The Annals of Probability
1992, Vol. 20, No. 1, 504-537

LARGE DEVIATIONS FOR A REACTION-DIFFUSION EQUATION
WITH NON-GAUSSIAN PERTURBATIONS

By RicHARD B. SOWERS
University of Maryland, College Park

In this paper we establish a large deviations principle for the non-
Gaussian stochastic reaction-diffusion equation (SRDE) d,v0° = £v° +
f(x,v°) + eo(x, v‘)V"V,x as a random perturbation of the deterministic RDE
3,v° = £v° + f(x,v°). Here the space variable takes values on the unit
circle S! and .Z is a strongly-elliptic second-order operator with constant
coefficients. The functions f and o are sufficiently regular so that there is
a unique solution to the above SRDE for any continuous initial condition.
We also assume that there are positive constants m and M such that
m <o(x,y) <M for all x in S! and all y in R. The perturbation W,x is
the formal derivative of a Brownian sheet. It is known that if the initial
condition is continuous, then the solution will also be continuous, and
moreover, if the initial condition is assumed to be Holder continuous of
exponent « for some 0 < x < 3, then the solution will be Hélder continu-
ous of exponent k/2 as a function of (¢, x). In this paper we establish the
large deviations principle for v® in the Holder norm of exponent x/2 when
the initial condition is Holder continuous of exponent « for any 0 < k < 3,
and when the initial condition is assumed only to be continuous, we
establish the large deviations principle for v® in the supremum norm.
Moreover, we prove that these large deviations principles are uniform with
respect to the initial condition.

1. Introduction. In this paper we study the stochastic reaction—diffusion
equation (SRDE)

(1) du° = Lv° + f(x,0°) + eo(x,v°)W,,,

where .7 is a time- and space-invariant second-order elliptic operator, f and o
are functions of sufficient regularity and W,, is the formal derivative of a
Brownian sheet. As the parameter ¢ tends to zero, the solutions v® of (1) will
tend to solutions of

0,00 = £v° + f(x,0°).

We seek to establish a large deviations result for v° as a random perturbation
of v that is, the first term in a logarithmic expansion, as ¢ tends to zero, of
the probabilities P{v® € A}, where A is a set in the space in which the
solutions to (1) naturally occur. This work thus represents a significant
extension of the work of Freidlin (1988), Faris and Jona-Lasinio (1982),
Imaykin and Kome¢ (1988), Zabczyk (1988a) and Zabczyk (1988b), who have
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developed the theory of large deviations for (1) when o is identically 1. In the
case where o is constant, or even nonconstant but deterministic, the large
deviations theory for (1) can be deduced from the contraction principle and
standard estimates for the large deviations of Gaussian fields. In our case,
where o in general depends nontrivially upon v®, no such approach is possible
and truly nonlinear arguments must be used. We also note that in the
previously-mentioned works, the large deviations results are in the
supremum-norm topology, whereas ours are in the Hélder topologies of expo-
nents «, for each 0 < k < ;.

To place the problem in the proper setting, we consider the following. The
space variable we assume to be in S! = {e?%: 6 € R}; the solutions to (1) will in
general not be well-defined functions if the space variables is in R” for n > 2
[see Walsh (1984)], and we enforce periodicity in order to avoid specifying
boundary conditions. The differential operator .2 we then take to be -£h =
Dh,, — ah where D and « are positive constants and where differentiation is
with respect to the natural metric on S? (see Section 2). As an initial condition
we shall take some ¢ in C(S?!). The regularity required of f is that there exist
constants F and f such that for all x in S* and all y and z in R,

If(x,y) <F(1+ lyl) and [f(x,y) — f(x,2)l <fly — 2l

In order to ensure the existence, uniqueness, and nondegeneracy of the
solutions to (1), we also require that o(x,y) be continuous as a function of
both arguments and that furthermore there exist positive constants m, M and
o such that

m<o(x,y) <M and |o(x,y) —o(x,2)l <aly — 2|

for all x in S! and all y and z in R. The random perturbation W,, is to be
interpreted as the formal derivative of a Brownian sheet W on R,x S, W
being defined on some underlying (complete) probability triple (2, %, P). By a
Brownian sheet on R, X S!, we mean a random set function W on the Borel
sets of R, X S' such that: (i) for A a Borel subset of R, X S, W(A) is a
zero-mean Gaussian random variable with covariance v(A), v being Lebesgue
measure on (R, X S, Z(R, X S1)); and (ii) for A and B disjoint Borel subsets
of R,x S, W(A U B) =W(A) + W(B) [see Walsh (1984)]. We can make a
natural identification of S! with the interval [0, 27], and upon doing so, the
random field W(¢, x) == W(0, ¢] X {€?®: 0 < 0 < x}) is a regular Brownian sheet
on R, X[0,27]. Given the Brownian sheet W, stochastic integration against
W,, follows in the expected way.

With the above in mind, we may rely on Walsh (1984) to see that on the
interval I:=1[0,T], where T is any fixed positive .time, there is a unique
solution to (1), that is, to the SRDE

o dvf = Lvf + f(x,vf) + aa(x,vf)V"Vtx, (¢,x) eI xS,
(2)
v;[0] = ¢,

with ¢ in L2(S!), when posed in the weak sense—that is, there is a random
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field, which is in L2(I X S! X Q) for which P a.s. we have

fslvf(t,xyp(x) dx = Llf(x)qo(x) dx + fotfslvf(s,x)_/(p(x) dsdx
(3) ‘ _|_f0t/Slf(x,vf(s,x))(p(x) dsdx

+ sf(:fsl(p(x)a(x, vi(s,x))W(ds, dx)

for every ¢ in C%(S*') and for all ¢ in 1.

Our goal is to establish a large deviations principle for the solution to (2). It
is well known [see Walsh (1984)] that if the initial condition ¢ is continuous,
then v isin C(I X S*) and if { is Holder continuous of exponent 0 < 2« < 3,
then v; is Holder continuous of exponent « as a function of (¢, x) (to see this
last fact we may, for example, combine Proposition 1 in Section 3 and
Proposition A.2 in Appendix A). In view of this, we shall prove the large
deviations principle for v; with respect to the Hélder norm of exponent « < 1
when ¢ is Holder continuous of exponent 2k and with respect to the supre-
mum norm on C(I X S!) when ¢ is assumed only to be continuous.

To fix our notation, we shall let r be the standard metric on S'—for any x
and y in S!, r(x,y) is the length of the shortest arc of S! connecting
x to y. Let r be the metric on I X S! given by r'((¢,x),(s,y)) =
\/(t —5)> 4+ r%(x,y) for each (¢,x) and (s,y) in I x S*. For each 0 < « < 1,
define [], to be the Holder seminorm of exponent « for real-valued functions
on I X S, that is,

|‘P(t’x) - ¢(s,y)|
(r'((t,%),(5,9)))"

for each mapping ¢: I X S' > R. Also let |- |lc be the supremum norm on
real-valued functions of I X S'. We then define the norms |- |lo == - |lc and
for each 0 <k <1, Il =1I-llc +[‘].. For any 0 < k < 1, we let C* be the
vector space of those mappings ¢: I X S - R which are continuous and for
which ||¢l|, is finite. For any 0 < k < 1, we also denote by p, the metric on C*
defined by the norm || - ||.. For each 0 < k < 1, we may similarly define the
seminorm

[¢]. = sup (2,%),(s,y) €I X8, (¢,x) # (s,y)

1{(x) — {(p)l
[{]K,Sl = sup (—)_—(T)_ 7yesl7x¢y
(r(x,5))
for each mapping {: S! > R and let |- [lc(sy) be the supremum norm on
real-valued functions on S!. Then we define the norms | - llo,st == Il - lle¢sy
and for 0 <k <1, |-l st=1"llcesy +[], st with the associated vector

spaces C°(S1) and C*(S?) of continuous functions. As a convenience, for any
0 <k < 1and any ¢ in C*(S?), define C{ as the collection of those elements ¢
of C* such that ¢[0] = £, where we have used the obvious notation that if ¢
maps I X S! into R, then for each ¢ in I, ¢[t] is the mapping from S! to R
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defined as (@[¢])(x) = ¢(t, x) for all x in S*. The set C; can be thought of as
consisting of those elements of C* which begin at {. As a further convenience,
we set Cf = Cfj—those elements ¢ of C* such that ¢[0] = 0. As a final
notational convention, let us denote by || - |z2 the L2(I X S!) norm on the
collection of square-integrable functions on I X S!, with associated metric p; 2.

If we fix a 0 <k < § and a { in C?(S?), we expect, in analogy with the
form of the action functional in Freidlin (1988) and the form of the action
functional for ordinary stochastic differential equations [see Freidlin and
Wentzell (1984), Theorem 5.3.1 and Varadhan (1984), Section 6], the action
functional for v; in Cf to be defined as

2

1 do — Lo —f(,
5/ 1P </f () (t, %) dt dx,
(4) S,() = { 271xs" (s 9)
if o € Wy2,0[0] = ¢,
0 otherwise,

)

for all mappings ¢ from I X S! to R, where W;-2 is the closure of C*(I X S!)
in the norm

1/2
lellwg.= = { [ ol + 1ad* + 1o, + I¢xxl2dtdx} :
X

that is, the Sobolev space of functions on I X S' with one square-integrable
time derivative and two square-integrable space derivatives. For each 0 <
k < %, the large deviations principle for v; will consist of the following three
assertions:

(A.1) The level sets of S,, that is,
D, (s) = {(p € C;: S,(¢) < s},
are compact sets in C; for each s > 0.
(A.2) For any positive numbers 6 and y and any ¢ in C/, there is an g, > 0
such that
_ S;(‘P) + '}’)

2

P{pK(vf, @) < 6} > exp "

for all 0 <& < ¢,.
(A.3) For any positive numbers 8, y and s, there is an ¢, > 0 such that

Plou(ors(5)) 28] < exn{ -

€

for all 0 < & < ¢,.

In the case where o is identically 1, v; will be Gaussian and the above large
devViations principle in the supremum-norm topology was shown in Freidlin
(1988), Faris and Jona-Lasinio (1982), Imaykin and Kome¢ (1988) and Zabczyk
(1988a)—see also Zabczyk (1988b). As we shall see, the proof of the large
deviations principle when o depends nontrivially upon v; involves significant
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technical complications in comparison with the o = const. case [see also
Freidlin and Wentzell (1984), Section 3.4 and Stroock (1984), Chapter 3].

The body of this paper is divided into four parts. In Section 2 we shall
review some necessary facts about stochastic PDE’s of the form (2). In Section
3 we shall simplify our task by an application of the contraction principle with
an appropriate mapping. This will lead us to study large deviations for a
simpler process ;. In Section 4 we shall prove a large deviations result for the
process ¢;; this is the main work of the paper. Then in Section 5 we shall
review the arguments of Sections 3 and 4 to show that the large deviations
principle (A.1)-(A.3) in fact holds uniformly over all initial conditions ¢.

2. Stochastic RDE’s—some required notation. We now shall quickly
review how to represent the solution of (2) using the Green’s function of the
equation d,u = .Zu; this notation will be needed in the next section.

Let {¢,; #=1,2,...} be an orthonormal basis of L%(S!) consisting of
eigenfunctions of . and let {A,; & = 1,2,...} be the corresponding eigenvec-
tors. For concreteness, we shall take

1 1
Por-1(%) = 11_1/23%(xk) and ¢y, (x) = 77,1/2?5(35]%),
xeSLEk=1,2,...,

with ¢, = 1/(2m)"/?, where R(x) and J(x) are the real and imaginary parts
of any element of S!. The corresponding eigenvalues are then

/\2k_1=/\2k=Dk2+a, k=1,2,.-.,

with A, = a. The Green’s function for the equation d,u = Zu is
(5) Gux,y) =x{t 20} ¥ e (x)du(y),  (t,%,5) € R XS XS,
k=0

where for any set A, yA is the indicator function of the set A. For ¢ in
L*(S"h), set 7 to be

Ti(t,x) = fsla,(x,y)g(y) dy, (t,x)elIx8S
If we have any f’ in L%(I X S1), the unique solution of
du=Lu+f, (t,x)elIxS
u[0] = ¢,
can be represented as

u(t,x) = F(t, %) + /IXSlG,_S(x,y)f'(s,y) dsdy, (t,x)elxS.

If we now take o' in L*(Q X I X 8!) such that ¢’ is P-a.s. continuous as a
function of (¢,x) in I X S! and such that for each (¢,x) in I X S!, o'(¢, x) is
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measurable with respect to
(6) F,=o{W(A): A #([0,t] x 8Y)}, tel,
then we may represent the solution of
du=Lu+f +odW,, (t,x)elxS8S,
ul0] = ¢,

as

u(t,x) = T(t,) + [ Gei(%,9)f'(s,9) dsdy

+f G,_(x,y)d'(s,y)W(ds,dy), (t,x)elXx St
IxS!t

up to P-a.s. uniqueness. From this we see that the solution of (2) must P-a.s.
satisfy the stochastic integral equation

vi(t,x) = Ty(t,x) + f()t[glat_s(x_,y)f(y,vg(s,y))dsdy
(7
+ stfSIGt_s(x,y)o(y,vf(s,y))W(ds,dy).

We note without further elaboration that this integral equation naturally
defines a Picard iteration of %-predictable elements of L%(I X S* X Q) and
that standard procedures may be used to show the existence and uniqueness of
an %-predictable solution in L%(I X S' X Q) [see Walsh (1984), Chapter 3 or
Kallianpur (1980), Section 5.1]. Proposition A.1 in the Appendix, in conjunc-
tion with well-known results on the continuity of random fields [see Garsia
(1972), Lemma 1, Walsh (1984), Theorem 1.1 and Adler (1981), Lemma 3.3.3]
allow us to show that if ¢ is in C2<(S'), where 0 < k < 1, then there must
exist a version of the L%(I x S! X Q) solution to (7) which is P-a.s. in C*—see
Proposition A.2. The reader is referred to Walsh (1984) and Marcus (1974) for
general discussions of stochastic parabolic PDE’s.

3. A simplification. Instead of directly trying to prove assertions
(A.1)-(A.3), we can simplify our task by using the contraction principle to
remove the term f(,vf). Recall for reference that if {X°} is a collection of
random elements of a Polish space & with metric p, then we say that X° has
a large deviations principle with action functional I: Z'— [0, «] if:

(B.1) The level set ®(s) = {x € £~ I(x) < s} is a compact set in £ for each

s> 0. .
(B.2) For any positive numbers § and y and any x in &, there is an g, > 0
such that
I(x) +vy
P{p(X*,x) <8} > exp(— #)
&

for all 0 < & < g,.
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(B.3) For any positive numbers §, v and s, there is an ¢, > 0 such that

P{p(X*c,®(s)) =8} < exp(— 38—27)

for all 0 <& < &g,

Let us now quickly review some of the essential arguments of Freidlin
(1988), fixing a { in L% S"). If o =1 and f =0, then vf would be Gaussian
and the large deviations principle for v{ in L*(I X S') could be described by
the covariance kernel of v;. If f is not identically zero but o = 1, then we can
use the contraction principle to reduce the problem to f = 0. Specifically, for ¢
in L*(I X 8%), define B, as the unique solution of the integral equation

(B;go)(t,x) = ‘Z(t’x) + (2, x)

(8) [ (Gims(®:) (3, (Bro)(s,9)) ds dy,
(¢t,x) eI xS
Then we have that
9 v; = By,
where

v (L, x) = ejlxslat_s(x,y)a(y, vi(s,5))W(ds,dy), (t,x) €IxS?

that is, 7 is the solution of the SPDE
Wi =LY +ea(-,vf)W,, (t,x) eIxS.

Y£[0] = 0.

If o = 1, then y; = £ X, where X is a Gaussian element of L2(IxSYH:={p€e
L*(I x 8'): ¢[0] = 0}; this places us in the framework of Freidlin and Wentzell
[(1984), Section 3.4] so that the action functional for y;, at least in the p;:
topology, is easily found. If it can be shown that the mapping B, is continuous
in the p;2 topology, the action functional for v in L*(I X S') is immediate
from the contraction principle [Varadhan (1984)] once we know the large
deviations principle for ;.

In our current problem where o depends nontrivially upon vf, we still have
the representation (9), where ¢ is the solution to (10), so we may still find the
action functional for ¢§ instead of vi. We may rewrite the SPDE (10) as

dWf =LY +ea(, Byp)W,,, (t,x)eIxS
yg[0] = 0.

Comparing this and (2), we see that we have moved all the nonlinear effects to
the diffusion term o(-, B,f). From (11) one expects that the action functional

(10)

(11)
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for ¢/ in C§ for a fixed 0 < k <  and ¢ in C**(S") should be

lf 9,0 —
12 S0~ | Thesla(1Br0)
o if o & W2,

)

(t x)dtdx, if ¢ € W2,

for all real-valued functions ¢ on I X S!. This action functional is consider-
ably simpler and easier to manipulate than (4), since the operator ¢ — (9, —
Z¢)/o(-, B;¢) is merely a scaling of the linear operator ¢ — d,p — Z. By
(9), if B, is continuous in the p, topology and in addition is one-to-one, then a
large deviations principle for ¢; in Cgj with action functional S, immediately
gives us that there will be a large deviations principle for v; in C; with action
functional S ;(B 1), That B ;18 1n fact continuous and injective as a mapping
from C§ to C* for each 0 < k < } is contained in the following result, which is
essentially an extension of Lemma 4 of Freidlin (1988).

ProposITION 1. For each 0 < k < + and each { in C?*(S%), the mapping
B;: Cg — Cf is invertible. Furthermore, for each 0 <« < 1 there is a
constant mn, depending only on k such that for all ¢, and ¢, in C§ and all {;
and ¢, in C*(SY),

B, 01 = Bpoalle < n(llEy = Lolla, st + lloy = @)
Proor. The invertibility of B; is obvious as we may rewrite (8) as
o(t,x) = (Beo)(t, %) = Z(t,%) = [ Gis(%,9) f(5, (Byo)(s5,)) dsdy,
(¢, x) eI xS,
for all ¢ in CQ and ¢ in C%(SY).

To prove the continuity of B, fixa 0 <k < 1, a {; and ¢, in C?(S') and a
¢, and ¢, in C§. Define

p(t)= s Bue - Bue
(s,y)€[0,t]1x St
and if k > 0,
I(Bgl"ol — B(z(pZ)(s’y) B (legp - B{2§D2)(r72)|
pa(t) = sup ) :
(s,9),(r, 2)€[0, £]xS* (r"((s,),(r,2)))
(s,y)#(r,2)

for each 0 < ¢t < T. Using the results of Appendix B [in particular (B.2)], we
have that

(13) wy(t) <l¢y = Llleesy + lloi = @sllc + ffotm(S) ds
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for each 0 < ¢ < T, so that by Gronwall’s inequality
(14) ”B{1¢’1 - B{2§02”C < efT(”{1 - {2”0(81) + ”¢"1 - §02“C),

completing the proof when x = 0. When « > 0, we can use Proposition A.1 in
Appendix A and 7/ as in Appendix B to see that

/J‘2(t) =< "7f<”é"1 - {2“2»<,Sl + “(Pl - <P2“K
1/2

1 ¢
(19 + fLK{j;fsll(Bgl¢1 - B§2¢>2)(s,y)|2 dey}

for each 0 < ¢ < T. Observe that for each (s,y)in I x S,
|(Bi1 = By,es)(5,9)| < [(Brer — Bes)(s,9)
~(Be1 — B,0)(0,9)| +]44(y) — L(9)]

< pa(8)T* + Mgy — Lollaw, st

so that we may continue inequality (15) as

us(t) < (m + FL27T)?)E, — Lollze, st + oy — @l

1/2
+ fLKT"(zn-)l/Z{ [W3(s) ds}
0
for all 0 < ¢ < T, which we square to find that
- 2
wi(t) < 2{(m + FL(27T))IEy = Lollaw, 51 + llgy — @lc)
= t
+ 2f2L2T %9y f wi(s) ds
0

for all 0 <t < T. Another application of Gronwall’s inequality then is suffi-
cient to imply that

_ 1/2,2 f_ZL%T2K+1
[Big1 = Bp,ee], < 217%™

X (e + FL27TY )Ly = Gyllaw, 51+ oy — @alle).-

This and (14) imply the desired result. O

The reader may easily check using (8) that indeed: S,(¢) = S (B} ') for all
{ in C°(S") and all ¢ in C?. Thus if for a fixed 0 < k < } and { in C*(SY),
the random field ¢ has a large deviations principle in C§ with action
functional (12), then v§ will have the large deviations principle (A.1)-(A.3).

4. The large deviations principle for ;. We shall now prove the large
deviations principle for ;. In our proofs we shall have need, however, of an
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even simpler process than ¢;. For any ¢ in C°(S') and any ¢ in C¢, let ¢}°
be the Gaussian process defined by freezing the diffusion term o(-, B,y;) at
o(-, B, y), that is,

%) Pt x) = eflxslat_s(x,y)a(y,(Bg./,)(s,y))W(ds,dy),

(¢t,x) eI x St.

Exactly in analogy to Freidlin (1988), we can compute that (1/£)¢¢*° has the
self-adjoint and compact covariance operator

(Ate)(t,0) = [ [ Giul(.9)

><o-2(y, (Bgzp)(s,y))G,_s(z,y) dsdy ¢(r,2) drdz,
(t,x) € Ix S,

(17)

for all ¢ in L%(I X S'). We can then use the results of Freidlin [(1988),
Section 3.4] to see that ¢/ ° satisfies a large deviations principle in L2(I x SY)
with action functional

3(AY)olz, if & Range(4Y)"”,

(18) St (¢) =
, if o & Range(A"g)I/z,

for all ¢ in L}(I X S'), where (A%)~'/2p is defined as the unique element ¢ of
L3(I x S') which is orthogonal to the nullspace of A} such that (A})'/%¢ = ¢.
Some manipulation of (18) shows us that

1 o — Lo

(19) S} (e) = Efzxsl o(+, B.y)
[e'e] if(P & W21’2,

)

2
(t,x)dtdx, if o € Wh2,

for all ¢ in L3(I x S'). We state this fact as a lemma.

LEMMA 1. For each { in C°(S") and each  in C§, the random field ¢} *
satisfies a large deviations principle in LY(I X S*) with action functional S}.

Proor. The claim is a direct application of Theorems 3.4.2 and Lemma
3.4.1 in Freidlin and Wentzell (1984). For future reference, we shall recall here
the proof of the upper bound; for any positive numbers 3, y and s, we show
that there is an ¢, > 0 such that

(20) Plo(upe, 8(s)) = 8) <=1/,
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whenever 0 < e <eg,, where we have defined ®J(s):={p € L4(I x S):
S"’((p) < s}. Let us first denote by {)\‘”(k) k=12, } the elgenvalues of the
covariance operator A} as in (17), w1th {gbf(k) k= 1 2, ...} being the corre-
sponding orthonormal collectlon of eigenvectors. We assume that the eigenval-
ues are ordered so that {)\"‘(k) k=1=2,...} is a nonincreasing sequence.
Letting { -, - ) be the inner product in L2(I X S 1), if we define '

(21) g = Y (e, dL(R))E(R)

1<k<N
for each positive N, then ¢} ¢ = lim ¢"%¢ in L3(I X S'), P-a.s. The coef-
ficients {<(/l£ E,d) Y(R)); k= 1 2,...} are independent Gaussian random vari-
ables with

E[Cppe, $2 (k)] = R(k)

forall 2 =1,2,....

As in Theorem 3.4.2 of Freidlin and Wentzell (1984), we should next find an
N large enough that c/tN ¥ is appropriately close to y/>°. Let us now show
that in fact this N wﬂl not depend on the parameters  and ¢; this will be
critical for the results of Section 5. It is well known [Gohberg and Goldberg
(1981), Theorem 3.9.1] that for all 2 = 1,2,..., we have the representations

M(k)= min max (A%, ),
¢ BGy1 pliz=1 ¢

(22) R
(k) = mln max (A%, ¢),
E€d,_;lelz=1
¢ LE

where &),_; is the collection of all % — 1l-dimensional linear subspaces of
L2(I X S') and A%(k) is the kth eigenvalue of A9, with A% being the covari-
ance operator of the form (17) with ¢ = 0 and { = 0. Some basic manipula-
tions of (17) show that for any ¢ in L3(I x S1),

2 2

272 (Abes @) < (Alp, ) < —5(AGe, @)

From this and (22) we in particular have the bound

2

M
(23) A"’(k) < )\O(k)
forall £ =1,2,.

We now contlnue keeping (23) in mind. We can take an N’ large enough
that

(24) ~;1—2)\%(N’) < =.
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Then we calculate

: s llyfe — g velqe
Plosa(uf e, ) 2 8} <e™/"E exp(ga —
© s <l/l ,e,$¢(k)>é
=e~5/¢" E — T e
e ex
k=ll;1+1 p(52 e?
~ -1/2
(25) e 2584 ( k)
e/ T (1- —
k=N'+1

2 3 s ® .
=e 5/¢ exp(a b )\"z(k))

52
8 h=N'+1

3s
<e s/ exp(ﬁ trace A‘f)

In our calculation we have used that [log(1 — 2)| < 3|z|/2 whenever |z| < 3.
Note also that

(k) = ¥ E[pe, L (k)] /62 = Bl llia/e?
k=1

<M? G2 (x,y)dsdydtdx < M2T Y. (1/2A;).
k=0

I><Slfl><S1

Thus when (24) holds, we have the estimate

, 3s ®
@7 Plop(uf, v *0) 2 8) < e/ exp( WMZTkzlAgl).

The proof of (20) is completed by writing
P{pLz(df{’e,&)g’(s)) > 6} < P{pLz(z/fg‘”’e,z/;f"’"”e) > 6}

- P(SP( ) = )

(28)

with the estimate
P(S¢(w ")z s)
(29) < e C 1/ Fexp((1 - v/(25)) St (4" ) /e2)]

= e/ (y /(25)) N,
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Then
P{ppo(ufe, 82(s)) = 8

y . 33 ) o . ,y —-N'/2
< e ¢TV/D/e —M2T Y A +
¢ e"p(462 paRe ) ((Zs)) -

from which we have (20) for ¢ > 0 small enough. O

Comparing (12) and (19) we see that Sg(cp) = Sf((p) for all ¢ in CJ and all ¢
in C°%(SH.

Now let us fix for the rest of this section a specific 0 < k < 1 and a { in
C?%(S'). We begin to prove that Y/ has a large deviations principle in Cg with
action functional (12). We first show the compactness result.

PROPOSITION 2. The level set @g(s) = {p € C§: S7£(<p) < s} is compact in C§
for each s > 0.

Proor. Fixing a «’ such that k <k’ < 1, we use the fact that C§ is
compactly embedded in C§ to prove that @ (s) is relatively compact in C§ by
showing that it is bounded in C§. For any ¢ in ®,(s), we must have ¢ in W;"2,
and thus ¢ tautologically satisfies the PDE

o, = Lo + (0,0 — L), (t,x) €I xSt
e[0] =
and hence ¢ satisfies

o(t,x) = I;XSIGt_S(x,y)(B,(p — Zo)(s,y)dsdy, (t,x)elxS,

so by Proposition A.1 in Appendix A,
de — Lo

lolle < (1+ Tl < (1+ T Lo M| mpmes

(30) LZ
<(1+T<)L.M(25)"?,
that is,
®,(s) c {o € C&: lglle < (1 + T¥) L M(25)"?).

We prove that d~>£( s) is closed in C§ by using the action functionals of the form
(19). We can calculate from (19) that for any ¢, and ¢, in C§ and any ¢ in
W52 such that ¢[0] =

» ~¢' 2MG
(31) S{(e) < 8f2(e)| 1+ —5 1By — Bysllc

< S-glz(ﬁp)(l + w,(“(/ll - !/lzux),
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with o, = 2Ma&n,/m?, this last inequality resulting from Proposition 1. Now
take {(pn} in d>{(s) converging to ¢ in the p, topology. Then

(82)  S¢(¢n) <S¢ (0,) (1 + olle = ulle) < s(1 + olle — ,ll)

for all n. Since ¢ — Sg’(tp) is lower semicontinuous in the p;: topology as it is
the action functional for ¢¢ in L3I X S'), it must also clearly be lower
semicontinuous in the p, topology, so in light of (32) we must have

(33) S,;(¢) < liminfS*(¢,) <s
implying that ¢ must indeed be in &D{(s), completing the proof. O
We next prove the lower bound.

ProposITION 3. For any positive numbers & and y and any ¢ in C§, there
is an gy > 0 such that

&€

S
(34) Plp(vf,0) <8} > exp(— —‘(@;—7)

for all 0 < e < eg,.

Proor. We shall use a Girsanov change of measure. First, we may assume
that ¢ is in W12 if not, then S :(¢) = » and the result is vacuously true. For
the purposes of Sectlon 5, let us fix sy > S;((p) Define Z¢° = ¢ — ¢ and
observe that Z¢ “ satisfies the stochastic PDE

0,2f° = LZP* + 50’(', B, (Zg~° + cp))VVtx ~ (0,0 — L),

(t,x) eI xSt
2°70] =
If we now define a new noise process W* such that
1 oo — Lo
W(A) = W(A) + — s,y)dsd
(A) = We(4A) 8L0(3A%J+M)<y) y

for all sets A in #(I X S1), then Zp® also satisfies the stochastic PDE

025 = 22p* +eo (-, By Zp 4 ))Wa, | (%) €IX S,

) zef01 - 0

Défine a new measure P° on (fl, F) by
dP¢
dP

= exp| I + 87 o()]
E 82
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where for convenience we have set

(s,y)We(ds, dy).

0, ¢
I¢ =
fIXS‘( (", B (v + ¢))

We can easily show by Girsanov’s theorem that P° is a probability measure
and that W° is a P°-Brownian sheet. Recalling the calculation (31), let us
define &' = &§(sq, 8,y) > 0 by ¢’ == min{3, y/(2w,s,)}. Then for all ¢ > 0,

dP
Plpu(05.0) < 8} = B 121 < 3 |

~I S;(¢) +v/2
x{1Zg<ll. <6’}exp[ " ”exp(—ﬂfl)-

&€

Jensen’s inequality gives us that

E*[x{I1Zg*ll. < 8 Jexp(—I7/¢)]
Pe{lZge|l, < &'}

E [ x{1Zg e < 8)(—1¢/¢)]
Pe(IZp*ll. < ')

and also that

E[x{Izg Nl < &')I°l]
Pe{llZg=ll, < &'}

B x{izgl <)y |
P{lzg el < &'}

EE[(I€)2] 1/2
Pe{lizeel. <&} |

The fact that W¢ is a P°-Brownian sheet allows us to write the bound
E*[(I°)?] = E°[2572"+* ()| < 2M?S,(¢)/m?.
Collecting these inequalities together, we have that

56 1/2
Plodui: e) < 8} = Iz <5}e"p( iM( e{||z;€||K<af}) )

(36)
Si(e) + 7/2)

X exp| — -z

for all ¢ > 0. It is easy to see that the result is true if we can show that
lim; , , P Z¢ |l < 8} = 1. Notice that similarly to (26), E°[|Z¢ ¢||22] <

eX(M3T/ 2)Z°° oAz L. From this and Proposition A.2 and (A.8) in Appendlx A,
it is not difficult to argue that 1ndeed we have lim, _, , P{I|Z¢°|l. < &'} = 1.
Taking any «’ such that « < ¥’ < 3, and any constant L > 0, by Proposition
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A.2 and (A.8) in Appendix A, there must exist an &; = &,(«’, L) > 0 such that
P(lIzgell, = &) < P{1Zg <Nl = BE} + P{IZg "l < BE, 128 Il = &)

ez £ yE "
(37) <el/e* + Pe{Zg*ll 2 = 8}

<e L/ 4 £2(8") X (MT/2) L Ayt
k=0

for all 0 < & < &, where 8" = 8"(«’, B5,, ') > 0 may be defined as
& = inf{ll‘Pl|L2: ¢ E C(’;I’ “‘P“K’ =< BZI’ “‘P”K = 6,};

clearly 8" must be positive (see Appendix C). This computation is sufficient to
extract the desired result from (36). O

Finally let us prove the upper bound.

PROPOSITION 4. For any positive numbers s, 8 and v, there is an &, > 0
such that

(38) P{px('ﬁf’ (‘i)g(s)) = 6} < e_(s—Y)/az,
whenever 0 < € < g,.

Proor. The main idea of the proof is to approximate ¢ by a collection of
processes of the form t/rg"“‘ as in (16) and to approximate each such ¢ ° by an
expansion of the form ¢/ * as in (21), and to carry out calculations parallel
to (27)—(29).

Note that we may assume that y < s. Let us take an s, > s (we do this in
anticipation of Section 5) and a number ' such that k < k' < 3. By Proposi-
tion A.2 and (A.8) in Appendix A, if we define the Cjj-compact set K, = {p €

Cy: llglle < BL), then there is an £, = g,(K’, s¢) > 0 such that
(39) Plys £ K, ) <e >/

for all 0 < & < ,. For convenience. we shall also define

P(s) = {‘P € C5: p0, B, () = 5}.

Consider now the set K, ~ ®{(s). This set is p,-compact, so for any &>0
we can cover it by a finite collection of p,-spheres of radius &'. Let us fix for the
moment a ¢ in K, ~ dP)(s). If ¢f is close to ¢, then as we shall see in
equations (A.9) and (A.10) of Appendix A, the Gaussian process ¢ ° is a good
approximation to ¢;. We may then approximate ¢/ ° by l[l{N’ #¢ where N is
sufficiently large and combining these two approximations, we approximate ¥
by ¢/ #° when y; is close enough to ¢ and N is large enough. But in this
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case, where ¢ is close to ¢ and ¥ #* is close to ¢, then ¢} ** must also be
4 4 14 4

close to ¢. To be more explicit, we shall prove:

LEMMA 2. There is a & = 8(sy,8,y) >0, a positive integer N' =
N'(sq, 8,7) and an e, = €,(s,,8,v) > 0 such that
(40) P{p(4£,%) <&, p (4} ?*,) = minfy/(40,50), 5/2)} <m0/
for all & in C§, all { in C*(S) and all 0 < & < &,.

Here o, is as in (31). The constant y/(2w,s,) enters into the estimate since
we would like to use (31) to estimate gg(t/tzv"‘”) by gf(t/th”"”e) and the
distance 8/2 stems from the fact that necessarily S}(t//;” "#¢) > s when
pK(d/{N"‘P"”, ®) < 8/2; recall that we assumed that p (¢, &)g(s)) > 8. The rele-
vant calculation is that

Pp (¥, 0) <) <e>0/< + P{pk(ng""%e, ¢) < min{y/(4w,s,), 6/2}}

<e 0/ + Pp (4}, 0) < v/(4w,s,),
Se(ve) = s}

< e so/e" 4 P{gf(¢£vl’¢’e)(1 +v/(4s4)) = s}

<e 0/ + (y/(4s))
><(31(11(—(3/32)(1 - 7/(430))/(1 + ’)’/(430)))
for 0 <& <&, In the third inequality here we used (31) and the fourth

calculation is similar to (29). Since s(1 — y/(450))/(1 + y/(4sy)) > s — v/2,
we have arrived at the fact that

(42) Plp (5, @) < &) <e ™o/ + (v/(4s,)) " Pemmr/D/

for all 0 < & < &,, where &, N’ and &, are as in Lemma 2. Note that &', N’
and &, depend solely on s,, 5 and y and not on ¢ in K, ~ ®{(s). Thus
inequality (42) holds for all ¢ in K, ~ ®{X(s) and all 0 < ¢ < &,. But given
this estimate, we can simply cover the set K, ~ ®?X(s) with p,-spheres of
radius & and extract a finite subcovering, with centers {¢;; i = 1,2,..., L}.
Then for 0 < ¢ < min{e, &,},

Pp,(vf. 8(s)) = 8) < Plug ¢ K, )} + P{4 € K, ~ $(s))

< e—SO/s2 + Z P{PK((ZI;, SDL) < 6/}
(43) 1<i<L
<e %/ 4 L(e‘s°/52 + (7/(480))_N’/ze"(s‘y/m/sz)

< (L + 1)e=/*" + L(y/(4s0)) " 2e~=7/2/"

so we easily have (38) for £ > 0 small enaugh.
Now we must prove the lemma.

(41)

—N'/2
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Proor oF LEmMMA 2. For ease of exposition, we shall define § :=
min{y/(4w,s,), 8/2}. Referring to Proposition A.2 in Appendix A and (A.9)
and (A.10), we see that we can find a 8 = §'(sy, 5) > 0 such that &' < 5/3 and
an g5 = £4(8¢,6) > 0 such that
(44) Pp(45,8) <8, p (45, 47°) = 8/e) < ™20/’

for all { in C*(SY), all g in C§ and all 0 <& < ¢, This estimate is of
fundamental importance in that it allows us to approximate the non-Gaussian -
process §; by the Gaussian process lp“’ ¢. To complete the proof of the lemma,

we now need to carry out an estlmate similar to (27) showmg that le #e 1s
close enough to 2¢ when N is large enough. Fix any «’ such that k < ¥’ < 3
We can use Proposition A.2 and (A.8) in Appendix A to find an ¢, =
ek, 89) > 0 such that

= ’ - 2
P{Ildfg”b’llkf > Bgso} < e %s0/e

for all { in C?<(S%), all g in C§ and all 0 < & < &,. We can also partition the
sample space ) as

P{p(vf", v ") = 5/3)
< P2l > B3} + P(SE(w°) = 25}
+ P2l < By, I lle < (1 + T¥) L, M(450)"%,

pwEe,u ) = 5/3)

for each { in C2%(SY), each & in C§, each & > 0 and each pOSlthe integer N,
where we have used the fact that CID‘P(ZSO) cl{e € C§: lolle <@ +
T*)L,.M(4s,)'/%, the proof of which is similar to calculation (30). Set &' =
5'(k, 30,8) > 0 to be

§ = inf{pya(, ¥2): ol < B,
Iolle < (1+ T%) Lo M(480)""%, p(r,4,) = 5/3).
Clearly &' is positive (see Appendix C); then using a calculation similar to (29),
Pp(ufe,ul ) 2 §/3) < o720/ 4 (1/4) N/2ems0/@
+ P{pLz(tllf’E ylhee) > 6"}

for all { in C2(SY), all @ in C§, each positive integer N and all 0 <e <e,.
Using (23), it is evident that there is an integer N’ = N'(s,, 8') large enough
that .

(45)

4s, 1
sup /\‘Q(N) - 2)\%(N') < =
secs (5) (8 2

ZECZK(SI)
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Note that since &' < 5/3, if p (yf, @) <& and p (4} ®*,3) > 5, then by the
triangle inequality, either pK((/th, 1/;?’5) >5/3 or pK(([/{N 2 e,lﬂg’e) > 5/3. Com-
bining (44) and (45) and using a calculation analogous to (27), then

P{p(45,7) <80, (0"7",7) = 6)
i, § o §
< P{pk(tﬂg,@) <&, p¥502°) = §} + p{pk(,,,g,e, NEe) > 5}

1\ N72 9s M2T =
2+(Z) +exp(—-0—2)tk”1
1

< e—3so/(252) 5
8(8') k=

for all £ in C*(8Y), all ¢ in C§ and all 0 < & < min{eg, £,}. Note that &', N',
&', e5 and ¢, depend solely on s,, 8 and vy, and on the arbitrarily chosen «’;
this gives us the lemma.

This also completes the proof of Proposition 4. O

Propositions 2-4 give us a large deviations principle for {¢} in Cg, and, as
we noted at the end of Section 3, this is sufficient to imply the large deviations
principle (A.1)-(A.3). We state this as a theorem.

TueOREM 1. For each 0 <k < i and each fixed { in C*(8S1), claims
(A.1)~(A.3) are satisfied; that is, v§ satisfies a large deviations principle in Cy
with action functional S; as given by (4).

Having given a proof of (A.1)-(A.3), we mention now that there are some
other more or less equivalent approaches. There are essentially two problems
to overcome. The first is to prove a large deviations principle for ¢/, the nearly
Gaussian process [see estimate (44)], and then use the regularity of the
mapping B, to transfer the result back to v;. The other problem is to show
some form of exponential tightness so that one can strengthen the large
deviations principle from L%*(I x S%), which is the natural space in which to
analyze large deviations for v; or ¥, to the finer topology of C*. We have here
first showed the large deviations result for ¢, using the exponential tightness
of (A.8) to transfer from L%(I X S%) to C§, and then used Proposition 1 to
transfer this result concerning ¢ to one concerning v;. The two problems
could also be solved in the other order, or in fact they could be solved
simultaneously, using results such as Exercise 2.1.20 of Deuschel and Stroock
(1989). For a better understanding of the abstract basis for this last approach,
see the paper by Ioffe (1991).

*5. The uniform large deviations principle. The main result of this
paper is Theorem 1. Let us now review our arguments to show that for each
fixed 0 < k < %, the large deviations principle for v; in C* holds uniformly
with respect to all initial conditions ¢ in C?*(S*). For each fixed 0 < « < 1 we
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wish to prove that:
(C.1) For each s > 0 and each compact set K in C2<(S1), the set
Dy(s) = U ()

{eK

is a compact set in C*, with ®,(s) as in claim (A.1).
(C.2) For any positive numbers §, y and s,, there is an ¢, > 0 such that
S,(¢) + 7)

2

P{pK(vf, @) < 6} > exp .

for all 0 < & < g, { in C?*(S?) and ¢ in ®,(s,).
(C.3) For any positive numbers 8, y and s, there is an ¢, > 0 such that

P{pk(vf, ®,(s)) = 8} < exp(— i —z‘y)

£
forall 0 <& <gy, {in C*(s))and 0 <s < S,,.

This stronger version of (A.1)-(A.3) is necessary, for example, in proving the
large deviations principle for the invariant measure of v° [see Sowers (1991)].
In general, if {X]} is a collection of random elements of some Polish space 2"
with metric p, where ¢ > 0 and y is a parameter with values in some
topological space 2/, then we say that X, satisfies a large deviations principle
with action functionals I,: 2°— [0, «] uniformly over a class & of subsets of
Z if:

(D.1) For each s > 0 and each subset K of A := U 4., A which is compact in

the topology inherited by A, the set

Dg(s) = U D,(s)
y€K
is a_compact set in 2, where <I)y(s) ={x e X" Iy(x) < s} for each y
in A.
(D.2) For any positive numbers 3, y and s,, and any set A in &7, there is an
€ > 0 such that
I(x) +
P{p(X;,x) < 6} > exp(— —L(—)Z——y)
£
for all 0 <& <egj, y in A and x in ®,(s,).
(D.3) For any positive numbers §, y and s,, and any'set A in &7, there is an
€0 > 0 such that

P{p(X;,;I>y(s)) > 8} < exp(— i ;y)

forall0 <e<egp yin Aand 0 < s < s;
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see Freidlin and Wentzell [(1984), page 92]. The large deviations principle
(C.1)-(C.3) is thus uniform with respect to all sets of initial conditions.

We shall prove (C.1)-(C.3) in a manner analogous to our proof of Theorem
1. We shall first extend the contraction principle to cover uniformity with
respect to a parameter; this will require some easily-verified regularlty of the
mappings {B,;{ € C*(SH} and {S,;¢{ € C*(SY)} for each 0 < K < 1 The
uniform large deviations principle (C.1)-(C.3) for any 0 < «x < § will then
follow if we can show that the large deviations principle for ng in C§ is
uniform for all ¢ in C2<(S!). It will be a simple matter to check that
Propositions 2—-4 do indeed hold uniformly with respect to the parameter {.

To begin, we have the following version of the contraction principle.

ProposiTION 5. Let X; have the uniform large deviations principle

(D.1)-(D.3). Let {G,; y € A} be a collection of mappings from  to another
Polish space 2" with metric p'. Assume that:

(i) For each s > 0, the set P4(s) is relatwely compact in 2" for each s > 0
and lim,, , « ,c 4 I(x) = L, (x) for each y* in A and each x in X, this limit
being uniform as x vanes over CDA(s)

(i) The family {G,;y e A} is equlcontmuous and lm,_, « .5 G(x) =
G,«(x) for each y* in A and each x in 4.

Then G (X;) has a large deviations principle which is uniform over & and
with action functionals

(46) L(x') = inf{Iy(x): x € & such that G,(x) = x’}, x e, yeA.

Proor. Note first that if y is in A and x’ is in 2" such that I(x") < oo,
then from the continuity of G, and the lower semicontinuity of I, we are
assured that there is an x in 2 such that G(x) = x’" and I(x) = I,(x").

Take now a number s > 0 and a subset K of A which 1s compact in the
topology inherited by A. We show that ®}(s) = y <k ®,(s) is compact in Z”
where ®/(s) = {x' € 2": [[(x') < s} for each y in A, We shall show that
Pr(s) has the Bolzano—Welerstrass property. Take {x}} in ®%(s). By the above
remarks, there is a sequence {y,} in K and a sequence {x,} in ®x(s) such that
for each n, G,(x,) = x, and I, (x,) = I (x, ). By the compactness result for
the uniform large dev1at10ns pr1nc1ple for X, and the compactness of K, we
can extract convergent subsequences {x,} of {x,} and {y,} of {y,} with limit
points x* in ®Pg(s) and y* in K. By hypothesis (ii)), we can show that
lim , x}, = lim , G, (x,) = G,«(x*) and by using hypothesis (i),

La(x*) < lin}LjhfIy*(xnr) < lin}l'ianyn,(xn,) <s.

We thus see that x/, converges to G,«(x*) and G «(x*) € ®}«(s) C Px(s), so
®%(s) has the Bolzano—Welerstrass property and hence is compact in Z".
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To prove the lower and upper bounds on the probabilistic behavior of
{G,(X;)}, let us first prove:

LemMA 8. For any 8, > 0, there is a 8, > 0 such that p'(G,(x), G,(2)) < §,
forall yin A, all x in ®(s) and all z in X such that p(z, x) < 8-

This is a statement of uniform equicontinuity of the family {G,;y € A).

Proor. To prove the lemma, observe that by the equlcontlnulty of {(G,;y €
A}, for each x in 2" thereisa 5, > 0 such that if z is in 2" with p(z, x) <,
then p(G,(2), G,(x)) < 8,/2 for all y in A. Let us cover the closure of CI)A(s)
"by open spheres of the form {z € 2" p(z,x) <§,/2} and extract a finite
subcover with centers {x;; x = 1,2,..., N}; recall by hypothesis (1) that ®4(s)
is relatively compact. We can then deﬁne 8, = min{5, / 2;,i=12,...,N}.
Indeed, let x be in ®4(s) and z be in 2 such that p(z, x) < 8,. We then take
any x; such that p(x,x;) <38, /2 <§, and hence we will also have by the
trlangle inequality that p(z, x;) < 82 b 6,/2 <8,. Thus for all y in A,

p'(G(2),G,(x)) < p'(G,(2), G(x))+p(G(x) G(x))<61 O

From this lemma we may easily complete the proof of Proposition 5. Take
positive numbers 8, ¥y and s, and any set A in &/. Take now 8, as in the
lemma such that p'(G,(2), G,(x)) < 8 for all y in A, all x in ®4(s,) and all z
in 2 with p(z,x) < 62 F1rst by using (D.2), we may find an ¢, such that we
can write

P{p’(Gy(X;'), x') < 5} = P{p/(G,(X;), Gy(%ew,)) < 3}
= P{p(X;, x<x’,y)) < 62}
Iy(x(x',‘y)) + 7) =e ( I,)l/(xl) + 7)
RIENT T exp| -

> p—
for all 0 < & < ¢, and all x" in ®/(s,), with y being any element of A. Here for
each x’ in ®)(s,) with y in A, we denote by % ,, any element of ®(s,) C
®,(s,) such that G (% ) =« and I(x, ,)) = I,(x'). Alternatively, we may
use (D.3) to find an g > 0 such that we have

P{p/(G(X;), ®y(s)) = 8} = P{p'(G,(X;),G,(D,(5))) = 8}

< P{p(X;,®,(s)) = 8,} < e ¢/
for all 0 <& <¢gj all y in A and all 0 <s <s, Here we have used the
easily-proved fact that for s > 0 and y in A, ®;(s) = G,(®@,(s)). This completes

the proof of the proposition. O

In our case, we naturally identify X , with ¢/ and G, with B,. To carry out
our arguments, let us fix @ 0 < k < ;. The space 4" we take to be C§ with the
associated metric p,. The parameter y we take to be {, with the topological
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space ' being C2<(S!) with the topology generated by the norm || - [l s1. We
take &7:= {C2<(S1)}, that is, the class %7 has only one set in it, that set being
the entire space C2<(S?). Of course S, plays the role of I, and 2" is C* with
the natural metric p,. We have already noted that in this situation, the action
functional I, given by (46) will be equal to S, as in (4).

We first note that hypothesis (ii) of Proposition 5 is true by Proposition 1.
The equicontinuity of {B,;¢{ € C*(S1)} follows from Proposition 1 when we
take {; = {, and the continuity of { — B,(¢) for any ¢ in Cj follows upon
setting ¢, = ¢, in Proposition 1. Considering now the first hypothesis of
Proposition 5, we easily see from the calculation (30) that ®C2x( s1(s) is
contalned in {p € C§: llolle <@ + T¥)L,M(25)'/%} for any «' with k <
K" < %, so indeed Dge«g1,(s) is relatively compact in Cg. In a way analogous to
(31), we can calculate from (12) that for any ¢ in W2 such that ¢[0] = 0 and
any {; and {, in C?*(S1),

(47) §{1(¢) < S£2(¢)(1 + w,(llgl - {”2/(,81)7

where o, is as defined in (31). This easily gives the required continuity of the
mappings { — S,(¢).

It now remains only to verify that the large deviations principle for ¢/ in C§
is uniform over all ¢ in C%<(S!). We have arranged our proofs in Section 4 so
that only minor changes are required.

PROPOSITION 6. The random fields {{;} satisfy a large deviations principle
in C§ with action functionals S » Which is uniform over all { in C (ST,

Proor. We shall indicate how to modify the proofs of Section 4.

Fix a compact subset K of C**(S') and an s > 0. As we calculated before in
verlfymg hypothesis (i) of Proposition 5, the set ¢>sz( sy(s) is contalned in
{p € C§: llglle < (1 + T*)L, M(25)"/% for each «' such that x <« < g, so
indeed ¢>K(s) must be relatlvely compact. To prove that it is also closed, take
{@,} in ®x(s) converglng in C§ to some ¢. Then for each n, thereisa ¢, in K
such that ¢, is in <I> (s). The compactness of K ensures that {¢,} has a
C?%(81)-limit point ¢ ¥ in K along some subsequence {{,} of {{,}. Thus
analogously to (32)-(33), we have from (47) that

Sp(9) < liminfgg*(qan,) < liminfS'{ () + 0 lZ* = {llac, st) <8

by using the pK-lower semicontinuity of ¢ — S {*((p) as ensured by Proposition
2. Thus ®4(s) is also closed.

Now take positive numbers s,, 8 and y and proceed as in the proof of
Proposition 3. Note that the estimate (36) will hold for all { in C?(S1) and all
@in ® (50). We may also check that the calculatlon (837) is uniform over all ¢
in Cz"(Sl) and all ¢ in W»% with ¢[0] =

lim sup {IIZ}""HK > 38"} = 0.
¢ ec™sh .
peW; % ¢[0]=0
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This fact in conjunction with (36) easily shows that there is an ¢, > 0 such
that (34) holds for all ¢ in C?*(SY), all ¢ in ®,(sy) and all 0 < & < &,.

Finally, let us take positive numbers s,, § and y and review the proof of
Proposition 4. The essential idea of the proof was to use (39) to show that we
may disregard the set ~ K and then to cover the compact set K, ~ ®{*(s)
by a finite number of §'-spheres and to use (42) on each sphere. By Proposition
A.2 and (A.8) in Appendix A, (39) holds uniformly as ¢ varies over C2<(S') and
we were careful to include uniformity in ¢ and & in our statement of Lemma
2. Reviewing the arguments of (41), we find that the bound (41) holds in fact
for all { in C*(SY), all ¢ in K,, ~ ®/?(s),all0 <s < s, andall 0 <& < &y,
that is, it also holds when p, (¢, <I> (s)) > 8/2, where s is any number between
zero and s,. Thus (42) holds for all ¢ in C2"(Sl) all ¢ in Kg ~ ®P/2(s), all
0 <s <s, and all 0 < ¢ < &,. The uniformity of (43) will hence result if we
can show that L, the number of &-spheres used to cover K, ~ ®{)(s), is
bounded as ¢ varies in C2<(S?') and s varies from zero to s,. Let us cover the
entire set K, by pK—spheres of radius &” := min{&’, §/2} and extract a finite
subcover {cpl, =1,2,...,L}. Now if ¢ is in K, CIJ"S)(s) for some ¢ in
C?(S") and some 0 < s < s, then thereis a ¢; such that pk((p, @;) <8 <8/2
and by the triangle inequality, then p,(¢;, CIJ (s)) = 86/2. Thus

K, ~®(s) c U {¢ €Csip 0, 0;) <8}
it p o, B (s)=6/2
c U {e € Cs:p (e, ¢;) <&}

i: p s, By(sN=258/2

- Then we use (38) and (42) to write

O I
(48) i p(0;P,(s)28/2

< e—so/e2 + Ll(e—so/52 + (,y/(4so))_N’/ze*(s“v/z)/ﬁz)

for all { in C?<(S1), all 0 < s < s, and all 0 < & < min{e,, £,}. Our arguments
show that L', N, ¢; and &, depend solely on s,, 6, y and the arbitrarily
chosen constant «’, and not on { in C24(S') nor on s. This allows us to use
(48) to find an &, > 0 such that (38) holds for all ¢ in C?<(S!), all 0 < s < s,
andall 0 <e <g,. O

This completes the proof of the uniform large deviations principle for v;. We
state the result as a theorem.

THEOREM 2. For each 0 < k < %, claims (C.1)-(C.3) are satisfied, that is,
v; satisfies a large deviations principle in C* with action functionals S, as in
(4), uniformly over all initial conditions ¢ in C2<(S1).
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6. Conclusion. We now have the basic large deviations result for the
dynamical system (2). With this result, we can investigate many other asymp-
totic problems concerning v° [see Freidlin (1988), Freidlin and Wentzell (1984),
Sections 4.2 and 4.4 and Ventsel’ and Freidlin (1970)]. For instance, we can
consider a domain D containing a stable point of the dynamical system
3,0° = Zv° + f(x,v°) and look for the most likely place on 3D at which the
trajectories v° will exit D as ¢ tends to zero; we can also find the asymptotic
behavior of the first exit time of v® from D. Yet another direction is to
investigate the asymptotic behavior of the invariant measure of v® when v° is
considered as a function-valued Markov process—see Sowers (1991). Problems
such as these have been answered for stochastic differential equations (SDE’s)
—see Chapter 4 of Freidlin and Wentzell (1984)—but due to the infinite-
dimensionality of C(S'), many of the arguments for SDE’s do not immediately

apply to v;.
APPENDIX A

We consider here some continuity properties of solutions to stochastic
PDE'’s of the form

O,E=LE+oW, (t,x)elxS,
E[0] = 0,

or equivalently solutions of the integral equation

(A.2) E(t,x)= /;XSIGt_S(x,y)o-’(s,y)W(ds,dy), (¢,,x) eI xSt

(A.1)

where o’ is in L®(Q) X I X S) such that ¢’ is P-a.s. continuous as a function
of (¢, x) in I X S!, and such that o'(¢, x) is measurable with respect to %, as
given in (6) for each ¢ in I. We shall first demonstrate a deterministic result
concerning the Green’s function G of (5), and then use this to estimate the

continuity of E solving (A.2).
Our first result is an enhanced version of Lemma 3.9 of Walsh (1984).

ProposITION A.1. For 0 < k < j, there is a positive number L, such that
for all (t,x) and (s,y) in R, X S1,

1/2
(A.3) {/R XSJG,_r(x,z)—Gsﬁr(y,zwdrdz} <L ((t,%),(5,9)".

Proor. We shall first prove the proper variation in the x-direction and
then the proper variation in the ¢-direction.
Take ¢ > 0 and x and y in. S! [notice that if £ = s = 0 in (A.3), then the
léft-hand side of (A.3) is zero]. Then
e—ZAkt

[ JG32) = Gy ) drde = T () ~ 4P
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Clearly for 2 = 0,1,...,

lpr(x) — dp(¥) < )

and by the mean value theorem also
kr(x,y)  XfEar(x,y)

[or—1(x) — dop_1(¥)l < 7172 (ﬂ_D)l/Z )
kr(x,y)  AEr(x,y)
lpor(x) — dar(¥)l < 7172 EI;-D)I/z
We then calculate
jn; IIG,_,(x,z) - G,_.(y,2)*drdz
(A-4) < T lhu(®) — SN Ba(x) - B3P

k= 12Ak

= Ll,Kr(x’y)ZK
where L, , = (2'7% /(w D*)L%_(1/A} ) which is finite since 2(1 — k) > 1.
NowtakeO <s<tand x in S’. Then

f IG,_.(x,2) — G,_,(x,2)I* drdz

R,xS?
= X[ (M 0 = e M 50 i) dr
k=0

! Z f (e M x{r <t} —e ™7 {r<s}) dr

having used the fact that for all £ =0,1,..., max, . Igbk(x)l2 = 1/m. Our
calculation continues as

f (e =y {r <t} — e M |{r < s})2 dr
R

s 2 t—s _
— f (e—)\k(t—s+r) — e—)\kr) dr + f e 2Ar dr
0

0
1 - e—2/\ks _
2 t—s
< (e M — 1) + f e 2\ dr
2Ak 0"
1-— e—/\k(t—s) ies
< —+ f e M dr

o

3 rt—s —Ayr
=§f e M dr.

0
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Set k' == 1/(1 — 2«); then 1 < k' < 2 and using Jensen’s inequality,

3 _ K\ 1/K'
j[;u(e')‘k(t")x{r <t} —e METr < s})2 dr < E{(j: Se e dr) }

1/k
<|t-— s|2"3 !
ARIY

and hence

(A.5) /R SIIGt_,(x, z) = G,_,(x,2)|*drdz < L, |t — s|™,
X

where
3 1 b 1

)»

,K 2 (KI)K o ()tk)l/K’

L,

which is finite since 2/x’ > 1. We can then take L, = LY/2 + L}/ and com-
plete the proof with (A.4) and (A.5). O

We use this proposition and well-known results on the continuity of random
fields [see Garsia (1972), Lemma 1, Walsh (1984), Theorem 1.1 and Adler
(1981), Lemma 3.3.3] to establish the following estimate of the Holder norm of
any solution E of (A.2).

PROPOSITION A.2. For each 0 < k < %, there are positive constants K? and
K depending only on « such that

P{IIEN. = L} < exp(—(L/llo’llz=axixsy) K}
for all L > 0 such that L/||0"”L°°(Qx1xsl) > K,?

Proor. Fixing a 0 < k < 1, define «’ == (k + 5)/2 as the midpoint be-
tween « and ;. Since E[0] = 0, £ will be in C§ if and only if [E], is finite, in
which case we will have [|E|l, < (1 + T*)[E],, so we can restrict our interest to
[E],. For convenience, let us define oy, = llo’ll L= ,xI1xs? and normalize E by
setting B = E /o,. Then ‘

a'(s,y)

!

S
o.oo

E(t,x) = fzxslG“s(x’y) W(ds,dy).

We shall proceed in a manner similar to Walsh [(1984), Corollary 1.3]. Define
p(u) == L.2%/?u* for u > 0; then by Proposition A.1, we have that

(A6)  {BEIE(t,x) - E(s,0)3) <p(r((t,%),(5,9))/2?)
for all (¢, x) and (s,y) in I X S*. Also define the function ¥(x) := exp(x2/4)
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for all x in R and denote
B(t,x) — B(s,)

B:= ‘/;XSI'/;XSIW p(r’((t7x)’(s’y))/21/2)

Consider now E[B] and use Tonelli’s theorem to interchange the expectation
integral and the Lebesgue integrals; thus our interest turns to

E(t,x) — B(s,) )
p(r'((¢,%),(s,%))/2"?)

for a fixed (¢, x) and (s, y) in I X S If B(¢,x) — E(s, y) were Gaussian, this
expectation would be less than or equal to 2172 in view of (A.6); since
B(¢, x) — E(s, y) is not in general Gaussian, we must adopt another approach.
We shall define

) dtdxdsdy.

E|\¥

Gt—r(x’z) - Gs—r(y7 Z) 0"(7',2)
p(r'((¢,2),(s,9))/2V%) o

and let Mu be the right-continuous %,-martingale

f(r,z) = (r,z) eI xS,

-~ u
M, = r,z)W(dr,dz
o= [ [ f(r2)W(dr,d2)
with associated quadratic variation
- u '
(M), = r,z 2drdz, u>0.
[ [(r(r2)
By standard results, there then is a Brownian motion B, perhaps on an
augmented probability triple, such that M = By, for all u > 0. We now can

use Proposition A.1 to see that supu>0<M Y. <1 P-as., so as a result of
well-known properties of Brownian motion [Karatzas and Shreve [(1987),

Problem 8.2],

<E

< E[exp{ ‘11 (OlgflicllB I)z}}

— 9l/2

E|¥

B(t,x) — E(s,y) )
p(r'((t,%),(s,5))/2"%)

We consequently know that E[B] < (27 T)?2'/%; the same bound, in fact, as if
E(t, x) — B(s, y) were Gaussian.

We next apply Garsia [(1972), Lemma 1], approprlately adapted to functions
on I X S!. The continuity of the realizations of E implies that P-a.s. for all
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(t,x) and (s,y) in I X S?,
!, B
= ~ r'(t, %), (s, ¥, —
B(t,x) — E(s, <8 vl —|d .
B¢, %) —E(s,9) < 8 (u) p(u)
The last integral can be bounded as

! B
r'(@t,x),(s, ¥, —1| —_
[ o)

< 2372 r, ). (.57 In, B)'? + (In, u™* 172 dp(u
0 +

= 2%82(In, B)"*p(r'((t,%),(s,%)))

4 93/2 fr((t,x),(s,y))(1n+ u_4)1/2 dp(u),
0

where In, z := max{ln 2, 0} for z > 0. Observe now that by standard methods,

3 (In, u"‘)l/2

m = sup 2-1/8
u>0 u*’/ 4

is finite. Some straightforward manipulation then reveals that

|E(t, x) = E(s,y)| < fp((In, B)* + fi5)r'((£,%),(5,7))"

P-as. for all (¢,x) and (s,y) in I X S, where #, = 2**9/2[ ,d<“ % and
fig = 7,d“ k' /k, with d = {7? + T?'/2 Thus, P-as.,

[E], = o[E], < afis((In, B)"* + i5).

Using Chebyshev’s exponential inequality, then

(L/ow) .
14T« 8

PRI > 1) < P((=]. > T T

(A.7)

} < P{(ln+ B)/? >

(Ljoy) )2)
— N3 )

< (o2 + s - 5755

where we have used the calculation
E[exp(In, B)] < E[exp(In B) + x{B < 1}] < (27T)*2/2 + 1.
Dg:ﬁning
K = max(27yia(1 + T),8"%ip(1 + T%)(in{(2n )2 + 1)) )

and K!:= (872(1 + T*))"! gives us the stated result, for from (A.7), then if
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L/o, z fg(1 + T*) *
P(lIEl. > L} < exp{—(m) ( - W)
72(1 + T*)* In{(27T)*2"/2 + 1)
(L/a)”

(L/a2)? 1\ 1
Sexp(_m(l + Ty ((1 -3) - 5))

)
<exp|——7""—|—
P 842(1 + T*)* \ o,

which is the desired estimate. O

)

Note that the result of Garsia (1972) in fact only gives us Holder continuity
up to a (¢, x)-set of Lebesgue measure zero. By defining the solution of (A.1) in
the weak sense, however, as in (3), we can alter the solution on this null set so
as to have a Hélder-continuous solution of the SPDE (A.1).

We can now apply Proposition A.2 to the processes (11), (16) and (35). Let
us fix a 0 < k < § and for each L > 0, define 8% := M(L/K})'/? and && =
Bs/(MK?). Then whenever 0 < ¢ < &%, ‘
a8 P{lzgelle = Bs) <e L7, Pllyglle = 5} < e B¢,

Pllygelle = Bg} < e 2/,

We can also easily find, for any fixed 0 < x < 1, the 8 > 0 and £; > 0 such
that (44) holds for all { in C?*(S') and all ¢ in C§ when 0 < & < &,. Indeed, if
0 < k < %, define

§' = min{5/3,5/(35n,)(K}/(250))""} and eq:=35/(35m,K2),

where 7, is as given in Proposition 1. By the definition of stochastic integra-
tion it is not hard to check that

P{p (45, @) <&, p (s, ) = 8/8) = P{pk(l[lf, ¢) <&, IE. = 53},
where
B (t0) =ef Gru(%,9)(o(y, (Bet)(5,9))
“a(y, B;#)(s,9))x{lvg — ollb < &8} W(ds, dy),
(t,x) eI xS,
with llgf — ollo = Sup(s,y)e[O,t]xSII(,[/;(s,y)‘ — ¢(s,y)| for each 0 <¢ < T. But
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by Proposition A.2 and using an obvious refinement of (13)—(14), we have that
5 5
Pip (¥ 0) <&, p (¥, 08°) = 3= P{IE®|l, > 3

(A.9) |
< exp( —-K! (3/3) ) e~ 2s0/¢”

K
820'27]2

when 0 <e<e; If k=0, we can simply note that |ly; — ¢ “lc < g —
”1/8 and set

’ . 3 — 1/2 3 — ’
8 = m1n{8/3, 8/(3mo)( K1,/ (250)) } and &5 :=256/(30m K7 ,sd)
and proceed as in (A.9) to get that
(A.10)  P{po(47, ¢) <&, po(vf.0f) = 8/3) < P18 = 5/3) <e
for 0 <& <e,.

—2s0 /62

APPENDIX B

In this appendlx we estimate the continuity of 7, where { is 1n C2<(S?) for
some 0 <« < ;. Our goal is to show that for each 0 <« < %, there is a
constant n;, > 0 such that |7l < n,lI{lla., st for all { in C2"(Sl) ‘that i is, that
J is a bounded linear operator from C2<(S!) to C*. These estimates were
necessary in (13) and (15) in Proposition 1.

Let usfixa 0 <k < ; and a { in C?(S?). Let us first extend I to I XR
by defining u(¢, x) := Z,(¢,e'*) for all (¢,x) in I X R. Then u satlsﬁes the
PDE

u=Du,, —au, (t,x)€lXR,
u(01 x) = g(eix)’
where differentiation in R is understood in the normal sense. We can now use
the heat kernel in writing

e~ (—%)%/(4D1)

(B.1) u(t,x) = e_atj[;&W{(eiy) dy, (t,x) eI XR.

For any (¢,x) in I X R,
(B2) | 75(¢, )] = lu(t, )| < o,

so we may take ny = 1. If k > 0, for any x and y in R and any ¢ in I,

—22 /(4Dt)

(B.3) |u(t,x) - u(s,y)l < [RW|{(e'(x+z)) - Z(el(y"'z))l dz

< 1€ llgw, s1(r (e, €)™ .
after changing the variable of integration in (B.1). On the other hand, for any
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0 <s <t <T and any x in R, the semigroup property gives us that
lu(t,x) — u(s,x)
e~ 0—1)%/4D(E—s)

|<[u@(4ﬂn-D(t s))'?

—a(t—s) __

lu(s,y)ldy

<le

—22/2

[ gmatu(er s + (2D - )"%2) (s, )

—z2/2

< alt = sllZllees, + (2D)" —W““ delt = sI"IZ s, 51

by using (B.2) and (B.3) and another rearrangement of (B.1). By the triangle
inequality, then
—22/2

|7;(t, %) — T7(s,9)| < | 7% + aT =< + (2D) f—lﬂz”dz

X11¢llze, s1( 7' ((£, %), (5,%)))"

for all (¢,x) and (s,y) in I X S'. This and (B.2) complete the proof when
k> 0.

APPENDIX C

In this final appendix, we carry out some simple calculations to demonstrate
that if 0 < k < k' < 1, then for any B > 0, the p;2 topology is equivalent to
the p, topology on

Sphere*(B) = {¢ € C§: ll¢ll« < B}.

We used this in defining 8" in the proof of Proposition 3 and &' in the proof of
Lemma 2. In particular, we used the fact that on Sphere*(B), the Holder
norm of exponent « is continuous at 0 in the p;2 topology.

Of course the p;: topology is always contained in the p, topology; only the
other inclusion is interesting. To prove the other direction, let us fix a ¢; and
@, in Sphere*(B) such that [|||}2* < min{m, T}, where ¢ = ¢, — ¢,. Take any
(¢*, x*) in I X S such that |p(t*, x*)| = |l¢llc and define the set

={(t,x) €I x S%: |t — t*] < llolle, r(x, x*) < lloll2?}.
Then letting v be Lebesgue measure on I X S, we have
- 1/2
lollo(u(4))"”* = { [ lo(e*, 5" drdi)

< llollze + (2leliz2) "% (2B)(v( A))“>.
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It is easy to argue that v(A) > 2||¢l|z2, so that we have the bound -

— 1 ’ !
ey = @alle < 272llp, — @oll s + 2972 Bllg, — @,ll5s*

Hence any p;>-sphere in Sphere*'(B) of radius 6 < min{r, T'} is contained in a
po-sphere of radius 271/25'/2 + 2</2+1B§~' /2 50 at least we know that the
supremum-norm topology of Sphere“(B) is contained in the p,. topology of
Sphere*(B). This completes the proof when « = 0. When « > 0, we may recall
standard interpolation results to see that

ey — @alle < (1 + T) 1 — @3], < (1 + T*)(2B)(2lle, — @alic)

Thus for « > 0, the Hélder-x topology of Sphere<(B) is contained in the
supremum-norm topology of Sphere(B), which, as we have seen, is in turn
contained in the p;: topology of Sphere*(B), concluding our analysis when
k> 0.
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