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WEAK CONVERGENCE OF POPULATION GENEALOGICAL
PROCESSES TO THE COALESCENT WITH AGES

By PETER DONNELLY' AND PAUL JOYCE

Queen Mary and Westfield College and University of
Southern California, Los Angeles

The population genealogical processes associated with a wide range of
exchangeable reproductive models (including the Wright-Fisher model) are
shown to converge weakly, as the population size becomes large, to a
particularly tractable limiting process, the age-ordered analog of Kingman’s
coalescent. This result extends the known convergence results for sample
processes and effectively completes the robustness theory for neutral ge-
nealogies. Its consequences, which include a unification of the results for
neutral models, have already been exploited elsewhere. The techniques
used rely heavily on knowledge of sample behavior, together with consis-
tency arguments. They may be of more general interest.

1. Introduction. The n-coalescent was introduced by Kingman (1982a,
¢) as a robust method of describing the genealogy of a sample of fixed size, n,
taken from a large haploid population evolving according to one of a large class
of “exchangeable’” reproductive models. Watterson (1984) extended the pro-
cess to the infinitely many alleles setting, by explicitly allowing for mutation,
and Donnelly and Tavaré (1986) observed that it is possible to keep track of
the order in which the new classes arise and as a consequence to study the age
structure of the alleles.

While many questions of genetic interest may be answered from a knowl-
edge of the genealogy of samples of fixed but arbitrary size, some require
information about the genealogy of the whole population. The natural pro-
cesses of interest are the coalescent [Kingman (1982b)] and for models with
mutation, its close relative, the coalescent with ages [Donnelly and Tavaré
(1987)]. These processes possess a rich structure which naturally lends itself to
calculations of interest (in fact, in the infinite alleles case, explicit attention to
age ordering actually leads to a considerable simplification) and present them-
selves as natural candidates for the limits of population genealogical processes.
In spite of this, these processes have retained a somewhat ambivalent status.
The convergence results for sample genealogies rely heavily on the fact that
the sample size remains fixed as the population size increases. Until recently,
questions concerning convergence of the population processes associated with
discrete models have remained open. Donnelly (1991) verified a conjecture in
Kingman (1982¢) in proving weak convergence of so-called population ances-
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tral processes, the processes which count numbers of ancestors, and provide
the natural “time scale’” for the more informative genealogical processes.
Donnelly and Joyce (1991) prove weak convergence of the equilibrium distribu-
tions of the population processes. Our purpose here is to complete this part of
the theory by proving that the processes themselves converge weakly (as
random elements of the appropriate function space) to the coalescent with
ages, thus verifying conjectures implicit in a number of earlier works [e.g.,
Kingman (1982b), Tavaré (1984) and Donnelly and Tavaré (1987)].

Our second aim is to exhibit an approach to certain weak convergence
problems which may be more widely applicable. The raw materials available
for proving weak convergence, and the nature of the limiting process, differ
from those in many standard settings. The basic tool is knowledge that
samples from these processes behave in the correct way and the challenge is to
exploit this and the internal ‘‘consistency’’ of the processes to force the
population genealogies to behave correctly. Heavy use is made of monotonicity
properties and two different couplings between population and sample pro-
cesses. One bonus of the approach is that while the results apply to a wide
range of models, no further model-specific calculations are necessary. The
techniques may be useful in studying certain additive interactive particle
systems, where processes with different starting configurations may be natu-
rally coupled. For example, they apply in the context studied in Cox and
Griffeath (1990), to provide an alternative to the approach adopted there.

We conclude this section with some notation and point out that an outline
of the general strategy of the paper is given at the end of the next section.
Denote the infinite-dimensional unit simplex by A:

A= {x=(x1,x2,...):x,-20, Y ox; = 1}
i=1
and let
A= {x=(x1,x2,...):xi20, Y ox < 1}.
i=1

We regard A and A as subspaces of the (metrizable) space [0, 1]Y endowed with
the product topology. Note that with this topology A is closed and hence
compact. Throughout we give A the Borel o-algebra. We denote Z(A) as the
set of probability measures on A. We use the symbol = to denote weak
convergence, and for x € R, [x] will denote the largest integer less than or
equal to x. For a set A, IAI will denote the cardlnallty of A and I{A} the
indicator function of A.

. 2. Exchangeable reproductive models and the genealogical pro-
cesses. We shall consider a class of neutral models with nonoverlapping
generations introduced by Cannings (1974). Randomly label the N individuals
in a particular generation, and let »; be the number of offspring born to the
ith individual, i = 1,2,..., N. The random variables {v;} are exchangeable,
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and constant population size is maintained by requiring v; + v, + * - +vy =
N. We shall also assume that the distribution of {v,, ..., vy} is invariant over
time, and the assumption of neutrality implies that the »; are independent of
family sizes in preceding generations. Each offspring individual may be subject
to mutation at birth. Mutations occur independently for each individual (and
independently of the past history of the process) with probability u, and result
in a novel allelic type.

Consider the population at some time labeled 0 and ask about its composi-
tion with respect to the ancestral population m generations into the past.
Divide the population into two types of equivalence classes which we label old
and new. We say individuals i and j are in the same old class at time m, if i
and j have the same ancestor m generations into the past with no intervening
mutation along their lines of descent. We say that i and j are in the same new
class at time m if for some r satisfying 0 < r < m, individuals i and j have
the same ancestor r generations into the past, this ancestor itself being a
mutant, with no mutations between 0 and r. )

Denote the number of old classes at time m by A,(m) and write
Xy, 1(m), Xy o(m), ..., Xy 4, m(m) for the proportion of the population in
each of these classes. Similarly, let Fj(m) denote the number of new classes at
time m, and write Yy (m), Yy o(m), ..., Yy g n)(m) for the proportion of the
population in the oldest, second oldest, ..., youngest new class. (The age of a
class is the time from the mutation event which gives rise to the class until the
present, so that older alleles arise further in the past. Break ties in ages at
random.) In some settings it is convenient to describe genealogies (and ge-
nealogical processes) in terms of equivalence classes, while in others one keeps
track only of the frequencies in each of the classes. Exchangeability arguments
[see, e.g., Kingman (1982b)] mean that the two approaches are equivalent.
Define the process { X (¢), ¢ > 0} with state space A, by

Xy(0) = (1/N,1/N,...,1/N,0,0,...),
XN(t) = (XN,l(t)’"'7XN,AN(3)(t)’YN,1(t)7’"’YN,FN(t)(t)’O’O"")’ t> 0.

We write the frequencies of the old classes in an arbitrary order. If at time ¢,
old classes of sizes x,,x;,...,%;, say, coalesce, i; <i, < --- <i, where
Xyt —=)=(xy,..., %0, ¥5---,¥r,0,0,...), then Xp(¢) will take one of the
values

T P R . T I T
Xiitre s X 1 X w1se e XL, Yise - V0 0,0,..0),

k=1,2,...,1, each with probability /™!, this choice being independent of the
past history of the process.

The limiting population process {(D(¢), X(¢)), ¢t > 0} is described in Donnelly
and Tavaré (1987). It is Markov with state space

E={0,1,2,...,0} XA,



WEAK CONVERGENCE TO THE COALESCENT 325

where D(#) is the Markov death process started from an entrance boundary at
o with death rates 2(k + 6 — 1)/2 from state k. Also, X(¢) may be repre-
sented as .#p, where the (discrete-time, Markov) jump chain {.Z;; %k =
0,1,2,...}is independent of {D(¢), ¢t > 0} and has transition probabilities

P[,,Zk_1 = (X ey Xy s Xytr e s Xy X3 Y15 Yoy e e - )

0
L//k = (xl,...,xkyyl’yZ"")] - ;ﬁ—(—kTe—__i_)—,

and for 1 <i <j <k,

P["Zk~1=(xly"-7xi~17xi+xj’xi‘*'l""’xj_l’xj"'l"“’xk’yl’yz"“)
., -

=(x,.....% = T av

k ( 1 »y Xpr Y1, Yo )] k(k+9_1)’
P[”Zk—lz(xly---1xi—11xi+17'--’xj~1?xi+xj’xj"'l"'"xk’yl’yz"“)
1

|z/¢k=(xl,...,xk7y17y2"")] = k—(k-:i-—f)——ﬁ'

The distribution of D(¢) is known; see, for example, Tavaré (1984). It suffices
here to observe that as ¢ —» 0, D(¢) — « a.s., but that for ¢ > 0, E(D(¢)) < .

The marginal distribution of the jump chain is also known. In fact for
k=1,2,..., #, has the same distribution as the random element of A given
by

(UIVk7 U2Vk’ teey Uka7(1 - Vk)Zh(]- - Vk)(]- - Zl)Z2’
1=V -2Z)(1 - Zy)Zs,...),

where Z,,Z,,..., are independent and identically distributed random vari-
ables with density (1 —x)°"!, 0 <x <1, (U,U,,...,U,) are jointly dis-
tributed uniformly on the simplex {(x,,...,x,): x; > 0, x; + -+ +x, = 1}, and
V, has density

(1)

T(k+6)x* (1 —x)"""
(2) fu(x) = T(0)(k — 1)! )

with the collections, Z,, Z,,...,(U,,...,U,), and V, mutually independent.

In the sequel we will often write M(-) for (D(-), X(-)) and My(-) for
(Ay(No=2-D, Xy((No~2 - ]). Further let X(-) and X,y(-) be the processes
which just keep track of old class sizes: If M(¢), respectively M(¢), takes the
value (k,(x,,...,%,,5,...)) then X(¢), respectively X, (¢), takes the value

xq,...,%,,0,0,...). -

Sample genealogical processes are defined analogously. Take a sample of n
individuals at time 0 and consider its genealogy with respect to the ancestral
population m generations into the past. Denote by A% (m) and Fgy(m) the
number of old and new classes respectively and by X7(-) the process analo-

O0<x<1,
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gous to X, () which describes the evolution of the proportion of the sample in
each of these classes.

The limiting genealogical process for samples {(D"(¢), X™(¢)), t = 0} is the
“frequency”’ analog of the n-coalescent with ages of Donnelly and Tavaré
(1986). It is Markov with state space E, ={0,1,...,n} X A. Again, {D"(¢),
t > 0} is a (Markov) death process with death rate k(2 + 8 — 1) /2 from state
k; this time D™(0) = n. Also [Donnelly and Tavaré (1986)] (D"(-), X™(-)) may
be represented as (D"("), .#}-.,) with the jump chain {.#]'; k = n,n — 1,...,0}
Markov and independent of the death process D"(-). Its marginal distributions
are given by

A A
P[,,/kn= (—1,...,—”,ﬂ,...,ﬂ,o,o,,,,)]
n n

3
3) (n — k)0’ 1
(B + 0)n-ry m(my+ M) - (g + - +my)’
provided ! < n and the A;, i =1,2,...,%, and n;, j = 1,2,...,1, are positive
integers with A; + -+ +A, + n; + -+ +7;, = n. Here and throughout, x,, =
x(x + 1) -+ (x + n — 1) denotes the ascending factorial of x.

For the sake of completeness we now restate the known convergence results
for these processes. Let p denote the ranking function on A. That is, if

]
V= {x=(xl,xz,...,):xizo,xlzxzz T, insl},
i=1

then p: A >V, and p(x) is the rearrangement of the components of x into
nonincreasing order.

THEOREM 1 [Kingman (1982¢) and Donnelly and Tavaré (1986)]. Assume
that as N — o,

1. Var(v,) > ¢%2> 0,
2. supy Elvfl <o, k=12, ...,
3. u=002/(2N) + o(N~1) for some 6 > 0.

Then the process {(A%(No~2t]), Xi(No~2t]), ¢t = 0} converges weakly in
DEn[O, ) to {(D™(¢), X™(¢)), t = 0} as N — .

THEOREM 2 [Donnelly (1991)]. Under the assumptions of Theorem 1, as
N - o,
Ay([No™2:]) = D()

as elements of Dy, 40, ).

THEOREM 3 [Donnelly and Joyce (1991)]. Under the assumptions of Theo-
rem 1, as N — o,

p(Xn([No~?t])) = p(X(2))
as random elements of V, for each fixed t > 0.
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The main result of this paper is the following theorem.

THEOREM 4. Under the assumptions of Theorem 1, as N — o,
My([No2:]) = (AN([N‘T—2 ‘1), Xn([No~2 ‘1) = (D(+), X(")) = M(),

as elements of Dgl0, «).

Now some comments on strategy. We will first prove weak convergence of
the one-dimensional marginal distributions of the process, then extend this to
prove convergence of finite-dimensional distributions and finally establish
tightness. Theorem 2 gives convergence of marginal distributions of the first
component; it then turns out to be sufficient to establish convergence of the
conditional distribution of Xy(No~%t]) given Ay(No~2%t]) = k to that of
X(¢) given D(¢) = k (which is exactly the distribution of .#,) for each k. The
key here is to observe that (by definition) one way of obtaining the distribution
of X2([No~2t)) is by “taking a sample” from Xy((No~2t]). Theorem 1 (and
the structure of sample and population limiting processes) ensures that these
sampling distributions converge. That is, for certain fy, f,

E(fy(Xn([No72t]))) = E(f(X(2))).

The problems with extending this to give weak convergence are effectively that
none of these f’sis continuous on A and that our concern in any case is with
conditional distributions. The first was overcome in an analogous situation in
Donnelly and Joyce (1991); it is necessary to show that any weak limits of the
sequence { X, ([ No~2t])} live on especially nice subsets of A. These ideas can be
- pushed through in the conditional case. Section 3 contains the ground work
(properties of limit points of sequences of conditional distributions) and Sec-
tion 4 gives the required conditional, and hence marginal, convergence.

The rest is a little easier. For any ¢ > 0, X, ( No~2¢]) and X(¢) will have a
finite number, say k, of old classes. (That both processes have the same
number of old classes, at least for large N, is a consequence of Theorem 2.)
The behavior of the processes as ¢ increases effectively only depends on the
genealogy of these k ancestors, but that is described by a process with the
same distribution as (A%,(-), X2 (-)). Now apply Theorem 1 again and check
the behavior of the hmltlng process to observe that the conditional distribution
of X(No~2t]) from ¢ onwards converges to that of X(¢). Judicious applica-
tion of this observation (in fact it is a coupling) and the Markov property
converts convergence of marginal distributions into convergence of finite-
dimensional distributions.

For tightness, we wish to show that the prehmltlng processes do not jump
toor far in small time intervals. Remember that for all large enough N,
(AN No~2%t]), Xy No~2t]) is close in distribution to (D(2), X(#)). First
choose #; > 0 very small so that this latter process has not moved far from its
starting position of («, (0, 0, . . .)) and use monotonicity properties to bound the
jumps of the prelimiting processes over [0, ¢;]. Now from ¢, on the process
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makes only a finite number of jumps. So it is straightforward to show that the
process on [¢;, ) has sample paths whose jump sizes are at least ¢ with high
probability.

Before continuing we note that convergence of age-ordered allele frequen-
cies at equilibrium to the so-called GEM distribution follows easily from
Theorem 4. This was proved directly in Donnelly and Joyce (1991).

CoroLLARY 5. Let py = inf{t > 0: ANy((No~2¢]) = 0}, p = inf{t > 0:
D(¢) = 0}. Thenas N — o, Xy (INo~ %D = X(p) =5 (Z,,(1 — Z)Z,,(1 — Z))
(1 -2Z,)Z,,...), where, as before, Z,,Z,, ... are i.i.d. with common density
01 -x)¥"1L0<x<1.

Proor. Define ¢: D5[0, ) X [0,%) — R by £(x, ¢) = x(¢). Since X(-) has no
fixed jumps on [0,) and P(p € (0,)) = 1, the function ¢ is a.s. continuous
with respect to the distribution of X(-). The result will follow if we show that
(py> Xy(No™2-1) = (p, X(-)) as N - .

Let E; ={0,1,2,...,}. Define #: Dy ,5[0,%) - DE [0, ) X Dgl0, ) in the
canonical way. Notlng that the projection maps from E, X A - E; and E; X
A — A are continuous, it is a straightforward exercise to show that # is
continuous. Let 7,: D[0,%) — E, be the evaluation map, and note that since
D(-) has no fixed jumps on (0, 00), 7, is continuous D(-) a.s. for each fixed
t > 0. Let B be a closed subset of Dz[0, ). The Portmanteau and continuity
theorem guarantee that

limsupP(py < t, Xy € B)
N-owx

= limsup P(Ay([No~%t]) = 0, Xy([No~2-]) € B)
N-ox

= limsup P(#(My) € w; *(0) X B)
N-ow

< limsup P(#(M) € w;*(0) X B)
N-ox

- P(p <t,X(-) €B). O

3. Properties of the limiting processes. In this section we collect
together some results concerning the limiting processes.

THEOREM 6. (D™(t), X"™(¢)) = (D(¢t), X(¢)) for each t > 0 as n — o,

Proor. It is straightforward to show that D"(¢) = D(¢) as n — «. In view

,of the independence of D"(-)-and the jump chain .#™ of the coalescent, it only
remains to show that for each £ = 0,1,...,n, # = #, as n - .

Write the components of .#, as (R;,..., R,, Sy, S,,...) and those of .#;"

as (R*..., Rk, S, S2, ...). Denote by -F" = max{l: S/ > 0}, the number of

new classes in .#;" and note [Donnelly and Tavaré (1986)] that F* — » a.s. as
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n — o. It is sufficient to prove that for each fixed r, r = 1,2,..., as n — o,
(R?,...,R;, ST,...,8") = (Ry,...,R;,S84,...,8,),
which in turn will follow from Scheffé’s theorem [see Serfling (1980), page 17]
if
lim n"**P(nR} = [ny;],i = 1,2,...,k, nS] = [na;],

n— o

=f(y1,~'~’yk,x1,'~-,xr)’
where f is the joint density function of (R,,..., R;, Sy,...,S,). This last is
just a calculation involving (1), (2) and (3) which is similar to that on page 15
of Donnelly and Tavaré (1986) and we omit the details. O

Now, and throughout the remainder of this section, fix £ > 0. Denote by wh
the dlstrlbutlon of Xy(No~2t]) given that Ay((No~?t]) = k. (It is possible
that u% depends on ¢, but for convemence we will not make this dependence
explicit.) Our aim is to show that if v* is a limit point of {u kYo _, then v* is
concentrated on the set {x € A: x; > 0 for each i}. We do this by exploiting two
key properties of the discrete genealogical processes:

1. Monotonicity property: As the process progresses, the surviving old classes
will either increase in size or become new.

2. Conditional independence property: Conditional on there being / old classes
at time ¢, the ancestry from the time ¢ onwards has the same structure as
the process (A4 (+), X4(+)) concerned with genealogy of a sample of size [,
starting at time 0.

" For convenience we will denote A ~INo~2-Dby Ay(-) and Xy(No~2 -] by
XN( * ).

TueoreM 7. If v* is a limit point of the sequence {u%)x_1, then v*(A) = 1.

Proor. First note that it is sufficient to show that given ¢, § > 0, 3 m

with
Vk({inzl—ﬁ}) >1-—e¢.
i-1

This in turn will follow from the Portmanteau theorem provided

AN(t)—k]>1—s

N—-o i=1 i=1

m—k
hmsupP[Z Xy () + X Yy (t)=1-39

Observe that conditional on A y(s) = j, the monotonicity property guaran-
tees that for ¢ > s the sum of the first j components of Xy(¢) is a nondecreas-
ing function of ¢. The idea behind the proof is effectively to choose a small time
s with the property that the sum of the old class frequencies at time s is large
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and then choose an m larger than the number of old classes at that time. The
observation above then ensures that the sum of the first m components of
X () will also be large.

Now, for any R < L € N, provided m > L,

m—k
[): Xy,i(t) + X Yy (t)=1 -8 Ay(t) = k]
i=1 i=1
m—*k
Z P Z Xni(t) + X Yuu(t) =21 -8[Ay(s) =j, Ap(t) =k
(4) Jj=k li=1 i=1
XP[An(s) =jlA,(t) = k]
L J
> Y Pl Y Xy (s) 21— 8Ay(s) =j]P[AN(S) =JlAy(t) = &].
j=R li=1
Rewrite the components Xy ((s), Xy, 5(s),..., Xy ;(s), in nonincreasing order

as Xy 1)(8), X (), .. XN (8, and note that on {Ay(s) =},

(5) ; Xn,i(s) = Z Xy a)(8).

Invoke Theorem 3 and observe that for [ > j, the boundary of event {L7_,
1 — 8, x; > 0} is contained in the set {£/_,x; = 1 — 8}, which has probablllty 0
(recall 8 > 0) under the distribution of the 11m1t process. Thus

[Z Xni(8)=21-8,AxN(s) >1

J
i=1

(6) }
> PlY X;(s)21-8, X,(s) >0
i=1
J
=P[Z Xi(s) =21-8,D(s) >1],
i=1
as N — oo,
It follows from (4), (5) and (6) and Theorem 2, that with V, defined at (2),
m—k
lim sup P Z Xy i(t) + X Yy (£)=21-8|Ay(2) = k]
N-oow i=1 i=1
(7

> i P[V} > 1-38]|P[D(s) =jl D(¢) = k]

> P[VR >1-08]P[R <D(s) <L|D(¢t) =k],
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which can be made arbitrary close to 1, as required, by first choosing L large,
then choosing s small, and finally choosing R large. O

THEOREM 8. If v* is a limit point of {u%}, then v¥{x € A: x; > 0 for all
i} =1

Proor. Recall that ¢ > 0 is fixed. Let Q%%(¢), respectively @"*(¢), denote
the number of new classes formed in the process (A4 (-), X4(+)), respectively
(D'(+), X'(+)), between time 0 and time ¢, conditional on A% (¢) = k, respec-
tively D!(t) = k. Further let Cy(s,¢) be the number of new classes formed in
(AN(), XL (+)) from time s to time ¢.

Now, for any r,m € N with r <m, and s <¢,

Wi (%4s > 8) = P[Yy i(2) 2 8,Cy(s,t) 2 il Ay(2) = k]

- P[Xy.o(s) = 8, Cx(s,8) 2 il Ay(t) =k, Ay(s) =]

l=r

(8) XP[Ay(s) =l Ay(t) = k]
— % P[Xy,(s) = 3l Ay(s) = 1] P[QL(t — 5) > i]
l=r

xP[An(s) = Il Ay(t) = k],

since by the conditional independence property, X,(s) is conditionally inde-
pendent of Cy(s,#) and Ay(¢), given Ay(s), and given that Ay(s) =1,
An(#) = k, Cy(s,t) has the same distribution as Q%*(¢, s). Now as N — o,
Theorems 1, 2 and 3, and an argument similar to the one used in the proof of
Theorem 6 guarantee that the right-hand side of (8) converges to

Y. P[Xs) = 81 D(s) =[] P[QU4(t — ) = i] PD(s) = 11 D(2) = k].

l=r
With Ul, ..., U, V, defined at (1), the Portmanteau theorem gives

(%4 > 0) = (lsi?(}”k(xkn > 5)

> (lsiiréf‘,P[Ul‘/'lzﬁ,Ulezﬁ,...,U,Vlzﬁ]
l=r
xP[Q“*(t — s) = i| P[D(s) = 1| D(¢) = ]
= ¥ P[QH(t - s) = | P[D(s) = 1l D(t) = k]
l=r

=P[Q"*(t —s) 2 i|P[r <D(s) <m|D(t) =k].
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Now let m — « and then s | 0 to obtain
v (x,,; > 0) = P[Q"*(¢) = i] » 1

as r —  in view of the structure of the chain .#. From Theorems 2 and 3, it
also follows that »*(x, > 0) =1 for : = 1,2,..., k, so that the desired result
follows. O

4. Convergence of one-dimensional distributions. Let B .
{Gsmy ooy L=k k+1,...,m,€{1,2,...}, 5y + - -+ +m;, = n}. Think of a
point (I;my,...,m;) € BY as describing a sample of size n in which the
individuals form [ classes, # of which are old and (I — k) of which are new.
The number of individuals in the old classes are 7,,...,7;, and the numbers
in the oldest, second oldest, . .., youngest new classes are 7, ,,...,7;, respec-
tively. If the sample is taken (with replacement) from an infinite population
with description (j, x) = (J, (xy, x4, . . . ) with the interpretation that the popu-
lation has j old classes with frequencies x;, %5, ..., x;, and new classes with
frequencies x;,, for the oldest, x; , for the second oldest, ..., and so on, then
we denote the probability that the sample will have configuration n € B k by
d),’j’j(x). Specifically, for k& <j, n € BE, define the sampling function d)ﬁ’j:
A - R by

n!

d,s,j(x) = Z f__'_,,Clnllxlnzz xZ’-
11<0g< "+ * <ipgj<ip1< 0 <y Ut M-
We regard a point (I;7,,...,m,) € B* as describing a sample with old class

sizes 7y, Mg, ..., M, Written in a fixed but arbitrary order and distinguish
between (571, .. » Mg Mpa1s---> M) and G m, ooy My Mpyrs- -+, my) in By if
i,...,i, is a (nonidentical) permutation of 1,2,..., k. In the sampling con-
text, and this is implicit in the definition of ¢f1’ J, the old and new classes in the
sample inherit their ordering from the population.

Note that for x € A,

j
(9) Y L ¢oni(x) =1

k=1 nEBﬁ

It is also easy to check that as a function on A, d)f,*j is lower semicontinuous.
It then follows from (9) that qbf;’J is actually continuous on A.
To cover sampling without replacement, we define for n = (I, n,,...,m,) €

B%, N,k,jeN k<j<n, ¢l*/: A—>Rby
Nx; Nx;,
M m

¢y (x) = )» N
i <4;<j<ipe1< o <y ( )

l1<"' n

[If x does describe a population of size N, then Nx; € N for each i; for
convenience cover the general case by defining (‘Z) to be I'(a + 1)XI'(a — b +
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DI(b + 1))71.] Again ¢*/ is lower semicontinuous on A and it is actually
continuous on A.

Let Z(A) be the space of probability measures on A. For each n,% € N,
n <k, define G™*: B* x #(A) - R by

(10) G™H(n,p) = [$hH(x) du.
A

We interpret G™*(n, u) as the probability of getting a sample described by

n =, My, Mg, ..., n) from a population described by w. The sample is taken in

such a way that the first £ types in the population appear in the sample.
Define

i
Sk={yeA:Al >k withny,eN,y,>0,i=1,2,...,1, Yy, =1
i=1
and with /, = max{i: y; > 0}, define H: S} — B} by
H(y) = (Lys my1, nygs - -y ).
Now let G‘:’k be the atomic measure on A corresponding to G™ *(n, w):

(11) GrrA)= L G HH(y),n).

yeANSk

THEOREM 9. Suppose u{x € A: x; >0 for all i}=1. If G™ k(n w) =
fAd’k k(x) du(x), then for any bounded continuous function f: A — R, as
n — oo,

fzfdé,f’k - fzfdp,.

ProoF. Suppose x € A has x; > 0 for all i, and let Z,, Z,, ... beii.d. with
P[Z, = i] =x;,1=12,....Put Y‘”) n‘lZ Il{Z; = i} and define for k =
2,3,..

J(") =min{i: ¥, > 0},  J{ =min{i > J{™;: Y, > 0}
If JiW=0w, put Y =0. It is straightforward to prove that for % =

J(n)
1,2,...,m,asn—>oo

(12) {J{™ =k} > 1 as. and (Yf3,..., V) - (x5,...,%,) as.

Let f: A — R be a bounded continuous function depending only on a finite
number, m say, of coordinates and write f(y) for f(y,¥s,-.-,¥,). Then

Jim () d6140) = lim || £ 1(0)6hb() duc)

yeSk

el

(13)

lim f E[ f(YSE, ..., YR) I{IE™ = k)] du(x)

n-—ow

J £ dn(),



334 P. DONNELLY AND P. JOYCE

using dominated convergence and the fact that [again by dominated conver-
gence and (12)] the integrand in (13) converges to f(x) as n — «. An applica-
tion of the Stone-Weierstrass theorem completes the proof. O

Once more fix ¢ > 0. Recall that w% is the conditional distribution of
Xy(No~2t]) given that Ay((No~2¢]) = k. Denote by u* the distribution of
X(¢) given that D(¢) = k. (In fact it follows from the structure of the limiting
process that u* does not depend on ¢.)

TueoREM 10. For each k, k = 0,1,2,...,u% = u* as N - =,

Proor. Throughout, we denote Ay((No~2¢]) by Ay and Xy((No~2¢]) by
XN = (XN,I’ ceey XN,AN’ YN,l’ YN,2’ “ee ).

It will be convenient to define distributions for samples corresponding to u%
and u, in terms of class sizes rather than proportions. Specifically, for
k,l,n, N € Nwith k <! <n <N, define P{*: B, > Rby

Pit(n) = P[nXf, = n, 0 <i <k, n¥, =m, k<i<l,
nYg, = 0,i> | A% = k).
Further, for k,I,n € N, k <l < n, define P™*: B, - R by
Pri(n) = P[nXP =n;,0 <i<h n¥"—n, k<is<l,
nYr =0,i > I| A" = k].

Finally, let P™* be the distribution of X" given D" = k.
It follows that

n k(] = N,k,j Jj M
PrE(limy,...,m;) = Eka%, k (x)d,uaN(x)P[A,;v vy
P[Ay=F
= fAsof,"’k’k(x)du’fv(x);ﬁ—k—} +hY(m),
where
j ; P[Ay =Jj]
Aim = L e duk (5 B =

Suppose v* is a limit point of u% and index the convergent subsequence by
N; then by Theorem 7, v* is concentrated on {x € A: x; > 0 for all i}. Recall
that the functions ¢/ and ¢}"*/ are continuous on A. It is straightforward
to check that for x € A,

oYN*J(x) » ¢f/(x), uniformly in x,

as N — . It then follows from the continuity theorem [Billingsley (1968),
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Theorem 5.5] that

. Nk, j j _ ,J j
(14) Jim [ o049 (x) dudy(x) = [ $19(x) dv.

Thus

k,k k
e e d(nPID=R]
i By (m) fA P[D" = k] g k()

But by Theorem 1,
Lim Pt (n) = P™*(n).

So for G™*(n,v*) defined by (10) and G.,nk * defined by (11), it follows that if f:
A — R is bounded and continuous,

N A P[D =k]
dPm*(x) = dGrt(x) = —
5 Jf(xy dPmA(x) = [ £(x) dCx* () prpm
+lim T f(nn, . )RY(n).,
*neBk
However,
Y f(n7 ny. )R ()| < suplf(x)l X A7 (n)
neBk x€A neBk
and
M P[Ay=j]  P[Ay>M]

L wims L [ L e @) duk(®) gz —g * Prag =4l

neBt j=k+17A gk
Thus by (14) and Theorem 2,

. N M b ;. P[D=j] P[D>M]
J\III—IP‘” ngB,’:hn(n) < j=§+1'[An§B§% () dv (x)P[Dn = k] i P[D"=k]’

But for j > k, it follows from (12) that for x € {x € A: x; > 0 for each i},
Y eki(x) < P[J}") a&j] -0 asn — o,

neBk
Thus
P[D > M]
lim li hY < —
i Mm X R < 5T

neBk

Now let M — « to get

(16) lim Lim | Y f(n"'my,...)RY(n)|=0.

o
n—oo Now nEBﬁ

Recall that v*{x € A: x, > 0 for all i} = 1, and apply Theorem 8 together with
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(17) and (18) to obtain
lim [ f(x) dP™*(x) = [ f(x) dvi(x),
n—oJA A

implying Pk = pk as n > o, By Theorem 4 (recalling that P™* is the
distribution of X” given A" = k), P»* = y* as n — o, implying v* = u*.
Thus all the limit points of the sequence {u%;} are equal to u*, and the result
follows. (Tightness is immediate since A is compact.) O

We are now in a position to prove the main result of the section.

THEOREM 11. Fix ¢t > 0 and assume that as N — «,

1. Var(v,) - a2 > 0,
2. supy Elvf] <o, k=1,2,...,
3. u=00%/2N) + o(N~1) for some § > 0.

Then (Ay(INo~2t]), Xy(No~2t]) = (D(t), X(t)) as N > o,
PrROOF. Again write Ay(¢) and X (¢) for Ay(No~2t]) and X, ( No~2t)),

respectively. Let F: E — R be a bounded continuous function.
Define f¥, f£:{0,1,2,...,0} > Rby

FE(k) = [F(k,x) dut(x),  f(k) = [F(k,x) dul(x).
A A

Theorem 10 and the topology of N then guarantee that as N — o, ff(ky) —
f¥(R), for any sequence %, — k, so that Theorem 2, the continuity theorem
and the fact that D(¢) € N a.s. ensure that
N(An(8)) = fF(D(2)) as N - .
For each k, |fff(k)| < ||F|l so that by dominated convergence, as N — o,
E[F(An(2), Xx(1))] = E[ f5(An(2))] = E[ f7(An(t))]
= E[F(D(2), X(t))]

as required. O

5. Convergence of finite-dimensional distributions. Conditional on
the value of My(¢), its behavior from time ¢ onwards depends only on the
genealogy of the A, ([ No~2t]) ancestors of the population. [This is Kingman’s
(1982a) ““temporal coupling”.] For ¢ > 0, this number remains finite as N — «
(Theorem 2) and so its limiting genealogy is described by Theorem 1.

Recall that My(¢) = (Ay((No~2t]D, Xy No~2¢)) and M(¢) = (D(¢), X(2)).

" THEOREM 12. Suppose 0 <t, <t, < --- <t,. Under the hypotheses of
Theorem 1, as N — o,

(My(t1), My(5), ..., My(t)) = (M(2y),..., M(t)).
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Proor. First suppose ¢; > 0. Theorem 11 gives the result for & = 1. We
will proceed by induction and assume the result is true for £ — 1.

It is again convenient to go back to describing genealogies of samples by
equivalence relation valued processes. These processes are the obvious analogs
of X{(-) and X"(-). We denote them by R}(:) and R"(-), respectively; they
are described in detail in Donnelly and Tavaré (1986). Their state space is the
set of two type equivalence relations on the set {1,2,..., n}, which we denote
by #,. If a=(&,6E,...,& MM -..,m) € #,, then the sets
&, -o o5 €4y M- -+, My, form a partition of {1,2,...,n} and the interpretation is
that « has % old classes and [/ new classes, with the new classes being listed in
order of decreasing age, and say n; = {ji,...,J,) means that the individuals
labeled j,,..., j, comprise the ith oldest new class. [In Donnelly and Tavaré
(1986), the new classes were listed in the opposite order, i.e., from youngest to
oldest.] Thus, for example, if

%(t) = (51’52"“7§k;7]1a"~anl)
then
lfll @ l_'rl_ll |7]1|

Xﬁ(t)= 7,..., . ,...,T,0,0,... ,

where |A| represents the number of elements in A.

Define f,: #, X A - E as follows: Suppose a € %, has k old classes
&, &9, ...,¢&, and I new classes ny, My, ...,m; Where 7, is the ith oldest new
class, then define

fola,x) = (k;24,29,...),

where z; =L ;o x; for i <k, 2,,,= X c,x; fori <l and z,,,,, = x,,; for
1> 1.

Note that f,(a, * ) is continuous. Further, we endow %, with the discrete
topology so that f,(-,x) is also continuous. The interpretation of f,(a, x) is
(via the temporal coupling) that if the population genealogy at some time ¢ is
given by (m, x) and the m-sample genealogical process R (-) takes the value
a € &%, at time s, then the population genealogy at time ¢ + s has the same
distribution as f,(a, x).

Suppose y;, Y2, -+, ¥s_1 = (n,x) € E and denote (y,,...,y,_,) € E*~! by
y. Let F: E* - R (k > 2) be bounded and continuous. Define hy, h: E*~1 -
R, by

hn(y) = E[F(y, fu(RR(tx = 1), %))],
h(y) = E[F(y, fn(Rn(tk - tk—l)’x))]'
The Markov property and temporal coupling give
E[F(My(t,),..., My(t))] = E[hx(My(21), ..., My(24-1))]

and i
E[F(M(ty),..., M(8))] = E[R(M(t)),..., M(t;_1))].
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Now suppose y® = (y{™, y™ .. y™) >y =(y,...,¥,_,) and
throughout write y{™) = (n™, x™), y,_; = (n, x). Further suppose n € N,
x € A and N large enough to ensure that ™ = n. Define gy, g: %, » R by

gn(a) =F(y®, f(a, ™)),  g(a) =F(y, fu(a,x)).

The continuity of f,, F and the discrete topology on %, ensure that
gnlay) = g(a) whenever ap — a. The continuity theorem, Theorem 1 and
the boundness of g, imply that as N — o,

hN(y(N)) = E[gN(RnN(tk - tk—l))] - E[g(R"(tk - tk—l))] =h(y).

The distribution of (M(%,), ..., M(¢,)) is concentrated on N X A, so that the
induction hypothesis, the boundedness of & and another application of the
continuity theorem give

E[hy(My(t),- .., My(t,-1))] = E[h(M(ty), ..., M(t,))]

as N — o, as required.

Finally it is straightforward to check that My(0) = M(0). If ¢, = 0, then
Theorem 11 effectively gives the desired result for 2 = 2 and the above
induction argument still applies, to extend the result to arbitrary 2. O

6. Tightness. Recall that E ={0,1,2,...,} X A is a compact metric
space. We use the metric

r((n’x)’(m’y)) =dy(n,m) +dy(x,y),

where d, and d, are metrics on {0,1,...,%} and A, respectively. Without loss
of generality assume that for m < n, d,(n, m) is increasing in n for fixed m
and d,(n,«) is decreasing in n. For the sake of concreteness define d, by

d2((x1’x27~'-),(yl,yz,... ) 2: kTR

In order to show that My(+) is tight we will verify the conditions of Corollary
3.7.4 in Ethier and Kurtz (1986). First note that.-the compact containment
condition (a) is immediate. It remains to verify:

(b) For every n > 0 and T > 0, there exists a § > 0 such that

(17) limsup P(wo(My,8,T) =m) <m,
N

where _
w,(My,8,T) = infmax sup r(My(s), My(2))

) i s telty,t)
with {t,} ranging over all partitions of the form a =%, <t < -+ <¢,_; <
T < t, with

min (t; —t;_,) > 9.
l<i<n
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Henceforth treat n > 0 and T > 0 as fixed. Since for any a > §,
wy(My,8,T) < sup r(My(s), My(t)) +w,(My,5,T)

s,t€(0, @)

the required result (17) will follow if we can first find an « > 0 such that

(18) limsupP( sup r(My(s), My(t)) > n/2) <n/2
N 5,t€[0, a)
and then find a §(7, @) > 0 (with § < a), where
(19) limsup P(w,(My,8,T) =2 n/2) <n/2.
N

THEOREM 13. The family of processes {My(¢); ¢t > 0}, N =1,2,..., is tight
in Dg[0, ).

ProoF. Choose z < » such that d(«, z) < n/4. Recall that A,(¢) = D(¢)
for all ¢ > 0 and that A,(#) is nondecreasing. Then

limsupP( sup dl(AN(s),AN(t))>2)
N s,t€(0, a) 4

(20) < lim;,upP(dl(N, Ay(a)) > %)

< limsupP(Ay(a) < 2)
N

=P(D(a) <2).

Next, let S: A —» R be defined by S((x,, x,,...)) = max{x,, x,,...}. Note
that Xy(a) = X(a), P(X(a) € A) =1 for a > 0 and S is continuous on A
[Donnelly and Joyce (1989)]. Note also that S(X,(+)) is nondecreasing. Thus

limsupP( sup dz(XN(s),XN(t))>£)
N s,t€(0, ) 4

(21) < limsupP(S(XN(a)) > 2)
N 4

- P(S(X(a)) > Z—)
It follows from the structure of X(«) that
S(X(a)) =4 max(VD(a)I](ll))(a)7 (1- VD(a))W)’

where for each k, V, has a Beta distribution given by (2), Uj}, is the largest
order statistic of Uy, ..., U, defined at (1) and W is the first component of the
Poisson-Dirichlet distribution with parameter 6 [see, e.g., Kingman (1978)].

Note that D(a) = » as a — 0, and it is a straightforward exercise to show
that S(X(a)) = 0 as a — 0. Therefore for sufficiently small «, (18) follows
from (20) and (21).
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Let Mg be the restriction of the process My to [, ). Define S; € Dgla, ©)
by

S¢ = {step functions in Dy[a,%) whose interjump times are at least ¢}.

We will show that M§ lives on S? with high probablhty for sufficiently small
€. To see that this guarantees (19) we note that S¢ is relatively compact in
Dgla, =) [see Ethier and Kurtz (1986), Lemma 3.6.1 and Theorem 3.6.3].

Let 7¥7» +Nn . tNm be the interjump times for the process A% (-). Let
T Ty s T be the 1nterJump times for D™(-). Note that the interjump times
for D"(-) are independent and that 7 is exponential with parameter
n(n +60—1)/2and 7} =5 777"

Thus

P(Mg e S:) >P(MyeS;, Ay(a) <L)
L

EllP(Mz‘i‘z € SilAy(a) = i)P(Ay(a) =)

Z P(r}i> ¢ forall j < L)P(AN(a) =1i),

in view of the conditional independence property and the fact that My(-)
jumps only when A,(+) does.
Finally

liminfP( My € S%)
22 ¥

|\

ZL',P(T}>eforallj i)P(D(a) = i)
=1

(P(+£ > ¢))"P(D(a) < L).

We can make the right-hand side of the above inequality arbitrarily close to 1
by first choosing L sufficiently large and then choosing & small. Thus (19)
follows from (22). O

1\
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