),

(1-1) ¥(t,0) = ¢(t,1) forall ¢ >0,
0 <¢¥(0,r) <py (po afinite constant).

We take D =1 for simplicity and assume (0, - ) € H2, the space of real
valued functions on [0, 1] with square integrable second derivatives in the
distributional sense. Then there exists a constant p; such that for ¢ € [0, T'],
0 < y(¢, ) < py [Kuiper (1977) and Arnold (1980)]. Letting (¢) = y(¢, - ), we
view ¢ as a function valued process. In particular, ¥(¢) € L,[0, 1].

2. The stochastic model. Divide a circle of circumference 1 into N cells
and place an initial distribution of particles in the cells. ! is a parameter
proportional to the initial average number of particles in a cell. For example, if
NI particles are initially distributed, there is an average of ! particles in each
cell. The system evolves in time and space as particles diffuse between cells by
symmetric random walks and are produced or removed within each cell by
reaction. For 1 < %2 < N and ¢ > 0, let n%'(¢) be the number of particles in cell
k at time ¢, and let %N = 0(nY(s); 1 <k < N,0 < s < t) be the history of the
process. Let n™(¢) = (nY(#),nY(@),...,nY(#)) € RY. Using the polynomials
b(x) and d(x) appearing in the definition of the deterministic model, we define
the jump rates for n™(¢) by

(ny,npy) > (np,—1,n,,,+1) atrate Nznk,
(ng_1,ng) > (ny_y+1,n, — 1) atrate N2n,,

(2.1)
n,—->n,+1 atratelb(n,/l),

n,—>n,—1 atrateld(n,/l).

For each N and ! we have a different system and n™(¢) = n™!(¢), but we
suppress the ! in the superscript. n™(¢) is an RY valued {#"} Markov
process, which is right continuous with left limits. Let AnY(¢) = n¥(z) —
npy(t —), where 0 — = 0. Suppose 7 is an {%,"} stopping time such that

sup supn)(t A1) I, .4 <M(N,I) <.
1<k<N t=0

Then n™(¢) has a bounded total jump rate and we have the following lemma, a
variant of a similar result of Kotelenez (1982a, 1986a). The proof, based on a
result of Kurtz (1971), is found in Blount (1987).
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LEmMA 2.2. For 1 <k < N the following are {#"} martingales:
L And(s) - [N (nd(5) - 2nY(s) + n},i(5))
(a) S<tAT 0
+Ib(nf(s) /1) + ld(n(s)/1)] ds;

. (Anf(9))" = [[N*(rY_s(s) +2n}(s) + nY.s(s))
+Ib(nf(s) /1) + 1d(n} (s)/1)] ds;

(© L (An(s))(An} () + [

S<IAT Y

tAT

N?%(ny(s) + n¥,y(s))ds.

Now we construct a space-time jump Markov process which is the stochas-
tic analogue of (1.1). For ¢ > 0 and r [0, 1) let
n¥(¢ k-1 k
k l( ) for re —N—, -N
We view {n}} as a periodic sequence satisfying n¥, y = n¥, so X™(t,r) is
periodic in r with period 1. We suppress the / in the superscript.

Let HY be the space of step functions on [0, 1) which are constant on the
intervals [(k — 1)/N, k/N). Consider them extended to periodic functions.
Define Py: L,[0,1] » HY, an orthogonal projection, by
kE k+ 1)

_ (k+1)/N hd
PNf(r)—ka/N f(x)dx for re|&, —

0<k<N-1.

(2.3) XNitr)= ), 1<k <N.

(2.4)

Similarly, define
V#f(r) = N[Pyf(r £ N1 = Pyf(r)],
(2.8) Anf(r)=-VwVNf(r) = -VyVyf(r)
N2[Pyf(r+N-Y) - 2Pyf(r) + Pyf(r - N7Y].

Ay is a discrete analogue of the Laplacian. By first applying P, we consider
Ay and Vi extended to all of L,[0, 1]. Let

(2.6) XN(t) = XN(t,-) € HY c L,[0,1].

XN is an HY valued {#~} Markov process, and using (2.3) and Lemma 2.2 we
can write

(2.7) XN(t) = X¥(0) + jo ‘AyXN(s)ds + jo ‘o(XN(s))ds + ZN(¢),

where ZN(¢ A 7) is an HY valued martingale for 7 as in Lemma 2.2.
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Now we follow Kotelenez in defining the spaces in which the models are
compared. Since y(¢), XV(¢) € L,[0, 1] we may compare them in this space and
in the following spaces of distributions. For r € [0,1]and m € {0,2,4,...}, let
do(r)=1, ¢, (r)=vV2 cosmmr and ¢,(r) = V2 sinwmr for m > 2. Let
B,, = m2m?. Then {¢,,, ¢,,} form a complete orthonormal system in L0, 1]
and Ae,, = —B,.e,, fore, =¢, or ¢, .

For f, g € L,[0, 1], let { f, g) denote the usual inner product. For « > 0 and
f e L,0,1], let

V2= T (frdm) + Frthn)®

W (B
and let H_, be the completion of L,[0,1] in the norm | -||-,. Note H, =
L,[0, 1]. Define H, for a« > 0 by

H, = (€ H IFI2 = T ((Frdp + ()L + B)* < o).

For @ € R we can then summarize the definition of H, as

H,={f: f= X apbp+bulin, L (% + L)1 +B,)" <}.
If @ > 0 there is a natural duality between H_, and H, defined by

(f,8) = La,(f)a(8) +b,(f)b,(g) for feH_,, g<H,.

We have |(f, @) <|Ifll-.llglla. If fEHy,NnH_, and g € H, C H,, then
(f,g)={f,g> Weuse( , )todenote both the inner product in H, = L,[0, 1]
and the dual pairing between H_, and H,.

Let e’ denote the contraction semigroup generated by the Laplacian on
H,. Then e?’e,, = e Prie  fore,, = ¢, or §,, and e*’ can be extended to any
Ha by lettlng eA‘f = Ze_pmt(< f7 ¢m>¢m + <f7 ‘,’m>¢m)

Note HY c H__, for « > 0. To compute the norm || - |-, of functions in HV
it is convenient to introduce an alternative but equivalent norm. Assume N is
an odd integer. Let ¢y y(r) =1, and for m €{2,4,..., N - 1}, r €[0,1), let

G, (1) =‘/§cos(m%) and wm’N(r)@sm(wm%)

for re[k/N,(k+1)/N), 0<k<N-1. For feH" and a >0 define
I fll-, 5 by

(o m w2+ ot )
2.8 2. N= : ML
@9 e

where we take iy, y =0 in the sum and {-p, y} are eigenvalues of Ay
defined in Lemma 2.9(d). The following lemma is elementary but very useful.
We omit the proof, which is computational but straightforward [see Lemma
2.12 of Blount (1987)]. Let || f|l. denote the essential supremum of f € H,,.

)
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LEMMa 2.9. (a) va w € HY, then (Vyv,w) = (v, Vyw).

(b) Ay: HY > HY is self-adjoint.

© {¢,,, 5+ U, n} form an orthonormal basis for HYN considered as a
subspace of H,,.

(D) Aydy v = =B, NPm, v and Axy v = — B, NV, n> Where —B,, y =
2N%(cos(wm /N) — 1).

(e) There exist constants 0<e¢; <cyg<oowithe, <B,, n/Bn <cy for 2 <
m < N. (Recall B,, = m2m?)

B If ey, 5 = by, w OF Uy n, then Ve, yllo < V27m.

(8) There exist constants 0 < ca) < cy(a) < © with c@)l|fl-a <
I fll-a, 5 < el fll-a for f € HY.

Remarks. For h € H,, Kotelenez (1982a) showed ||&(-, < 10|A(l—,, ~ for
o = 2. Thus for h € HY, Lemma 2.9(g) extends this type of inequality to all
a > 0. Since HY is ﬁmte dimensional, any two norms are equivalent, but the
point of the lemma is that constants defining the equivalence may be taken
independent of N.

The last result of this section is a variant of a similar result of Kotelenez
(1982a, 1986a). For V € HY let ZY(t) = (ZN(t), V). Let |c|(x) = b(x) + d(x).

LEmMMA 2.10. Let V,W € HYN. Then

Z (AzN(s))(Azg(s))—— ‘“[<XN(s),(v,¢V)(v,¢W)

+H(WW V(R W)) + lel(XN(s)), VW)] ds

is an {#,N} martingale.

Proor. Note that AZN(t) = AXM(¢) by (2.7). The proof is then a direct
computation using Lemma 2.2, the definition (2.3) of X"(¢) and the fact that
(Anf@OXARY@) =0 for j & (i — 1,i,i + 1}. O

3. Law of large numbers for the linear model. Recall b(x) = b,x + b,
and d(x) = d,x. We have

(3.1) XN(t) = XN(0) + [0 ‘AyXN(s) ds + byt + ZV(2),

(3.2) W(£) = $(0) + [‘Au(s) ds + bot,

where Ay = Ay + b, —d; and A = A + b, — d,. In this section we prove the
following theorem.



1446 D. BLOUNT

THEOREM 3.3. Let a > 0 and assume

(i) N - .
()l >ovas N> wifa=0,
NI )
i~ a0
NI ) .
Gogny e
Nl > o ifa>1%.

@iii) [IXN(0) — ¢(0)l|l—o — O in probability.
Then for all T > 0 and & > 0,

P| sup | XN(2) — ¢(t)ll_. > 8| - 0.
[0,T]

REMARK 3.4. Theorem 3.3 eliminates the moment assumption of Kotelenez
(1986a) and extends the LLN to H__ for all « > 0. Both theorems make a
high density assumption for a = 0, but Theorem 3.3 allows [ to grow slowly
compared to N. In Theorem 3.3 the density may be low for any a > 1, as long
as the initial number of particles approaches infinity. For a € (0, 1] the initial
number of particles must approach infinity sufficiently fast. The result for
a > ; gives a corresponding improvement in the CLT. Before beginning the
proof we give a simple example which indicates the best theorem of this type
possible has assumption (ii) replaced by the single condition

N
(i) lim (NI)™' ¥ n 22 =0.
N-ow n=1
This agrees with (ii) for @ = 0 or a > 3, but eliminates a factor oflog N in the
assumptions for a € (0, 3]. We believe Theorem 3.3 holds with (ii) replaced by
(ii") but cannot prove it.

ExampLE 3.5. Let the initial numbers of particles in each cell, {nY(0)}}"_,,
be distributed as independent Poisson random variables with mean /. Assume
b(x) = d(x) = 0. The distribution is then stationary, so consider X~(¢) for any
fixed t: XN(t,k/N) =17'C{,0 <k < N — 1, where the {C}"} are independent
Poisson with mean /. Note EX™(¢) = 1 and set (0) = 1. Thus ¢(¢) = 1.

Let

1 k
a% = <XN(t) - 1’ Qom,N> = m% (lev - l)‘Pm,N('ﬁ),

1 k
b,I,Y= <XN(t) -1, d’m,N> = m% (CkN_ l)"’m,N(ﬁ)
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Then E(aY)? = E(bY)? = (NI)7Y, since ll¢,, yll§ = 15, y2llo = 1. Thus

R s (e (B
Bl x%(¢) 1||_a,N—E§ TRy

1

m>0

Recall ¢, < B,, y/m® < ¢, for m # 0. Since the distribution is spatially homo-
geneous, we can obtain convergence by keeping N fixed and letting [ — .
However, if the initial distribution is not homogeneous, we need N — « to
force Ay — A. Assuming N — o, we have E[|X™(¢) — 1l|_,, 5 — 0 if and only
if 1/NDEVn=2® - 0 as N - ». By Lemma 2.9 the same result holds using
| - Il_. Assuming sup y||EX™(0)|l < %, a similar result can be proved assum-
ing any nondegenerate initial distribution. Since we are only showing conver-
gence for a fixed ¢, this indicates that (ii') is the weakest possible assumption.

Now we follow Kotelenez and use variation of constants to rewrite (3.1) and
(8.2) as

(3.6) XN(t) = eAnXN(0) + [O‘ef*w-%0 ds + ]O‘eAw-s) dzN(s),

(3.7) ¥(t) = eAy(0) + [0 ‘eAt-9p ds,

where e4¥ and e4? are the respective semigroups generated on H, by Ay
and A. As discussed prevously e’ extends to a contraction semigroup on every
H_,. Using the representation

(3.8) e®Nf =3 e PN ({00 NP, + s ¥m, N¥m,N)>
e2~t extends to a contraction semigroup on H?Y in the norm | |-, ~ for
@ > 0 and on H,. Since e*~’b, = e*’b, = b,, we have
(8.9) XN(2) — y(2) = e (XN(0) — ¥(0)) + (e — e#)y(0) + YN(2),
where YN(¢) = [{eA¥¢~9) dZN(s). Choose & € (0,1) and let

r=17(N,l,a,8) = inf{t: | XV(t) — y(t)]|_. = 8}.

It suffices to consider XN(¢ A 7) — ¢(¢ A 7). Recall supy, 7 l¥(Dll < p7. By
definition of the possible transitions for X™(¢),

1/2
| X%ty - X%t o) ( 5 m ) S0

- N = NI
under the assumptions of Theorem 3.3. Thus, using the equivalence of || * [_, &
and || - |-, on HY and taking p, larger if necessary, we may assume

(3.10) sup 1> XN(t A T)|_, <pr and pp=1.
0,T]
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Since X" is a finite dimensional process and ll¢,, yll. < V2, ¥, 1l < V2,
we have supy, 11l > 0y XN A 7l < (T, N, 1) < . Thus XM A7) has a
bounded total jump rate for ¢t € [0,T], T < .

Using (3.9) we can write
(3.11)

XN(t A1) = (t A7) = eANEAD(XN(0) — 4(0))
+(eANEAT — gACADY Y (0) + YN(E A T).

By Trotter-Kato, lim y _, ., supy 7[(e4¥¢ "™ — e4¢AD)y(0)|lo = 0. Using || Py f
—fllo— 0 for f€ H, and the equlvalence of |‘ll- and |||l ~ shows
supyo, 7, IIeAN(”")(XN(O) tp(O))Il_a p 0. Thus, to prove Theorem 3.3 it re-
mains to show sup[0 T]IIY & A ‘T)"_a —p 0.

Let —6,, y=0b, ~ B, n- Then Aye, y= -0, ye, y for e, y=
@m, N O ¥, n. By deﬁnltlon of YV we have, for e,, x = ¢ x OF Uy x>

(YN(2), e n) = fe“’m'N(“s)d(ZN(s),em’N>.

We use Y,)'(2), Z)(¢) to denote either of the respective pairs (Y™(¢), ¢,, n),
(ZN@), @, N OF (YN(t) Um x> (ZN(), ¥, x). Thus we have
YN(¢t) = fe-amw(t-s) dzZ¥(s),
0

(3.12) (¥
(1 + Bm,N)a

Note that by Lemma 2.9 at most a finite number of {—6,, y} are nonnegative,
and for N > N, there are m, C; and C, which may be taken independent of
N, such that for

(3.13) mx=m,, 0<Cm?<0, y<Cym’

" YN(t) "2—a,N = Z

REMARK 3.14. The results of Kotelenez were proved by applying a very
general maximal inequality [Kotelenez (1982b)] to Y™(¢). Using only Doob’s
inequality and the spectral properties of A,, the following lemma gives a
straightforward proof of a special case of this inequality relating to our
problem.

LEmMa 3.15. (Y.Y(¢ A 7))? < BN(¢), where BN(¢) is a submartingale with
EBN(t) < c(t)(m? + 1)(NI) ™ .
Proor. From (3.12) we have
ayy(t) = —6,, yYN(t)dt + dZN(t), YN(0) =0.
Let [ZY1(#) = T, . (AZX(s))? be the quadratic variation of ZN(¢). By Itd’s
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formula
(YNt A 7)) = —20,,,,Nf0tM(YmN(s))2 ds

+f0tM2YmN(s ~)dZN(s) + [ZN](t A 7).
Let

BN(t) = (YN (¢t A7) if =6, x=0,

BN(t) = [O‘A’zy,,ly(s ~)dzN(s) + [2¥]|(t A7) if —6,, y<O.
Recall m > m, implies —0,, y < 0, so EBN(¢) < e>™E[Z]])¢ A 7). By Lem-
mas 2.9 and 2.10 and (3.10),

E[ZX](t A7) < Cpp(m? + 1)(NI) 7,

which proves the result. O

The proof of Lemma 3.15 shows [|[Y¥(t A D%, n < BY(t), where BN(#)isa
nonnegative submartingale satisfying

N p2
EBY(t) < >™E|ZV(t A ) |20 n < COOUND T L~

n=1

Using the equivalence of || - |-, and || - |-, » and applying Doob’s inequality
shows
c(T) XN
(3.16) Plsup |[YV(t A )2 > 62| < ( 2) Y n¥i-o,
[0,T] Nie® 24
For a € {0} U (£,) a similar inequality was used in Kotelenez (1986a). By
(8.16) and the discussion after (3.11) we have extended the LLN in that paper
to the following result.

THEOREM 3.17. Let a > 0 and assume

@) N - .
(i) N22I/N2? > o if a €[0,2), Ni/logN > « if a =3 and Nl - » if
a > %
(i) 1XN(0) — ¢(0)ll-o —»p O.
Then for all T > 0 and 6 > 0, P[supy, rIX™(8) — ¢(Dll-o > 8] - 0.

REMARK 3.18. The proof of (3.16) is based on the fact that Ay has
nonpositive eigenvalues, but does not fully exploit this fact. The following
lemma will be used in the proof of the subsequent CLT. We prove it here since
the method can be generalized to give a proof of Theorem 3.3 which more fully
exploits the spectral properties of Ay and eV,
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LEmma 3.19. Let V(t) = [ge P¢~9y/2y(s) dW(s), where B >0, 0 <T =
supyo, 7¥(s) < © and W(s) is a standard Brownian motion. Then

P[ supV2(t)2A] < d ,
[0,T] f(A)

where

f(A) =g~ f(BA/F)l/ZeSZ/z fse"z/z drds.
0 0

Proor. Let Dg(u) = g'(uX—2Bu + 2T) + 4Tug"(u) for g € CA(R). 1t is
easily shown that Df(x) =1, f(0) =0 and f'(u), f"(u) > 0 for u > 0. We
have dV2(¢) = —2BV(¢t) dt + 2V(t)y/2y(t) dW(t) + 2y(t)dt. By Itd’s for-
mula, for 0 <t < T,

FVA@) = [11(V()(~28V2(s) + 2v(s))
+4f"(V3(s))V2(s)y(s)] ds + R(¢)

< fot[ f'(V*3(s))(—2BV?(s) + 2T) + 4f"(V3(s))V*(s)T']| ds + R(t)

- j:Df(Vz(s)) ds + R(t) =t + R(¢),

where R(¢) is a martingale with ER(#) = 0. Let 7, = inf{t: V() = A} and
note f(u) is strictly increasing on [0, ). Thus

E(f(Vz(T A TA))) E(T A 7y) T
< < < .
] f(A) f(A) f(A)
The proof of Lemma 3.15 shows that Y™ (¢) can be decomposed into what
resembles a system of Ornstein—Uhlenbeck processes. We can exploit this

structure by applying the method used in Lemma 3.19 to Y™(¢). First we need
a simple technical lemma.

O

P[ sup V2(¢) > A
[0,T]

LEmMMA 3.20. (a) The function

12 [(a/e)(v+e)]”
F) = g B Tis((b + ae) /e +7)
solves f'(uXb — av) + f"(V)c(v + ) = 1.
(b) Ifa,b,c,e > 0 and 0 < Av < c/a, then forv > 0,
f"(v + Av) 1
f"(v) =1- alv/c’

ProOF. (a) can be checked directly. A term by term comparison of the
power series for f” and f” shows f”(v) < (a/c)f"(v) for v > 0. Thus, for
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some U € [v,v + Av],
(v + Av) = f"(v) + f"(0)Av
<f"(v) + f"(v + Av)Av

<f"(v) + %f”(v + Av)Av. O

The following lemma provides the estimates needed to prove Theorem 3.3.
For its proof, the assumptions of Theorem 3.3 are in effect and we are stopping
in the sense defined after (3.9). |B| denotes cardinality of a set.

LEmMA 3.21. (a) Suppose we are stopping in the norm |- |-, for a = 0.
Then, for m = m, and A > 0,
= (rNIA)" T

< &) "‘[Z (Bor) (n + D!

Plsup (YY(t A7) =A
[0,T]

= C(T)m?u(e* —u— 1)},

where u = rNIA/Bpy, r > 0 does not depend on N or m, and B = max(2, 2VA).

(b) Suppose we are stopping in the norm || - |lo. Let [-] denote the greatest
integer function. Suppose B c{0,2,..., N — 1} N {m = m} is such that m <
Cm, where m and m are the maximal and minimal elements of B and
C = C(B) is a constant not dependent on N. Let |B| < L = [(log N)2). Then for
0<gxl,

~[L1/2)
< C(T)N2L1/2(rl—q) ,

L
P|sup ¥ (YN(t AT)) > qw ;
T

[0,T] B

where r > 0 is proportional to C~(B).

Proor. We will suppress the N in the superscript on Y, Z¥ and X* for
the duration of the proof. Recall Y, (¢) = [jexp(—6,, (¢t —s))dZ,(s) and that
for m > my, 0 < C; <6, y/m® < C, < for C;,C, not dependent on N. We
have

dy,(t) = -6, yY,(t)dt +dZ,(1), Y,.(0) =0,

(3.22)
dY(t) = —26;, NY3(t) dt + 2Y,(t =) dZ,,(¢) + d[Z,,](2).

Let B be a set of indices as described in the assumptions of the lemma. B may
have only one element, which is the case in Lemma 3.21(a). Suppose f(u) is
a C® function such that f®(u)>0 for « >0 and i <3. Let 7, =
inf{¢: XY,2(t A7) > A} and let § = 7 A 7,. Summing over m € B and using
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change of variables for functions of bounded variation,
AE YA A8) =f(0) + [F/(X ¥i(s -))d(E Yi(s))
+ T (f (Z Y2(9)) — (L Yi(s -)))

tA8

S<tAS
(3.23) - ZtlAaf'(Z Ya(s =) A (L Y2(9))
=£0) + [°F(X ¥2(s ))d( L Y(5))

+3 T f(E(9)(AL Yi(s)),

S<tAS

where E(s) is between LY,2(s — ) and L Y,2(s). From 3.22,
AY2(s) = (AY,(5))" + 2Y,.(s —)AY,(5) = (AZ(5))" + 2Y,,(s —)AZ,(s).

By the definition of Z,(¢) and the possible transitions for X™(¢), [AZ,,(¢)| <
2V2 /NI. Thus

16L 4\/5 2LYY2(s —))"*
IAZ Y2(8)| 2l2 ( NI ) s

using Jensen’s inequality and the fact that Y, (¢) represents (Y* s @m, n and
(YN, 4, x> in the sum. For s < 7, (TY,X(s — ))1/2 < VA and

(AL Y2()) = [E (AZ(9))* + 2¥(s ~)AZ(s)]’

< 4L Yuls -)AZ,(5)) + e L (AZ,(s))',

16 L 8yLA
NI TN
We also have |[LL Y,2(s)| < &. Let ¥y = sup{(f"(u + £))/(f"(u)): u = 0}. Since
f"(u) > 0 for u > 0, we have, from (3.23) and the last estimate,

(X Yt A 8))
<fO + [F (L Yi(s )
X[=2X 0, nY2(s)ds + 2L Y, (s =) dZ,,(s) + ¥ d[Z,](s)]
+2y, X (X Yi(s-))

S<tAS

for ¢ =

X[(E Yuls =)AZn(9))" + £ T (8Z(5))7].

Assume vy, < =, as it will be for the appropriate f and let V,, denote ¢,, 5 or
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¥, - By Lemma 2.10 we have
(YA 8) <f0) + [F(E Y(s))

y —2Y 6, nY2(s) + (NI) Nel(XN(s)), T V2)
+(N)TH(XN(s), T [(VEV)® + (Ve V)]
+ 2y (N [ (T ¥A())
(3.24) _ \ -
el (XN () X Yu(5)Via) D
+(XN(s), (L Yul(s)V Vi)’
X| +(Z V() V) ds + R(2),
+elel(XN(s)), X V.2
+e(XN(s), T [(Va)® + (V)]

where R(t) is a mean zero martingale.
We consider the cases |[B| = 1 and 1 < |B| < L = [(log N)?] separately. By
(3.10), the bounds on 6,, y/m? for m > m, and VgV, .. < V2 7 m, we have

F(Y2(E A 5))

(325 <O+ [T (X)) -CmYi(s) + Copm?(N1) ] ds

+f0t/\8[ f"(sz(s))‘ny'gpt(Nl)_lmz(Y"‘z(s) + 5)] ds + R(t),

where 0 < C; < C, < w and C;, C, are not dependent on N or m.
Now suppose |B| > 1. In this case we are stopping in the norm || - [lo and
need a bound on

- (XN(s), (L Yu(8)VV,0)" +2(Z Y(8) Vi Vi) |
[0.¢771| +{lel(XN(s)), (X Yu(s)Vn)
For s <t A 7 consider
15 ol XV(8), (L Yl(5) VA Vi)
< (T 1Y) IV Vi) 15 oI XV ()T iu(8) Vi Vil
< CoL (Z m?v2(s)) (L Y2(s)IV5V,ul3)*
< Co/L (m)*( L Y2(s)),
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where we have used the fact that {VyV,,} are orthogonal in L,[0, 1] and
Vi Vs Vi Vi) = = AV, Vi) = B, < C(m)?

by the assumptions on B. The same calculations hold for Vy replaced by Vy,
and similarly

L, > oflel(XN(s)), (X Ym(s)Vm)2> < Cp/L X Y. 2(s).
The remaining terms in (3.24) can be estimated as
= L 6, vY3(s) < —~Cy(m)*E Y,2(s)

by the assumptions on B and the bounds on 6,, y/m? For s < tAr and 7> 0, .
>0,

(XN(s), T [(VV)® + (Ve Vi) ?]> + Clel(XN(s)), T V2) < CyLpy(m)?

using the assumptions on B and the same argument as in (3.25). Thus, we
have

F(ZYAT A8))<f(0) + [

0

TAé

/(X Y(s)
(3.26) X(_TCAZ@)T Y2(s) + Cpr L(m)*(N) ™) ds
+ [ i Capr LA (m) (ND) T (Y (s))

x (¥ Y2(s) +£)ds + R(T),

where R(-) is a mean 0 martingale, £ = L'/%¢ and C;, C, > 0 do not depend on
N. They do depend on m/m, but the blocks are chosen so as to keep the ratio
bounded.

Now we choose an appropriate f. Let f(v) be the solution of

f'(v)(=Cim?v + Copr Lm?(NI) ™)

+ BCypr(NL) L2 (m)* f"(v)(v + ) = 1
given by Lemma 3.20 with

a=Cm? b = Cypr Lm*(NI) ™",

e=%  c=BCypr(NI) 'LV¥(m)?,
where B is a constant we need to choose appropriately. Recall

f"(v + &) 16L 8/LA

Y= sup{wzv > 0} and ¢ = NIE + N

By Lemma 3.20(b), y; < (1 — ag/c)~".

In Lemma 3.21(a) we are assuming L =1 and NI/ - «, and in Lemma
3.21(b) we are assuming L < (log N)?2, N > , ] > @ as N - «, Also, pp > 1
and we can assume C, > 9C,.
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Let B = max(2,2VA). A straightforward estimate shows this gives y; < 2 <
B. This choice of f and (3.26) gives

(3.27) Ef( X Y2(TA8)) < Ef(0) + E(TAS) < Ef(0) + T.
Recall

= [a/c(v +e)]”
2 nTZH((b + ae) /e +J)

f(v) =™t

The observations in bounding y; show f(0) < C(T) < « in case (a) of the proof
and f(0) >0 as N > » in case (b). Thus, Ef(0) + T < C(T). Also,
(b + ae)/c < VL. In case (a) we have

-1 - (erA/BPT)n _ C,
(3.28) f(A) > (Clmz) Z —I:[m where r = '672

n=1
In case (b) A = qL/N — 0 as N — =, so we can take 8 = 2. Using only the
term for n = [L!/?] in the power series for f shows

1/2

(3.29) f(%) > (ClNle/z)_l("Z—Z)[L | where r = 4152

Finally, note f(v), f'(v) > 0 for v > 0. Thus

] _ Bf(ZYX(TA) _ C(T)
- f(4) -~ f(4)

by (3.27) and the observations after it. With (3.28) and (3.29) this proves the
lemma. O

P[ sup ¥ Y2(¢tAr) > A
[0,T1

We can now complete the proof of Theorem 3.3.

ProOF OF THEOREM 3.3. By the equivalence of || - |-, and || - |-, » and the
discussion after (3.11), it remains to show that

Y2(¢t A7)
2 m
sup |[YN(¢ A7) 2o v =sup ¥ ——=

= —p 0.
[0, 7] 0,77 (1 +Bn n)

First consider the case a = 0. By Lemma 3.15, for any A > 0,

Plsup Y Y%tA1)>A|<C(T)pp(log N)A(NIA)™ >0
[0,T] m <(log N)?

since we are assuming [ —» © as N — . Thus we need only sum over B =
{m: log N2 <m <N —1,m even}. But we can let¢ B= UM B, where
M < N/[(log N)?), |IB;| < (log N)* and B; satisfies the assumptions of Lemma
3.21(b) where sup{C(B,): 1 <i < M} is bounded independently of N. By
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Lemma 3.21(b), for any ¢q € (0, 1],

Plsup T Y2t A1) > q] < ¥ P|sup ¥ Y2(t A7) = g[(log N)Y| N~
[0,7] B :  |10,T1 B,

!
< N(log N)“C(T)Nz(:—q
T

—{[Qog N)2}1/2

if ] >o0as N — o,
Now let a > 0. If % is fixed, then by Lemma 3.15,

sup Y, Yt A1) —>p 0.
[0, T m<k

Thus it suffices to show that, given £ > 0,
sup Y, m EYZtAT)>e
[0,T] m>k(e)

for all large N. If @ € (0,2), then C(a)N?*~'LN_.n"2¢ < 1 for all large N
and C(log N)"'Z¥_n72* < 1for a = 1. Fix k > m,. If a € (0, 3), we have

P <eg

P[ sup Y, m-2Y2(tAT) > e]
[0,TI m>k

N
< P[ sup Y, m~2*Y2i(¢t A7) >eC(a)N2*"1 Y n'z"‘]
[0,TI m>k n=1

<Y P[ sup Y2(t A 1) > eC(a)Nz"“l]
m>k [0,T]

< C(T)N*** exp(—Cy(T)N?*le) > 0 if N>*I(log N) ™! - oo
The last inequality follows from Lemma 3.21(a) with A = eéC(a)N2%~1, In this
case k does not depend on ¢. For @ = 3, a similar calculation shows

P[ sup Y, m~2°Yi(t A7) > e]

[0, TI m>k
< C(T)N*i(log N) ™" exp(—Cy(T) Nie(log N) ') - 0
if Ni(log N)~2 — . This proves the theorem for a € (0, 1].
If a > 3, choose y € (}, a). Then

N
P[sup Y m 2Y2(tAr)>2(N) 'Y n‘z"]
n=1

[0, T] m>k
< Y P[sup Y2(¢ A7) > mXe~V(NI) ™!
m>k [0,T]
-1
* (rm"‘"’)n
< Y a,, wherea, =C(T)m? Y ————
m>k " ( ) n=1pT(n+1)!
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is determined by setting A = m**""(NI)~! in Lemma 3.21(a). Since
s me@m < and (NI)™'E5_n"2% - 0 as (NI) - », we can choose k(e)
large enough to obtain

P[sup Y m2Y2(tAr) > ¢| <e. O
[0,T] m>k(e)

4. The central limit theorem for the linear model. Again consider
XN(t) — g(t) = e (XN (0) — y(0))

4.1
(4.1) +[teAN(“3) dZVN(s) + (eA~t — e4)y(0),
0

with the same notation as Section 3. As discussed in Kotelenez (1986a), there
is a unique (in distribution) H_ (for g > 3) valued Gaussian process on some
probability space with independent increments, continuous sample paths and
characteristic functional

(42) Eexp(i(M(2),¢)) = exp(—gfo’[w(s),z(qa)% + el (¥(s)), %] ds)

for ¢ € H.
Let UN(@t) = VNI (XN(@) — ().

In this section we prove the following result.

THEOREM 4.3. Assume a > 3 and

l
(a) N 0,

(b) NI > o,
(©) UN(0) — U, in distribution on H

Then
@ VNI(XYN — ) = UN - U in distribution on Dy;_ [0, »), where

where U, is independent of M.

—a?

(4.4) U(t) = AUy + [e4¢=9 dM(s)
0

is the mild solution of the stochastic partial differential equation
(4.5) dU(t) = AU(¢t) dt + dM(t), U((0) = U,.

@) If B > 3, then (UN(0), MN) -, (Uy, M) on H_, X Dy_gl0, ).
(iii) U € Cy__[0,%) a.s.

ReMarks. In Kotelenez (1986a), U € Cy_ [0, ©) € Dy __[0, ), but conver-
gence Uy —, U takes place in Dy_,_5[0,2). We now have Uy -4, U in
Dy _[0,) and have eliminated the asymptotic independence assumptions of
Kotelenez by proving (ii). In Kotelenez (1986a) the proof that U € Cy__[0, T']
a.s. was based on a generalization of a theorem of Dawson (1972), which was
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an application of a theorem of Newell (1963). We have reproved it here using
Lemma 3.19, a direct consequence of Itd’s formula. We note this since the
estimates of Section 3 are based on generalizing the proof of Lemma 3.19. The
proof of Theorem 4.3 parallels the proof of the CLT given in Kotelenez
(1986a). The improvement is due to the estimates developed in Section 3 with
additional technical improvements. The proof is a series of lemmas.

For the remainder of this section the assumptions of Theorem 4.3 are in
effect. In particular, we are assuming

N - o,
(4.6) Nl > o,

a>73 and [XV(0) - y¢(0)]_, —p 0.

For a fixed 6 € (0,1), let 7 = inf{t: | XV() — ¢(®)|l_, = 8}. By Theorem 3.3,
supg, 71 XN(#) — ¢(Dll-o —>p 0 and P{r < T] - 0 for all T > 0. Let

(4.7) MN(t) = VNIZN(t A 7).
LEmMA 4.8. Suppose B > 3. Then {M™(¢)} is relatively compact in H _ 8-
Proor. Proofs are given in Kotelenez (1986a) and Blount (1987). O
LEMMA 4.9. Let ¢ € Hy, B> 5. Then for 0 <s <t,
Elexp(i{M™(t) - M"(s), o)| FV]
op oxp( = [[<20 (), (61" + el (w(w)), o)
= Elexp(i(M(t) — M(s),¢))].

Proor. In Kotelenez (1986a) it was shown that
E[exp(i{MM(2), ¢))] — E[exp(i{M(¢), ¢))].

His proof can be generalized to prove Lemma 4.9. Details are in Lemma 4.4 of
Blount (1987). O

LEMMA 4.10. Let 0<s <s,<1,0<t<Tand B> 3. Then
E[lM%(t + 5) - M¥(0) |26 ] < €(T)s.

ProoF. Proofs are given in Kotelenez (1986a) and Blount (1987). O

Let

VN(t) = [eAvedMN(s) and V() = [eA ) dM(s).
0 0
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LemMa 4.11. (a) Form > my, €, y = ¢ n OF ¥, x and y € (3, a),

P{ sup m~2(VN(¢),e,, v > m‘z“’] <a,(a,T) where), a, <.
[0,T]

(b) For m = m, e,, = ¢,, or ¥, and vy € (3, a),

P{ sup m'za(V(t), e, > m'27] <b,(a,T) where}) b, <x.
[0,T]

©VelCy_Jl0,» a.s.

ProOF. Recall [see (3.18)] that for m > m,, 0 < C;m? < 6,, y < Cym® and
the same holds for 6,, = 72m? — (b; — d,). Consider

VN, e = [e7 ot 0d (MY (s), €, ).

For m > m,, (VN(@), e, n)* < NIKYN(t A7)y, N) But then Lemma 4.11(a)
was shown in the proof of Theorem 3.3 using Lemma 3.21(a).
For m > m,, consider

(V(t), e >—f e =94 ( M(s), e >—f e ¢ =9(g(e,,5)) " AW, (5),
where g(e,,, s) = (2¢(s), (¢,,)?) + (lel(¥(s)),e2) and W, is a standard
Brownian motlon Since supy, r;8(e,,, $) < C(T ym?, it follows from Lemma

3.19 that, for < y < q,
P[ sup m~2%(V(t), e, )* > m'2“’]

[0,T]
2 2
cxmmen (s (1
f exp( 2 )j; exp( 5 )drds]
This proves (b).

Let R, () =X, XV(8), 0,00, + {V(£),¥,,),, and choose y € (3, a). By
Lemma 4.11(b) and Borel-Cantelli,

-1

<b,(a,T) =C(T)m

p

sup m~2(V(t),e,, )’ > m~? infinitely often] =0.
[0,T]

Since ¥ m %" < o, this implies lim , _, ,, suplo,T]IIRn(t)IIEa =0as. forall T > 0.
Since V(-) — R,() € Cy_,[0,) a.s., this proves (c). O
LeEMMA 4.12. Assume UN(0) »4 U, on H_,,, and B > 5. Then
(2) (UN(0), MY) -5 (Uy, M) onH_, X Dy_g[0,).
eATUN(0) + j A= dMN(s) -5 AU, + [(e44-9 dM(s)
0

(b)
on Dy _,[0,).
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ProoF. Let t; <ty < -+ <#t, fo € H, and f, € Hg, 1 <r <k. The as-
sumption on UM(0) and Lemma 4.8 imply (UN(0), M¥(¢)),..., MN(¢,)) is
relatively compact in H_, X (H_,)*. By Lemma 4.9,

k
E[eXp(KUN(O), for +i 2 AMYN(¢,), fr>)]
r=1

k
- Eexp(iU(0), fo)) Eexp(i Y, (M(t,), fr>).
r=1

Since the Borel o-algebra in H_, X (H_ B)k is generated by the finite dimen-
sional sets, this shows (UN(0), MN(¢),..., MN(t,) -, (U, M(t),...,

M(t,)). (a) then follows by Lemma 4.10, together with Theorems 7.8 and 8.6 of
Ethier and Kurtz.

Let

7N() = jo ‘eAt=9) gMN(s),

V@) = X VN, 0p)0m + V), 4 )00,

m=<n

Vi(t) = L V(t), 0md0m + (V(2), ).

m=<n

We claim that
(4.13)  VN(t) =VN(t) + RY(¢) and V() = V,(¢) + R,(¢),

where Plsupjy 7| R, (t)ll-a > €] < & and Plsupyy 1| BY()ll-a > €] <& for n >
n(e) and N > N(e,n). Assume for now the claim is true. It was shown in
Lemma 3.1 of Kotelenez (1986a) that VN = ®(M™N) and V, = ®(M) where
®: Dy_gl0,®) — Dy_ [0, ) is continuous. The map f — e#’f defines a contin-
uous map from H_, — Cy_,[0,»). In Kotelenez (1982a) it was shown that
addition defines a continuous map from Cy_[0, ®) X Dy_ [0, ©) into
Dy _ [0,). Thus e4Uy(0) + VN -, e4'U, + V, by Lemma 4.12(a).

By the claim (4.13) and an argument using the Prohorov metric given in
Lemma 3.1 of Kotelenez (1986a), it follows that

eAtUy(0) + VN(2) >4 AU, + V() in Dy_,[0,).

This proves (b), assuming (4.13), which we now prove.
The claim (4.13) for V(¢) was shown in the proof of Lemma 4.11(c).
Consider

VN(t) = Z <VN(t)7¢m,N>¢m,N + <VN(t)’ l»bm,N>l»bm,N

m=<n

+ Z <VN(t)’ ¢m,N>¢m,N+ <VN(t)’ ‘pm,N>¢m,N

m>n
VN(t) + RY(¢).
If B =0, Um Omn OF ¥, n for m <n, then E(MN(T), h)* < C(T)n?



LLN AND CLT FOR A CHEMICAL REACTION 1461

Doob’s inequality shows supg 7[V,Y(#) — VV(®ll. —p 0 as N — o for n fixed.
By Lemma 4.11(a), for n > m, and 3< y < a,

P| sup ||szv(t)"2-a> Y m™»| < ¥ a, where) a, <.
[o,T]

m>n m>n mg

Now let RY(2) = VN@) - VN¥(t) + RY@). O
Before proving Theorem 4.3, we need a final technical lemma.

LEMMA 4.14. (a) If K € H__ is compact, then

o

sup sup ll(e*¥ —e®)fll_, >0 asN — .
[0,T] feHNNK

() If f € H, then supy pll(e*~ — e*) fllo < C(T, fIN..
Proor. See Lemmas 4.19 and 4.20 in Blount (1987). O

Proor oF THEOREM 4.3. Parts (ii) and (iii) of the theorem follow from
Lemmas 4.12 and 4.11, respectively. Consider

UN(t) = eAUN(0) + fo "eANE=9) dMN(5) + g5 (t)
where
en(t) = (e* — eA)UN(0) + /(:eAN(“s)d(\/mZN(s) — M%(s))

+ VNI (e~ — eA)y(0).

By Lemma 4.12(b) it suffices to show supy 7llex(ll-o =p 0. But ¥(0) € H,,
so it has a continuous derivative in the space variable, implying [|y(0) —
Pyy(O)ll. < CN~'. Thus supy (e — e4¥)UNO)|_, »p 0 by Lemma
4.14(a) and relative compactness of {Uy(0)} in H__. We have

sup VNT [|(eA~* — e4%)y(0) |y < C(T)(1/N)*?
[0,T]

by Lemma 4.14(b). By 4.7 and the sentence preceding it,
P(YNIZN(t) - MN(¢) # 0in [0,T]) < P[r < T] - 0. O
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