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THE BEHAVIOR OF SUPERPROCESSES NEAR EXTINCTION

By RoGER TRIBE

University of Minnesota

In this paper we use a martingale problem characterization to study the
behavior of finite measure valued superprocesses with a variety of spatial
motions. In general the superprocess, when normalized to be a probability,
will converge to a point mass at its extinction time. For some spatial
motions we prove that there are times near extinction at which the closed
support of the process is concentrated near one point.

We obtain a Tanaka formula for the measure of a half space under a one
dimensional symmetric stable superprocess of index o and we show this
process fails to be a semimartingale if 1 <a < 2.

1. Introduction and statement of results. The measure valued pro-
cesses studied here arise as high density limits of branching particle systems
[see Watanabe (1968)]. We shall study them using their characterization as
solutions to a martingale problem [see Roelly-Coppoletta (1986)]. Let E be a
locally compact separable metric space and Mz(E) be the space of finite
measures on E with the topology of weak convergence. Let (A, D(A)) be the
generator of a conservative Feller process with values in E. This Feller process
governs the spatial motion of the particles in the approximating particle
system for a superprocess. Write (C(My(E)), (X,: t > 0), #%) for the space of
continuous M,(E) valued paths, the coordinate process and the canonical
completed right continuous filtration. We write m(f) for the integral of a
measurable function f against a measure m. For any m € M;(E) there is a
unique law Q™ on F= V,, %% such that the coordinate process satisfies
the martingale problem

X0=m,

(1) Xt(f)=m(f)+f0th(Af)d8 +M,(f) forall f€D(A),

M,(f) is a continuous %* martingale s.t. (M(f)); = fth( f?)ds.
0

The family (Q™: m € M (E)) is a strong Markov family.
Taking f = 1 in the martingale problem we see that the total mass process
X,(1) satisfies (on an enlarged probability space)

(2) X,(1) =m(1) + [[(X,(1)"" dB,

>

Received October 1989; revised December 1990. .
AMS 1980 subject classifications. 60G57, 60G44.
Key words and phrases. Superprocess, measure valued, Tanaka formula.

286

[ ,fl’;

sl

Institute of Mathematical Statistics is collaborating with JSTOR to digitize, preserve, and extend access to é,%y%'?’)
The Annals of Probability. STOR ®

WWw.jstor.org



SUPERPROCESSES 287

for some Brownian motion (B,: ¢ > 0). It follows that the extinction time
¢ = inf{t > 0: X,(1) = 0} is almost surely finite and that X,(1) = 0 for ¢ > ¢
[see Ikeda and Watanabe (1981), page 221]. The following result shows that as
t — £, what mass remains is concentrated near a single point.

THEOREM 1. For m € My, there exists an E valued random variable F such
that, with probability 1,

(3) X,/X,(1) > 8p ast—§,

where the convergence is weak convergence of measures. The law of F given the
history of the total mass process #= o(X,(1): t > 0) satisfies

(4) E™(f(F)|#) = l/m(l)fETffdm.

Equation (4) implies that the law of F can be constructed as follows.
Position a particle in E at random according to the measure m(-)/m(1). Let
the particle move according to the underlying spatial motion but indepen-
dently of the process. Stop the particle at time &. The final position of the
particle will have law F.

Although near extinction the mass is concentrated near a single point, the
closed support of the measure S(X,) will typically be spread throughout space.
The closed support of a superprocess X, at a fixed time has been studied in
Perkins (1990) and Evans and Perkins (1989). If the spatial motion is a Lévy
process on R? with Lévy measure u, then in Evans and Perkins (1989),
Theorem 5.1, it is shown that for any ¢ > 0,

U S(w**+X,) cS(X,), Pm™as,
k=1

where p** is the kth fold convolution of u with itself. For a symmetric stable
superprocess this implies

(5) S(X,)=@orR?  Pmas.Vt>O0.

Similar results for certain Feller processes are obtained. Let C,, be the space of
continuous functions on E vanishing at infinity. Consider a Markov jump
process with bounded generator A so that

(6) Af(x) =p fE w(x,dy)(f(y) - f(x))

with p > 0 and u a probability kernel such that x — [u(x, dy) f(y) € C,(E)
for all f e Cy(E). Then for ¢ > 0,

(7 kCJIS(f"' th(dxl)N(x1’dx2) cw(x, )| €8(X,), P™-a.s.

We shall show that (5) and (7) are far from being sample path properties and
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that near the time of death there will be exceptional times at which the
support is concentrated arbitrarily close to the death point.

We start by examining the case where the spatial motion is a Markov jump
process as described above. Note that Af is well defined by (6) for any bounded
measurable f. A monotone class argument shows that for any bounded
measurable f the process X,(f) is continuous and satisfies the semimartin-
gale decomposition given by the martingale problem (1).

THEOREM 2. Let X, be a superprocess over a spatial motion with bounded
generator of the form (6). For all ¢ > 0, with probability 1, there exist ¢, T ¢
such that

S(X,) CB(F,¢).

In Section 2 we give the proofs of Theorems 1 and 2 and some examples.
The proofs are almost entirely derived from the martingale problem (1).

The behavior described in Theorem 2 holds true for super Brownian mo-
tion. This follows since the radius of the support for super Brownian motion
shrinks to zero at death [see Liu and Mueller (1989)]. The restriction in
Theorem 2 to superprocesses whose spatial motion has a bounded generator
allows us to use the semimartingale decomposition for the measure of a Borel
set X,(C) given by the martingale problem. In general the function I;(x) will
not be in the domain D(A). Using the decompositions obtained in Section 3 we
are able to extend the result in Theorem 2.

COROLLARY 3. If X, is a one dimensional symmetric stable superprocess of
index a < %, then the conclusions of Theorem 2 hold.

In Section 3 we look for decompositions for processes X,(f), where f is not
in the domain D(A). We specialize to superprocesses over symmetric stable
motions on R with generators A% 0 < a < 2. We obtain decompositions for
processes X,(f), where f are certain functions of bounded variation on R. The
basis is the following Tanaka-like formula. Let H, = {x: x > a}.

THEOREM 4. Let m € My and X, be a symmetric stable superprocess of
index a started at m. Then

X,(H,) =m(H,) +V/(a) + M,(H,),

where M(H,) is a continuous L* martingale. satisfying (M (H,)): =
[¢X (H,)ds and V(a) is jointly continuous on (0,%) X R.

If 0 <a <1 and m has a bounded density, then X(H,) is a semimartin-
gale and V(a) has integrable variation on [0, T] for any T > 0.

If 1 <a <2 and m has a bounded density, then V(a) has integrable o(a)
variation on [0,T), where ¢(a) = 2a/(a + 1). If, in addition, the density
u(0, x) is uniformly Holder continuous and satisfies u(0,a) > 0, then, with
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probability 1, V(a) has strictly positive ¢(a) variation on [0,T] and hence
X,(H,) fails to be a semimartingale.

CoROLLARY 5. Let f have finite total variation and be constant outside a
compact interval. Then there is a decomposition

(8) X,(f)=m(f)+ fR Vi(a) df (a) + M/(f),

where M) is a continuous martingale satisfying (M(f)): = [(X(f?)ds
and all terms are continuous. If we assume that m has a bounded density, then
for 0 <a <1, X(f) is a semimartingale and for 1 < a < 2, X,(f) is the sum
of a continuous L? martingale and a process of integrable ¢(a) variation on
[0,k] for any k > 0.

If m also has compact support and a = 2, then for any function f of locally
bounded variation the decomposition (8) holds where M(f) is a local martin-
gale and [V a) df(a) has locally finite & variation.

2. Extinction behavior. The proofs of Theorems 1 and 2 use a time
change and renormalization first used by Konno and Shiga. Define

C, = [1/X,(1) ds.
0

In Konno and Shiga (1988), Theorem 2.1, it is shown that, with probability 1,
C, is a homeomorphism between [0, £) and [0, ©). Let D,: [0,%) — [0, £) be the
continuous strictly increasing inverse to C,. Shiga (1988) uses D, as a time
change together with a renormalization to convert a class of measure valued
processes into a class of probability valued processes. The superprocesses
studied here do not seem to fall directly into his context. However, the time
change will still be useful. By stretching out the interval [0, £) into [0, ®) we
can use the behavior at infinity of the time changed process to give informa-
tion about X, before death.
For ¢ € [0, ) define

~

t = XD,:

h<

Y, = Y,/Y,(1),
&, = Fp,

Note that {Y,: ¢ > 0} is a probability valued process. We derive the martin-
gale problem for Y,. For f € D(A),

Tf) =m(f) + ["X(AF)ds + Mp(f)

=m(f)+ [1(AN)Y,(1)ds + N(f),
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where, since D, is a continuous time change, N,(f) is a continuous %, local
martingale satisfying

M= [ "X, (£2) ds

= [V ds.

In particular,
(1) = m(1) + Ny(1),

N = [(T(D) ds,

~ ~ t ~ ~

(N(F), N = [Y(£)Y,(1) ds.

Applying Itd’s formula and noting that Y,(1) > 0 for all ¢ > 0 we have
t o~
©) Y(f) = m(f) + [ Y.(Af)ds + N(f),
where N,(f) is a continuous ¢, local martingale satisfying
t 2 2

(N(Y = [Y(£?) = (%)) ds.
The martingale problem for Y, is close to that for the probability valued
diffusion known as the Fleming—Viot process [where the drift term in (9)
would be replaced by [Y,(Af) ds]. In Konno and Shiga (1988) this ‘‘connection”
between the martingale problems is used to derive the existence of a continu-

ous density for the Fleming—-Viot process in dimension 1 from that for super
Brownian motion.

Proor oF THEOREM 1. First assume E is compact. Take f € D(A):

< IAfIl /0 ‘Y.(1) ds

[¥.(Af) ds
0

= I Afll /0 ‘X,,(1) ds

= [|AfIID, < llAf €.
So
N(f) =z —m(f) - lAfII.

For any continuous local martingale (M,; t > 0), with probability 1, either
M, converges to a finite limit or lim sup M, = —liminf M, = = [see Rogers and
Williams (1987), Corollary 4.34.13]. So N,(f) converges as ¢ — » to a finite
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limit. Also

<|lAfl(D, - D,) > 0 ass,t— .

[T.ar)dr

So [Y.(Af)ds converges as t — . Thus Y, f) converges a.s. to a finite limit
which we call Y.(f). ‘

Since C(E) is separable and D(A) is dense in C(E) we may pick {¢,} € D(A)
dense in C(E). Off a null set N we have Y/(¢,) - Y(¢,), V n. Fix w & N.
Then by approximation Y,( f) converges to a finite limit Y(f) for all f € C(E).
Also f— Y(f) is a positive linear functional with Y (1) = 1 and thus arises
from a probability which we call Y,. For f € D(A),

NX(F) = [%(F%) = (%(£))" ds

is a continuous local martingale. Since N,(f), Y,(f?),Y.(f) all converge to
finite limits this local martingale must converge, requiring Y.(f2) = (Y(f))?
a.s. So the probability Y, is concentrated on a level set of f. But E is a metric
space so that C(E) and hence {¢,} separate points and this forces Y, = 85 a.s.
for some F.

We have been unable to deduce the law of F directly from the martingale
problem but it comes immediately from the particle picture. One can approxi-
mate the superprocess by a system of branching diffusions [see Dawson, Iscoe
and Perkins (1989)]. Let X;* be such an approximation where the lifetimes of
the particles are of length 1/n. The initial values X = m, are a convergent
sequence of finite measures. It follows from the independence of the spatial
motion and the branching that

E(X"(lo(Xr(1):s > 0)) = X[‘(l)m"(l)_1 thf(x) dm™(x).

This property is preserved for the limiting superprocess and (4) may be
deduced.

When E is only locally compact we can extend the semigroup T, to E U {e},
the one point compactification of E, by taking T,(c, {}) = 1, T\(x, {=}) = 0 for
all x € E, ¢t > 0. Working with this new Feller process on E U {x}, the above
argument gives the existence of a death point F taking values in E U {»} and
satisfying (3) and (4). Since P(¢ < «) = 1, the characterization of the law of F
(4) ensures P(Fe E)=1. O

ExampLE. Let X, be a super Poisson process. Define for k € Z_,
T, = inf(¢t > 0: X,({0,...,k — 1}) = 0).
In Perkins (1990), Corollary 3: 1, it is shown that T, 1 ¢ and
S,={k,k+1,...} forLebesguea.a.tin[T,,T,,,), P™-a.s.
Theorem 1 shows that only finitely many\ of the T’s are distinct. Indeed, with
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probability 1,
0=TOST1S"'STFSTF+1=TF+2="'=§,

Proor oF THEOREM 2. Take A C E, Borel measurable, and let f=I(x €
A). We shall use the time changed process Y,(f). Let B, be an independent
Brownian motion defined if necessary on an extension of the original probabil-
ity space. Define

B, = [[(%(N(A = Y(£)) Y f) # (0,1}) dN(f)

+ ['(Y,(f)  {0,1}) dB,,
0
so that B, is a Brownian motion and

Y(F)=m(f) + [T(4f) ds + [(Y()(1-Y(f))""*dB

If Y,(f) =0or 1, then Y, is supported on A or A, respectively. So we look for
times at which Y,(f)(1 — Y,(f)) becomes zero. Fix N € N and define Z,(f) =
Yo ()X — Yy, (f). By Itd’s formula we have

Z(f) = 2o(f) + [[(1 = 2Yr s (D) Vo (A = ¥ao( 1)) dBy,

+ [0 = 2¥y (/) o(Af) ds = [Yaoo (1 = Yyoo(£)) ds

1/2

=Zo(f)+/:(ﬁ Z(f))ds+f Z(f)(1-4Z,(f)))

where

B, = (1 — 2Yy,,(£))Y.(Af),
N+t =
B, = [ sen(1 - 2Y,(f))dB,,

so that B, is another Brownian motion. Since the function (x(1 — 4x))'/?
satisfies the Yamada-Watanabe criterion [see Rogers and Williams (1987),
Theorem 5.40.1], we have a unique solution on the same probability space to
the stochastic differential equation

(10) X, =Zy(f) + /‘((1/8) ~ X,)ds + j‘|Xs(1 - 4X,)/? dB,.

We shall compare the paths of-Z,( f) with those of the solution X, to (10). We
shall show that 0 is a recurrent point for X, and a comparison theorem will
force Z,(f) to vanish infinitely often. Define

Ty = inf(t > 0: Yy, (1) > (314f1)),
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which is a &y, stopping time. For s < T,
|:Bs| = |(1 - 2YN-!—s( f))YN+s(Af)' = %

So by comparison theorem for one dimensional diffusions [see Rogers and
Williams (1987), Theorem 5.43.1] we have

Z(f) <X, fort <Ty, P™as.

(We have applied the comparison theorem up to a stopping time.) X, takes
values in [0, ;1. Indeed, replacing the drift in (10) by (3 — X,)* [or (+ — X,)7],
we obtain an equation with solution X, = ; (or X, = 0). The comparison
theorem then ensures X, € [0, 1] a.s. The speed measure m(dx) and scale
function p(x) for (10) can be calculated as

p(x) = (3) f;(y(l —4y)) V*dy, m(dx) = 4(x(1 - 4x)) "

Letting T = inf(¢ > 0: X, € {0, 1)) we may deduce from the speed and scale
[see Karatzas and Shreve (1988), Propositions 5.22 and 5.32] that for x € (0, ),
P(T < ©)=1and P(X; =0) = (p(3) — p(x))/(p(%) — p(0)). A further com-
parison argument shows that the points {0, 1} are not traps and hence that X,
is a recurrent process and will hit 0 at arbitrarily large times. Thus on the set
{Ty = «}, Z,(f) must hit zero infinitely often as ¢t — ». Since Y,(1) = 0 as
s » o, P(Ty, = ©)11 as N — =, So, with probability 1,

(11) there exist ¢, T so that Y, (f) = Oor 1.

Given ¢ > 0, let (A,,) be a countable collection of open balls of radius £/2 that
cover E. Fix w so that (11) holds simultaneously for all f,, = I(x € A,,). Find
m(w) so that F(w) € A,, - Since Y, > &, then Y,(A4,, ) — 1. So there exist
t,To sothat Y, (I(x ¢ A,, )) = 0 and

S(XDt,,) =8(Y,) €B(F,¢) foralln. O

ExampLE. We examine a simple nontrivial superprocess. Let £ = Z and
the underlying spatial motion be symmetric random walk leaving each state at
rate 1. Then if we write X,(j) for X,({;}), the martingale problem reduces to a
system of linked stochastic differential equations. For j € Z,

X(J) = Xo(J) + [(B)X G+ 1) + X, = 1)

(12)
—X,(j)ds + fot(xs(j))‘/2 dBj,

where { B/ }; are independent Brownian motions. So we consider the superpro-
cess as a diffusion on R?. As ¢ — £ the process (X,(;)); traces a continuous
path leading to the origin. Theorem 1 implies that this path will approach the
origin tangentially to one of the axes. Theorem 2 implies that it will touch this
axis at an infinite number of points that.accumulate at the origin. Thus X,(;),
J # F, will simultaneously vanish infinitely often before ¢.
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3. Decompositions. The martingale problem (1) gives a decomposition
as a continuous semimartingale for each process X,(f), where f is in the
domain of the generator A of the spatial motion. We consider the problem of
finding similar decompositions for more general measurable f. Let & be the
space of bounded measurable functions on E. Perkins has shown (private
communication) that if the semigroup of the underlying process satisfies a
continuity condition, for instance,

3C, B1,B, > O0suchthatforall0 <6 <v, f€b&,

(13)
1T, sf— T, fllo < Cll fllud®i(v=P2 v 1),

then for each f € b&, with probability 1,
(14) t = X,( f) is continuous on (0, x).

We examine the case where X, is a one dimensional symmetric stable
superprocess. The following lemma shows that hypothesis (13) is satisfied with
B; = By = 1. This and other technical lemmas needed for this section are
proved in Section 4.

LEmMA 6. Let T, = T be the semigroup of a one dimensional symmetric
stable process with index a. Then for v,8 > 0 with § < v,
(15) 0T, sf— T, fllo < (2/a)ll flled/v.

We will need the existence of a density for X, when 1 < a < 2. We state the
necessary results as a theorem.

THEOREM 7. Let m € My (R) have a continuous density u(x). Let a € (1,2]
and X, be a one dimensional symmetric a-stable superprocess starting at m
defined on a probability space (Q, &, P). Then X, has a density X(¢, x) which
is continuous on [0, ) X R. There is a space-time white noise W, , defined on
an enlargement of (Q, &, P) such that, for all f € C*(R) of compact support,

(16) X(f) =m(f) + [X(A) ds+ [ [ X(s,2) f(x) AW, ., V120,
For fixed x € R, ¢t > 0,
(17) X(t,2) = Tu(x) + [ [ oy = 2)VX(5,7) dW,,.

If u(x) is bounded and uniformly Holder continuous, then there exist y > 0
and C depending only on m and a such that

(18) E((X(t,x) — X(s,%))") < C(t —s)" forallt,s> 0.
The existence of a jointly continuous density satisfying (16) is proved for the

Brownian case in Reimers (1989) and for all 0 < @ < 2 in Konno and Shiga
(1988), Theorem 1.4. Equation (17) is established during the proof in Konno
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and Shiga [although they consider more general initial measures and thus
work on [¢,, ) for ¢, > 0, it is easy to extend (17) to [0, ) for initial measures
that have a continuous density]. The proof uses moment estimates of the type
in (18) but since we cannot point to exactly what we need we give a proof of
(18) in Section 4. )

The proof of Theorem 4 will use the following well known Green’s function
representation for X,(¢), ¢ € b&:

(19) X(4) =m(T9) + [ [ T, ¢(x) dZ,,.,

where T, is the semigroup of the underlying motion and Z, , is an orthogonal
martingale measure satisfying '

(20) <f(ffEf(s, x) dzs,x>t = ['X,(¥(s,)) ds

for any measurable f(s,x) such that E([{X.(f*(s,"))ds) < », V ¢. For the
equivalence of the Green’s function representation and the martingale prob-
lem (1), see Meleard and Roelly-Coppoletta (1988), Theorem I-7.

Proor oF THEOREM 4. From the Green’s function representation we have

X(H,) =m(T,H,) + [ [T, H,dZ,,
t
- m(H,) + [fO[RH dZs,x]

+[m((Tt -1)H,) + f(:fR(Tt_s -1)H,dZ, ,

= m(Ha) + Mt(Ha) + ‘/t(a)

The second term in the decomposition is a martingale satisfying ( M(H,)); =
(X (H,)ds.

LEMMA 8. Fix k>0, p>6 an even integer. Choose 1/k <s <t <
k, —k<a<b<ksuchthatt —s<1,b—a <1 Then

E™((M/(H,) - My(H,))") < C, 4 u((t = 8)"* + (b — a)*/**?).

The lemma is proved in Section 4. Using Kolmogorov’s continuity criterion
we may and do pick a jointly continuous version of M,(H,) on (0,) X R.

As explained at the beginning of this section, the path ¢ — X,(H,)
is+continuous for each a. For fixed a, and % > 0 the functions G,(t) =
X,((ay — &,a, + ¢)) are continuous on [1/k, k] and decrease monotonically to
the function X,({a}). But it follows from the existence of a jointly continuous
density for 1 <a <2 and from the characterization of X, as a bounded
multiple of a Hausdorff measure function for 0 < a < 1 [see Perkins (1988)]
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that
(21) X,({a}) =0 forall¢> 0,a € Ralmost surely.
By Dini’s theorem G.(¢) — 0 as ¢ — 0 uniformly over ¢ € [1/k, k]. Together
these facts imply that X,(H,) is jointly continuous on (0, ®) X R. The continu-
ity of X,(H,) and M,(H,) now imply that of V,(a).

We now consider the variation of the process ¢ — V,(a) for fixed a. Without
loss of generality we consider a = 0 and write H for H,. Now

m((T, ~ I)H) = m((T, - I)(H)I(x > 0)) - m((I - T,)(H) (= < 0))

is the difference of two decreasing processes and so of bounded variation. It
remains to check the variation of

t oo)
(22) W= [ (Ts-DHAZ, ..
Using the isometry for Z, . [equation (20)] we have
(23) E(W2) = [‘mT,(((T,—, - ) H)) ds < m(1)t.
0

An upper bound for the expected value of the size of an increment of W, can be
obtained using this isometry. We delay the calculations and state the result as
a lemma.

LemMmA 9. If m has a bounded density, then there is a constant C depend-
ing only on T, a, m such that for 0 <s <t <T, |t —s| <s,

(t _ s)(a+1)/¢x, lfa >1,

E((W,-W)*) <cC
(W, ) (t —s)% if o < 1.
Since we are interested in a continuous version of W,, it is enough to check
the variation over one sequence of decreasing nested partitions. Let A = T'/n
and s; = jA. If a > 1, then using (23) and Lemma 9,

n o " 2
(w0 < £ olon, )

=1
<CT.

So W, and hence V,(0) has integrable ¢(a) variation on [0,T]. Similarly if
a < 1, then V,(0) has integrable variation on [0, T'].

We now assume that (0, x) is bounded, uniformly Hélder continuous and
satisfies #(0,0) > 0. If 1 <« < 2, then X, has a jointly continuous density
u(t, x) and ’

peore + E(|Ws 1|<l>(a))

[[f(s,2) 2, = ['[ £(5,2)u(s,%) aW,,.,

where W, , is a space-time white noise (see Theorem 7).
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We split an increment of W, into three parts as follows. Fix n and let
t,=j/n:
J

W, —W, = ff e = T, HAZ, ,
+[tj+1fR(Ttm_s - I)(H)y/u(t;, ) dW, ,
[ (T~ DD (VuCor3) - \/u(tj,x))dW

={;+¢€ +n;.

We wish to show that W, has strictly positive ¢(a) variation. We will first
show that |n J|¢'(°‘) is small and does not contribute to the variation. Then
noting that (; is Zj measurable, we will show that conditional on Zj, €;
has a mean zero normal distribution with variance greater than
cr X, (B, n~1/¢)). Since X, has a density u(¢, x) bounded away from zero
at £ = ¥ = 0, this variance will be of the order of n~(*1D/% and the increment
I; + € 1% will be of the order of n~1. In these calculations C will be a
constant whose value is unimportant and may change from line to line:

E(in, ") (f’“f ime = 1D (Vu(s, %) = yfu(t;, ) ) dsdx)

< ftj“/;_&(thﬂ .= (H)[E(u(s,x) — u(tj,x))zll/zdsdx

<Cn~ ‘Yf!+1[ s — 1 (H)dsdx

where y > 0 from (18), which uses the Hélder continuity of (0, x). Using the
bound (T, — I)H(x) < Crlx|™* A 1 [see (37)], we have

[ R Byaee = 1) dsds < Cn° ([ e 7 e )

< Cn—(tx+1)/¢x'

So

[nT]-1 [nT]-1

. ()2
BT i } > (E(n2)

Jj=0 Jj=0
24 [nT]1-1
(24) I SR

j=0

o= Cn_‘ya/(a+1)
" Conditional on 9’ €; has a normal mean zero distribution with variance

Liv
th([tj’ (T, -~ I)'Hds|.
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Let Y, be a symmetric a-stable process under P,:
(T, —I)H(x)| = Py(Y; = |x|/r'/*)
> Py(Y; = 2V)I(lxl < (2r)"*).
So

[T, -~ 1) Hds > (”’)1 (Po(Yy = 2/2))X(xl < (n) /") ds
t I 2n)" 1

J
= Con I(lx| <n~ V),
where C, = Py(Y; > 2V/%)2/2.
Let N have a normal mean zero variance one distribution under P,:
Q(|Ej|¢(a) > Kn—llzj) > PO(N2 > Cz—1K2/¢(¢x)n(1—2¢(a)-1)/th(B(O’ n—1/-¢x)))
> ($)I[ X, (B(0,n~ /%)) = C7 W/ *@n =14

using Po(N? = 1) > 5. Since {; is &, -measurable,

s Q(le; + 1" = knUF ) = ()1 X,(B(0,n"/%))
) = Gy Hn 1],

The idea is that since X,(dx) has a continuous density the event on the
right-hand side of (25) should occur frequently (at least for small ) and at
each of these times there is a & chance that e ; + ;| will contribute to the

¢(a) variation.
The density u(, x) is jointly continuous and (0, 0) > 0 so that given & > 0
we may find ny > 2/T, k, > 0,0 <t, < T — (2/ny), so that for all n > n,,

Q(X,(B(0,n~%)) < C3'k3/*@n~1/* forsome0 <t <t,) <e.

Then for n > n,,

[nT]-1
Q( Y e + 417 > koto/20
Jj=0

[nT]-1
> Q( Y I(Iej + {j|¢(a) > Ko/n) > nt0/20)

Jj=0

[nT]-1
> Q( Y I(X,(B(0,n %)) > Cy W/ #@n-1/1) > nto)
Jj=0

[nT]-1 R
- Q( Y (X, (B0,n"%) > C; W/ 4 @On 1) > nt,
j=0

Y I(le; + 4% = ko/n) < nto/20

[nT]1-1 )
j=0

> (1 — &) — Po(B([nt,), 1/10) < nt,/20),
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where B has a binomial distribution under P,. This last estimate follows from
Lemma 10, taking

A; = {X,(B(0,n7/%)) 2 C7 3/ *@n-V/e),
B, = {le; + {;I*® = ko/n}.

LEMMA 10.  On a filtered probability space (0, (F);_; 5 ,P),letA, € &,
B,€ ¥, for n=1,... be events satisfying P(B;|%) = qI(A;) for some
q€[0,1]. Then for 1 <n <N,0<ea <n,

N N
P( YI,=n, Y I < a) < P,(B(n,q) <a)

i=1 i=1
where B(n, q) has a binomial distribution under P, with parameters n, q.

So for large n, by the law of large numbers,

[nT]-1
Q( Y ole + 1P > K0t0/20) >1 - 2.
Jj=0

But from (24) for large n,

[nT]-1
Ql L Inl*® > koto/40| <.

j=0
Now Minkowski’s inequality and Fatou’s lemma give
[nT]-1
Q ‘Zo W, ., — W,jl‘b(") > koto/80 infinitely often| > 1 — 3.
j=
Since ¢ was arbitrary, it follows that the ¢(a) variation of W, over [0,T] is
strictly positive. O

ReMARKs. (i) If we remove the restriction that m € M(R) has a bounded
density, the decomposition remains valid and we can guarantee V, has finite
variation when « € (0, 1) [or ¢(a) variation when a € (1, 2)] over intervals
[S, T'] bounded away from the origin. The only change required in the proof is
in Lemma 9, where the bound remains true provided 0 < S <s <¢ < T and
where the constant now depends on S, T, a, m.

(i) If 1 < a < 2, then the instantaneous propagation of the support [see (5)]
implies that V, will have strictly positive ¢(a) variation on [0,7T] for any
T>0.If «a=2and m # 0, it follows from the absolute continuity results of
Evans and Perkins [(1989)] that there is positive "probability that for some
s > 0 the measure X, will have a uniformly Hélder continuous bounded
density that is strictly positive-at some point on the boundary of the half space.
Thus for any X, # 0 the process X,(H,) fails to be a semimartingale.

(iii) By projecting the superprocess onto a line orthogonal to a given half
space, we obtain a decomposition for the measure of a half space under a d
dimensional symmetric stable superprocess.
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(iv) Sugitani (1989) shows that for super Brownian motion in one dimension
the local time process Y(¢, x) = [{X(s, x) ds is differentiable in x and that if
m is atomless, the derivative D,Y(¢, x) is jointly continuous in ¢, x almost
surely. We can easily identify the drift term V,(a) in the decomposition of
X/(H,) as (3) D,Y(t, a).

Take m € Mp(R) atomless and of compact support. Define f,(x) =
((x — @) vV 0)2.. We may find f, € D(A) so that f, 1 f,(x) and Af, > I(x > a)
bounded pointwise. We have enough domination [e.g., E(sup, ., X,(f2)) < ©)]
to take limits in the martingale problem and obtain

X,(f.) =m(f.) + [X,(W(x > a))ds + M(f,)
(26) ",
=m(f,) + [ Y(t,x)dx + M(f,).

We wish to differentiate (26) twice with respect to @ and again we have enough
domination. Thus for a fixed ¢,
(27) 2X,((x—a) VO) =2m((x —a) VO) + Y(¢,a) + M,(2(x —a) VO).
Now continuity of both sides in # gives (27) for all ¢. Repeating the argument
and using the continuity of D,Y(%, x) gives

Xt( Ha) = m(Ha) + (%) DxY(t: a) + Mt(Ha)‘

ProoF oF COROLLARY 5. Let f be a function of finite total variation which
is constant outside a compact interval. By adding a constant we may assume
that lim, , _,, f(x) = 0. Letting f(x) = lim, , f(y) we have that f is right
continuous and f(x) = f(x) except at countably many points. Using (21) we
see that X,(f) = X,(f) and M f) = M,f) for all ¢ > 0 since

(M(F)=M(f)) = fOth((f—f)z) ds=0, Vt>0.

Since V,(a) is continuous it will be enough to obtain the decomposition for
right continuous f. Hence we assume f is right continuous so that f(x) =
[ J(x > @) df(a). This integral is over a compact region by assumption, so
using Fubini’s theorem and the continuity of V/(a) we may integrate the
decomposition for X,(I(x > a)) to obtain

X,(f) =m(f) + [V(a)df(a) + [M(H,) df(a).
Also (M,(H,)df(a) is a continuous version of
[df(a) [ [1(x=a)dz,. = [ [ f(x)dZ,.,

using a stochastic Fubini theorem [see Walsh (1986), Theorem 2.6]. So
MJf) = [M(H,)df(a) is a continuous L? martingale such that (M(f)), =
[EX(f?) ds and the decomposition is complete. For p > 1,

B(| V@) df(@) = [Vi(a) d(a) p)xs C,[E(Vi(a) - Vi(a)F)df(a).
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So noting that the estimate obtained in Theorem 4 for E(|V(a) — V(a)|?) is
uniform in e for s, ¢ € [0, %], the desired results on the variation of [V(a)df(a)
follow.

Suppose now that @ = 2 and the support of X, is contained in B(0, R). The
finite speed of the support S, of super Brownian motion [see Dawson, Iscoe
and Perkins (1989), Theorem 1.1] implies that setting T, = inf{t > 0: S, ¢
B(0,r)}, then Sy C B(O r) for r> R and the stopping times T. satlsfy
P(T, 1) = 1. For a function f of locally bounded variation define

f(r), forx >r,
f.=1{f(x), forxe (-r,r),
f(-r), forx< —r.

Then for r > R,
XtAT,(f) = t/\T,( fr)

=m(f,) + [Viag(a) df,(a) + M, 1 (f,)

=m(f) + [Vinz(a) df(a) + M, 1( f,).

Define M(f) = M/(f,) for t <T,. Then M,f) is well defined since M, =
M(f,) — ML, ,) is a continuous martingale which satisfies (M ), =
JEX, ((fr1 f. )2)ds =0for t<T, <T,. Thus M(f) is a local martingale
with (M(f)), X (fDds = jOX (fz)ds for t < T,. Since (V(a)df.(a) has
finite § variation on compacts, then so does [V/(a) df(a) |

Before proving Corollary 3 we shall need a preliminary lemma.

LEmMA 11. Let X, be a one dimensional symmetric stable superprocess of
index a started at m € Mp(R). Let f(x) = |x| P for 0 <B < 1. Then there
exists a continuous version X,(f) of X f) on (0, »).

REMARK. For 1 < a < 2 it follows from the existence of a jointly continu-
ous density for X, that the process ¢t = X,(Jx| ”) is continuous on (0, %) for
any B <1. For 0 <a <1 it follows from the characterization of X, as a
bounded density times a deterministic measure function [see Perkins (1988)]
that ¢ — X,(lx| "?) is continuous on (O ®) for any B < a. The content of the
lemma is thus in the range 0 < @ < 5. The proof, which simply checks the
Kolmogorov continuity criterion, is given in Section 4.

» PROOF OF COROLLARY 3. Fix an open ball B = (a, b) of finite radius in R.
From Theorem 4 and the following remark we have the decomposition

X,(B) = Xo(B) +V, + M,(B),
where (M(B)), = [(X,(B)ds and V, = V(a) — V(b) has finite variation on
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[S,T]for any 0 < S < T < x. Define
lim (V,,., —V,)/h, if this limit exists,
v, = h—>0+
0, otherwise.

We will find an upper bound on |v,|. Note that for any § > 0, T,I4(x) is a C*
function vamshmg at infinity. Let g(x) = sup;. ,IAT;I B(x)l Scaling argu-
ments as in the proof of Lemma 6 show there exists C such that g(x) <
8o(x)=C(x —al ™ + |x — b|™*). For fixed 0 < s < ¢,

|Xt(TsIB) - Xs(TaIB) - Mt(TsIB) + Ms(TsIB)l

~|[X,(AT,1;) dr
s

t t ~
< [ X (g0) dr = [X,(,) dr,

where X,(g,) is the continuous version of X,(g,) guaranteed by Lemma 11.
Letting 6 ] 0,

IV; = Vil = IX,(B) — X,(B) — M(B) + M(B)|
t ~
= f Xr(g()) dr.
X,(go)js locally bounded by Lemma 11 and so V, is absolutely continuous and

lv| < X(g,) for a.a. r @™-a.s. Now we follow the proof of Theorem 2. We set
Y(B) = X,(B)/Xp(1) and Z, = Yy, (BX1 — Yy (B)). Then Z, satisfies

(28)

Z,=Zy+ [((1 - 2Yy, (B))up,,, — Z)ds + [(2,(1 - 42,))"* aB,.
0 0
Now the comparison argument of Theorem 2 will work provided we can show
(29) P(lvp,,,| <1/8foraa.s) > 1 as N - w.

But since ¢ > D, is a C' diffeomorphism, we have lvp | < X, (go) for aa. r
Q™-a.s. By contmulty X, (g9) > 0 as r — « and (29) follows. O

4. Proof of lemmas. This section contains the proof of several technical
lemmas needed in Sections 2 and 3. Throughout C will denote a constant
whose exact value is unimportant and may change from line to line.

ProoF OF LEMMA 6. We use the scaling relation for the one dimensional

symmetric stable density p,(x) = ¢~/ *p (¢~1/%) and the facts that p,(x) is
smooth, unimodal and satisfies p,(x) < C(l A ] 71T

ITyssf = Tflle < Uflef Ipya(2) = pu(2)l e

< 2||fllmj;wfv+8|(d/dt)p,(x)|dtdx.
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From the scaling relation, for x > 0,
I(d/dt)p,(x)
= (= 1/a)(t= 4+ /0y (¢7 %) + 1702/ x(d fdx) py(t™V/ %) )

< (1/at)(p(x) — x(d/dx)p,(x))
since (d/dx)p,(x) < 0. Thus

I1Tyesf = Tl < 2/ Flle [ (1/8) [ (pi(%) ~ 2(d/dx) pi(x)) dx it
= (2/a)lIfllo "1/t
x((1/2) + I%iinw(—Rp,(R) + fORp,(x)dx)) dt

= /@)l flk[""(1/2) dt
< (2/a)lfll.o/v. a

PROOF OF EQUATION (18). From (17),
X(t,x) — X(s,x2) = (T, — T,)u(x)

+fosf(pt_r(x = y) =P (2 = y)WWX(r,y) W, ,
[ oz = 9)VE(r,7) AW,

Find C, B € (0,1] such that |u(x) — u(y)| < Clx — y|® for all x,y € R. Then
(T, — T)ul <I(T,_, — I)ul
= CEo(IYt~s|ﬂ)
<C(t-s)".
The stable density satisfies
pi(x) < Cxl 74" A 1),

(30) pi() = t-Vpy(t- Vo),

So
E(( [ [ Pz = 9)VE(r,y) dW,,y) ) = ['m(T.(pE0(x = ) dr
< llul [0 e I T p2(x) dxdr
< Cfo pVedr

- C(t _ s)(a—l)/a'



304 R. TRIBE

Similarly, if (¢ — s)/2 < s,

2
E(( [ on] (Per =P VX ) dWr,y) ) < C(t — ) V2

and if s < (¢ — s)'/2,

E(('/:fj;(pt—r _ps—r)m dWr,y) ) < C(t _ s)(a—l)/za’

Finally |lp, — p,ll < C(¢ — s)s™@* D/ for 0 < s < ¢t soif (t — s)*/% < s,

E((fos“t_”l/zf_ww(pt_r(x —¥) = Ps_r(x — y))mdwf”) )

S
< Cm(1) (t — 8)2r~2etb/a gy
(t—s)l/2

< C(t _ S)(3/2)—(1/a)' O

ProoOF oF LEMMA 8.
E((M/(H,) - M,(H,))")
< 20 B((M(H,) - M(H,))" + (M(H,) — M,(H,))")

< CPE((f:X,(Ha) dr)p/z + (fotx,([a, b)) dr)p/2)

(31)
< Cp((t - S)ID/2 + (b - a)ap/2(1+a)) sup E(Xf/Q(l))
relo, k]
‘ p/2
’ Cp'/;/\(b—a)"/(“a)E(Xr ([a,d)))dr,

where we used Burkholder’s inequality in the second step. An exact formula
for the expectations in the right-hand side of (31) is known [see Dynkin (1988)]
but the following upper bound can be derived from the particle picture as in
Perkins (1988), Proposition 2.6(a)i). For ¢: R? — [0, ] Borel measurable,
bE N, ) :

(32)  E™(XP($)) <p”(G($,t) + E™(X()))" 'E™(X(4)),

where G(¢,t) = [;sup, T,¢(y)ds. Thus E™(XP/*(1) <C, ,, , V¥ r €0, k]
Also we calculate using (30) that .

(b - a)7 if a > 1,
33)  G(I, ,(x),¢) < Gl (b - a)log(1/(b —a)), ifa=1,
(b-a), if e <1

and that E™(X(a, b)) < C, (1 A (b — a)t™'/*). Substituting (33) and (32)
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into (31) gives the correct bound. O

Proor oF LEMMA 9. Without loss of generality we take T < 1. From (22),
E[(W, - W,)’|

SO E{(f:fl(:rt_, ~1)Hdz, , + [osfl(Tt_, - Ts_,)Her,x) ]

= /;mTr(((Tt—r - I)H) )dr + _I;)mTr(((Tt—r - Ts—r)H) )dr
For fixed x > 0, .
(T.\s — T)H(x) = Py(Y,,, > —x) = Py(¥, > ~2)
= PO(Y1 € [x/(r + B)I/Q,x/rl/“])
< I(ax/rV) = (x/(r + 8)")py(x/(r + 8)'%).

C will be a constant depending only on T, @, m whose value may change from
line to line. Using the bound on the stable density (30) we have for r > §,

(35) (T,,s — T,)H(x)l < C(8lx|™* A lx|r~ @t D/«)

for r <4,

(36)  I(T.,5 — T,)H(x)l < Po(Y; € [Ixl /8%, o)) < C8lx|™* A 1
and for r > 0,

(37) (T, — I)H(x)| < Py(Y; € [lx|/r'/*, o)) < Crix|™* A 1.

Find a constant K so that the densities of the measures mT, are bounded by
K for all r > 0. Recall that the lemma requires ¢ — s < s. From (35), for
0<r<s—(t—s),

mTr(((Tt—r - Ts—r)H)z)

1

<C(t- s)z(K(s - r)2f(s_r)l/ndx +K lx| ~2* dx + mT,(lx| > 1)
0

(s—r)/
1+ (s—r)/o°2 if @ # 3,
<C(t—s)? (s=7) ) 2
1+log*((s—r)"), ifa=3.
From (36), for s — (t —s) <r <,
2
mTr(((Tt—r - Ts—r)H) )
<2CK[“ dx + 20K (t - 5)* [l dx
0 (t—s)/«

+2C(t — s)’mT.(Ix| = 1)
(t _ S)(Z/\(l/a»’ if @ # %
Tl -9 (1 +logt((t-5)7Y), ifa=3.
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So

j;)smTr(((Tt—r — Ts—r)H)Z) dr
9 rs—(t—-s)| 1+ (s — r)(l/a)—z
<C(t-s) fO {1+log+((s_r)_1)}dr

(t _ s)(2/\(1/a))

+cf d
fs—(t—s){(t - 3)2(1 + log*((t - s)_l))} "
2 .
<C (t—s)", ifa <1,
(t —s)*Ve, ifa> 1.

Similar arguments give an upper bound of no larger order for the first term in
(34). O

Proor oF LEmMa 10. Define 7o =0, 7j(w) = inf(m > 7,_;: 0 €4,,) for
Jj=1,... (+= if this set is empty). Then

N n
I(B;) Sa) SP(Tn <w, ¥ I(B, )<a].
j=1 j=1 !

P(g I(A;) = n,

j=

We shall show by induction on n that
(38) P(ﬂrn <o, Y I(B,) < a) <Py(B(n,q) <a) fora=0,1,...,n.
j=1

I claim that
(39) P(B, N (7; <) F ) = qL(7; < ).

To see this pick C € &, and note that (7; = n)cA,

P(B, N (r;<x)NC) f P(B,n(r;=n)NC)
n=1 R

v

qu(An“(TJ:n)nC)
n=1

=qP(Cn (7 < ©)).

The case n = 1 follows immediately from (39). Assume (38) is true for n =



SUPERPROCESSES 307

1,...,k — 1. Note that B, € & and{r, <o} c{r,_; <o}. Then

Tk

k
E(P(Tk <w, Y I(B,) < a|37;k)
j=1

=E I(kiII(BT) = a)P(Bfk N (7, < ®)F ))
j=1
k-1
+P(Z I(B,,,)Sa—l,'rk<°°)
j=1
k-1
<(1- q)P( Y I(BT_) =a,, < oo)
j=1

E-1
+ P( YI(B,)<a-1,7< 00) using (39)
E-1
<(1- q)P( Y I(B,)<a,m_; < 00)
-1

E-1
+ qP( Y I(B,)<a-1,7,_, < 00)

j=1
<(1-q)Py(B(k—-1,9) <a)+qPy(B(k—-1,q) <a-—1)
= Py(B(k,q) <a). o

LEmMMA 12. Fix m € Mp(E), t > 0,1 < p < = and let X, be a superprocess
over a spatial motion with semigroup (T, t > 0). If fe LP(mT,), then
E(XPIfD) < q@)mTAfIP), where q(¢) is a polynomial with coefficients depend-
ing on m(1) and p which is of order [p] = sup(n € N: n < p).

ProoF.
E(X7(f)) < E(XP~H(1) X(f17))
<E((1+XPP(1)X,(fIP))
= mT,(IfI”) + E(XP(1) X,(IfI")).

An exact formula to evaluate such product moments is known [see Dynkin
(1988)]. This formula will collapse to give the desired result. Alternatively,
arguing from the particle picture as in Perkins (1988), Proposition 2.6(a)(i)
gives an upper bound for positive measurable f:,

E(XM(1)X(f)) < nl(t + m(1))" mT,(f). =

Proor or LEMMA 11. By the remark following the statement of the lemma
we give a proof only when « < 3. Set f,, = f A n. From the Green’s function
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representation and Burkholder’s inequality we have

E((Xt( fn) - Xs( fn))p) = Cplm(Tt - Ts) fnlp

t 9 p/2
(40) + CpE((LXr((Tt_rfn) )d,.) )

+ CPE(([OSX,((Tt_, ~T,_)%f,) dr)p/z).

By Lemma 12 the left-hand side of (40) will converge to E(X,(f) — X,(f)?)
as n > o provided pB<1. Fix 0<1/k<s<t<k<w Set A=t-s.
We assume A < 1/2k and % > 1. Pick ¢ € (0,1) so that (2 + £)8 < 1. Set
p=2+¢60=1-¢/4.

We shall show that the third term in (40) is bounded by a constant
X A*/® The first and second terms have a similar bound and are easier.
Thus the Kolmogorov continuity criterion will be satisfied and there will exist
a continuous version on [1/k, k] for any k&, and hence on (0, «).

We break the third term of (40) itself into three parts. Using Lemma 12 we
have

E((AMXH((THA - T)*f,) dr)p/z)

< A"((P/Z)‘l)fA0CI(S - r)st—r((Tr+A + Tr)pf) dr
0
< 2P AP/2m (1) sup q(r) sup IT.(fP)le
relo, k] rell/k, k]
< CA1+(€/8)~

Using Lemma 6 we have
s ) p/2
E X, ((T..,—T)f,)dr
((fs_(mk) wr(Ton — T F) ) )

$ p/2
= E((f X,_,(1)(2/@)’IITy 4y, fI202(4k)* dr) )

—(1/2k)

< CAZ%,
The remaining part is
p/2
s—(1/2k) ;
E((f / Xs—r((Tr+A - Tr)zfn)dr) )

(41) o

- Cj;_(l/2k)q(s B r)st‘_r((Tr“'A _ Tr)an) dr.
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To get an estimate on |T,,, f,(y) — T, f,(y)| we argue as in Lemma 6. For
y =0,

T, s F(¥) = T, fo(9)l
(2) =) IPrea®) = p(x)llx — 517
® rr+A _
< (Z/a)[0 J7 (/) (p(x) — 2(d/dx) p(x))lx — y17° dtdx.
Using the bounds on the stable density (30) we have for 0 <y < 2¢tV/% t <k,

[0 p(x)lx — y17F dx

43 1/a 0
(43) < f‘u Ct™Vx —y| Pdx + f Ctx ~A+09=Bg=B/« dy
0 41/«
< Ct™B/«,

For y > 2tY/*, t <k,
[0 p(x)lx — yI 7P dx

a4 _ y/2 — -
< Ct~1/22By=B dx + Ctx~A+028y =B dx
(44) J Y Jor ’

+ [0 crattey O -y P + [ Ctrm 0+ (x - y) P d
/2 v

< Cy k.

There is a series expansion for the one dimensional stable density for a < 1
[see Zolotarev (1986), page 90]. This may be differentiated term by term and
used to prove the bound (d /dx)p(x) < C,(1 A |x|"?*®). Hence by scaling we
have |x(d/dx)p(x)|l < C{(t7'/* A tx~1*%) and the same calculations as in
(43) and (44) give the same bounds for [7x(d /dx)p,(x)lx — y|~* dx. Substitut-
ing into (42) we obtain for y > 0, A <r <k,

1B/ fory < 2t/

r+A
|T'r+A fn(y) - Tr fn(y)l 'S C/;_ dt{t—ly—ﬁ fOI‘y > 2t1/a

ro1-®/®  fory < 2rt/e,

<CA .
{r‘ly_ﬂ, for y > 2rt/«.
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Noting that p (x) < C,(1 A |x|~***) for s € [1/2k, k] [see (30)] we have for
ASrSS—(l/zk)y

|Ts—r((Tr+A - Tr)p( fn))”“’
-2l Pecr(- = 9)(Trun = TP (F)(2) dylla

2ri/e
SCAP(-/;)r FoA+B/DP gy

k 0
+ “BPp-P dy + su rP(1 A |z —y|" ) g )
o Y+ sup fk ( y ) dy

< CAPr=P,
Finally substituting into (41) we obtain

E((j “x (T —T,)an)dr)p/z)

A

Cf (l/zk)m(l) sup q(u)APr~Pdr
ue<l0, k]

< CAYTE/®), i
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