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ON THE STABILITY OF A POPULATION GROWTH MODEL
WITH SEXUAL REPRODUCTION ON Z2

By Hwa-NI1EN CHEN

Purdue University Calumet

In this paper we study a growth model known as the ‘‘contact process
with sexual reproduction” on Z2. We focus on the “symmetric”’ model in
which a “child particle” can be produced at a vacant site whenever a pair of
its neighboring sites is occupied by ‘“parent particles.” Two kinds of
stability of the absorbing state ¢ (i.e., the state in which all the sites are
vacant) are investigated in this paper. The first kind of stability concerns
the behavior of the system when it starts close to the state ¢. More
explicitly, we consider the system starting with a random configuration in
which the sites are occupied independently with occupation probability p,
where p is a small positive parameter. The system is said to be stable if, for
sufficiently small p, the probability that a site is occupied approaches 0 as
time approaches infinity. The second kind of stability concerns the behavior
of the system under the perturbation of adding a small quantity B8 > 0 to
all the birth rates (‘“‘spontaneous birth at rate ). In this case, stability
means that there is an equilibrium state which is close to ¢ when B is
small. It is proven in this paper that in the symmetric model the state ¢ is
stable under the first kind of perturbation, but it is unstable under the
second kind of perturbation.

0. Introduction. In this paper we investigate a growth model on Z2
which has sexual reproduction. We write ¢, for the state of the system at time
t > 0, which is the set of sites (points in Z?) that are occupied at time t.
Sometimes we will also treat ¢, as a function from Z? to {0, 1}, with
1, if x € & (x is occupied),

0, ifx & ¢, (xisvacant).

§(x) =

The system evolves according to the following rules:

(0.1) Occupied sites are vacated at a constant rate § > 0, that is, if x € &,
then

P(x & &,,,l¢) =8s +o(s), ass— 0.
(0.2) Vacant sites become occupied at rate b,(¢), that is, if x & &,, then
P(x € §t+s'§t) =b,(§)s +o(s), ass—0.

We will call b,(¢) the birth rates and 8 the death rate. In particular, the death
rate in the systems under our consideration is identically 1, that is, § = 1. To
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describe the birth rates, we first define for each x € Z% N, = {y: |lx — yll = 1}
as the neighbors of x. In other words, if we let e; = (1,0), and e, = (0, 1) be
the standard basis vectors in Z2, then N, = {x + e, x + e,}. For a particular
site x € Z2, we label its neighboring sites {x — e,, x — e,} as pair I, {x + e,
x — ey} as pair 2, {x + e;, x + e,} as pair 3 and {x — e, x + e,} as pair 4.
We are mainly interested in the following five types of birth rates 5,(¢):

Type I b, (¢) = A, if pair 1 is occupied,;

Type II(a): b,(£) = A, if pair 1 or pair 2 is occupied;

Type II(b): b,(¢) = A, if pair 1 or pair 3 is occupied;

Type III:  b,(¢) = A, if any one of the pairs i, i = 1,2, 3, is occupied;
Type IV:  b,(¢) = A, if any one of the pairs i, i = 1,2, 3, 4, is occupied;

and for all of the preceding types,
b.(¢) =0, otherwise.

Notice that, in all these five types of birth rates, in order to produce a child
particle at a vacant site x, at least one pair of neighboring sites needs to be
occupied by parent particles. That is why these models are said to have sexual
reproduction; they are also called the sexual contact processes on ZZ2. The type
IV model of the system is often called the symmetric model.

Let us take a moment to have a look of the death and birth mechanisms in
the contact process on Z? with asexual reproduction, or the asexual contact
process on Z2, In that system the death rate is also identically 1 but the birth
rate b,(¢) is defined as follows:

A, ifany site in N, is occupied;

b6 - |

It is guaranteed by Liggett’s theorem that rules (0.1) and (0.2) specify a
unique Markov process [see Liggett (1985), Chapter 1]. Furthermore, all
processes introduced previously with either sexual or asexual reproduction can
be constructed explicitly by using a graphical representation that goes back to
Harris (1978). A detailed construction which is well-suited for our purpose can
be found in Durrett and Gray (1990). (We will give a brief description of this
construction at the end of this section.) It is a consequence of that construc-
tion that there exists a single probability space (Q, F, P) such that all the
growth models under consideration in this paper can be defined jointly on
(Q, F, P). This fact enables us to make comparisons between processes with
different rates and different initial states. For example, for any given set of
rates described by statements (0.1) and (0.2), if we use é2 and ¢2 to denote
the states of the system at time # when the initial states are A and B,
respectively, we can define the processes ¢/ and ¢2 on (Q, F, P) in such a way
that if A ¢ B, then ¢2 c ¢B, for all ¢ > 0. Also, if &, is a process with birth
rates b,(¢) and death rate §, and if {, is another process with death rate
8* > & and birth rate b*(¢) < b,(¢), for all x € Z% and ¢ € S, then &, and ¢,
can be defined in such a way that ¢, C ¢, for all ¢ > 0, provided both processes

0, otherwise.
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have the same initial state. In this case we often simply say that ¢, domi-

nates {,.
A system is called attractive if the birth and death rates b, and d, satisfy

b,(¢) =b.(n) and d.(¢) <d.(n), whenever n C¢cCZ2

In the systems with sexual or asexual reproduction described earlier, the death
rates are identically 1 and the birth rates b, are nondecreasing functions of
the number of occupied sites in the set N,, so the preceding condition is
satisfied. It was first shown by Holley (1972) that systems with attractive rates
have certain useful monotonicity properties. Let £2 and ¢! denote the state of
the system at time ¢ when the initial states are ¢ and Z2, respectively. Then,
forall AcZ?and 0 <s <t < o,

P(NA+¢)=2P(2NA+¢) and P(EnA+¢)<P(,1NA+9).

Thus ¢£° and ¢! converge weakly (=) as ¢ — » to stationary distributions
which we denote as £ and £, respectively. (We will use the notations £2 and
&1 both for random variables which have these distributions as well as for the
distributions themselves.) For the sexual contact processes types I-IV and the
asexual contact process, we have ¢ = ¢ for all ¢, hence £ =5, (the point
mass concentrated on the state ¢). Thus, 8, is a trivial equilibrium. Let
p(A) = lim, ., P(0 € £} = P(0 € &), If p(A) = 0, then &l =¢2 =6, and by
attractiveness it follows that, for all initial configurations, £(t) = 8, as ¢ — .
On the other hand, if p(A) > 0, then £} # £0. Let A, = inf{A: p(A) > 0}. Then
£ =£2=5, if A <A, and & + & if A >, In both sexual and asexual
contact processes on Z2 it was proven that 0 < A, < ». [See, for example,
Durrett and Gray (1990).] Therefore, we know that for both sexual and asexual
contact processes on Z?%, £0 =34, is a trivial equilibrium for the systems
regardless of the value of A, whereas there exists a critical value A, € (0, )
such that £! is nontrivial and distinct from ¢2 when A > A,. It is natural to
investigate the behavior of ¢, as ¢ — , when A > A, and ¢, starts from simple
initial distributions other than the ones concentrated at ¢ or Z2. In this study,
we are particularly interested in the case that the initial state is a random
configuration in which the sites are independently occupied with probability p,
where p is a small positive number. More explicitly, we consider the process ¢{7
whose initial distribution ¢£ satisfies the conditions that the events {x € £},
x € Z2, are independent and, for each x € Z%, P(x € ¢§) = p. This initial
distribution can be considered as a perturbation of the absorbing state ¢. If
¢ = 8, as t > o, we say J, is stable under perturbation of the initial state;
otherwise it is unstable. Another kind of perturbation that interests us is to
add a small quantity B > 0 to all birth rates (‘‘spontaneous births at rate g”).
Namely, for each previously mentioned type of system, the birth rate for the
corresponding new system is equal to b,(¢) + B. Let £# and ¢/# denote the
states at time ¢ for the system with spontaneous births at rate B and initial
states ¢ and Z2 respectively. It is clear that the new systems are still
attractive. As we mentioned before, the monotonicity properties of systems
with attractive rates imply that as t — o, £¢2# and ¢/# converge to stationary



POPULATION GROWTH 235

distributions (denoted as) ¢%# and ¢1#, respectively. The objective is to study
the behavior of £># as B — 0. If, as B — 0, £3'# = £ = 8, then we say §,, is
stable under perturbation of birth rate; otherwise it is unstable.

It is known that, for systems with asexual reproduction, 8, is unstable
under either kind of perturbation [see, e.g., Durrett and Gray (1990) or
Durrett (1985)]. For the systems with sexual reproduction, the results concern-
ing the preceding two kinds of stability of 3, were only established for the type
I system by Durrett and Gray (1990). They proved that the following hold for
the type I system:

1. There exists a p* € (0, 1) which is independent of A, such that if p < p*,
then {f = 6, as £ — .
2. Forany A >0, {28 = 5, as B = 0.

These results mean that in the type I system §, is stable under either kind
of perturbation.

The proof of statement 1 is a relatively simple application of the theory of
oriented percolation, but it does not apply to any of the type II, III or IV
systems. The proof of statement 2 uses what is commonly known as a contour
argument, and the key to this argument is constructing a ‘“dual process” for
£,. [See Durrett and Gray (1990) for details.] Because of the different features
of the birth mechanism in the type II, III and IV systems, the dual processes
become more complicated and the ‘‘contour argument’” becomes accordingly
more cumbersome (should it still work).

It was conjectured by Durrett (1985) that statements 1 and 2 are still true
for the type II, III and IV systems, except that in statement 1 the value of p*
would then depend on A. He also suggested that in order to solve these
problems new ideas and methods are needed. This paper is devoted to studying
the stability of 8, in the type IV system under the two kinds of perturbation
described previously.

In Section 1 we study the stability of &, in the type IV system under the
perturbation of the initial states and obtain the following theorem.

THEOREM 1. Let ¢P denote the state of the type IV system at time t with the
initial distribution ¢§ described earlier in this section, that is, the events
{x € €8}, x € Z?, are independent and, for each x € Z?, P(x € £§) = p. For
any given A € (1,%), if p > 0 is sufficiently small (p may depend on A), then,
for large t,

P(0e¢P) < ¢~ clogaxd/p)

where c is a positive constant independent of A and p.

“ In the proof of Theorem 1 a new method called successive rescaling or
successive block renormalization is employed.

In Section 2 we study the stability of 8, in the type IV system under
perturbation of birth rate and obtain the following theorem.
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THEOREM 2. Let (2P denote the state of the type IV system at time t with
spontaneous birth at rate B > 0 and initial state ¢. Suppose that A is
sufficiently large. Then

lim P(0 € £2:%) > 0.
B—0

Theorems 1 and 2 show that, in the type IV system, §, is stable under
perturbation of the initial state, but is unstable under perturbation of birth
rate. Since the type IV system dominates (in the sense that we described
earlier in this section) all four other types of system, it follows that in all four
other types of system the §, are also stable under perturbation of the initial
states. Thus Theorem 1 verifies the conjecture made by Durrett concerning
the stability of 6, under perturbation of the initial states, whereas Theorem 2
disproves his conjecture concerning the stability of 3, in the type IV system
under perturbation of birth rate.

There is a close relationship between the type IV system ¢P and the
so-called bootstrap percolation models. In fact, if we let the death rate 6 = 0 in
&P, then &P turns out to be essentially the same as a special kind of bootstrap
percolation model in Z2, the only difference being that in the bootstrap
percolation model time is discrete. Namely, the bootstrap percolation model
can be described as a discrete time process B,, t = 0,1,2,..., as follows:

1. Events {x € By}, x € Z?, are independent and P(x € B,) = p.
2. If x € B, for some ¢, €{0,1, ...}, then x € B, for all ¢ > ¢,,.
3. If x ¢ B,, then

x € B,,,, ifanyone of the pairs i,i = 1,2,3,4, is occupied,
x & B,,,, otherwise.

Notice that in the system described previously, B, € B,, , forall t = 0,1, ... ;
thus when time goes to infinity there exists a limiting configuration which we
will call the firal configuration.

The general bootstrap percolation models in Z¢, d > 2, have been studied by
Aizenman and Lebowitz (1988). Their results indicate that if, for each L =
1,3, ..., we restrict the dynamics to the cube (—L/2, L/2]* N Z¢ (i.e., at
time 0 all sites in Z¢ \ (—L/2, L /2] are vacant), then the density of the final
configurations in the sequence of cubes (—L/2, L/2]¢ undergoes an abrupt
transition, as L is increased, from being close to 0 to being close to 1.

This behavior is quite different from that of the type IV system ¢&7.
Although the only significant difference between the dynamics of these two
models is that there is a positive constant death rate (equal to 1) in the system
&P, we have shown in Theorem 1 that such a transition does not occur. Several
‘humerical estimates established in Aizenman and Lebowitz (1988) have been
found very useful in our proof of Theorem 1.

We now give a brief description of the graphical construction we will use
throughout this paper. The details can be found in Durrett and Gray (1990).
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For each x € Z% we let S,(x) and L,(x), n > 1, be independent Poisson
processes with rates 1 and A, respectively. Thus, if we let Sy(x) = Ly(x) = 0,
then the increments S,(x) — S,_(x) and L,(x) — L,_(x), n > 1, are inde-
pendent exponentially distributed random variables with means 1 and 1/A,
respectively. We label certain points in the space—time graph Z? X [0, ), using
the following Poisson processes: .

(0.3) Mark the points D, = {(x, S,(x)): n > 1} with &’s (for death), and inter-
pret the & to vacate the site x at time S, (x) if x is occupied.

(0.4) Mark the points B, = {(x, L,(x)): n > 1} with A’s (for life), and interpret
the A as a birth at the site x at time L,(x), provided the necessary
conditions described in the definition of the birth mechanism for the
particular process under construction are met. For example, if the type I
process is under construction, then the conditions are

x €&y - andboth x —e; and x—e;€{y )

Having marked points in the space-time graph, we can compute the evolution
of the process according to the rules for interpreting the 8’s and A’s given in
(0.3) and (0.4). Note that the preceding construction takes care of all the
processes without spontaneous birth under our consideration. For the pro-
cesses with spontaneous births at rate 8, we need to augment the construction
to allow for the spontaneous births. For each x € Z2, we let U(x),n > 1,be a
Poisson process with rate B, independent of the process S,(x) and L, (x).
There is now a third rule in the description of the process, corresponding to
spontaneous births at rate B:

(0.5) Mark the points B = {(x, U,(x)): n > 1} with B’s (for birth), and inter-
pret the B as a (spontaneous) birth at the site x at time U, (x) if x is
vacant.

The preceding graphical construction also guarantees that the process
constructed by using this method is unique [for details, see Durrett and Gray
(1990)1.

1. Proof of Theorem 1. In this section we will prove Theorem 1.
Throughout the section we will assume that p > 0 is a sufficiently small real
number. As we indicated in the statement of Theorem 1, how small p needs to
be depends on the value of A. We will clearly point out what value of p we
should choose in terms of A. To begin with, we need to introduce some related
results concerning the bootstrap percolation model which will be useful
later on.

1.1. Some results concerning the bootstrap percolation model. As we al-
ready indicated in Section 0, the general description of the bootstrap percola-
tion model can be found in Aizenman and Lebowitz (1988). Let us first
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introduce the following definition employed by Aizenman and Lebowitz. (For
our purpose, we will make some minor modifications.)

DErFINITION. Let I' ¢ R? be a rectangular region. We say that I' is inter-
nally spanned (by a configuration n) if T' N Z2 is entirely covered by the final
configuration when the initial stateis n N T'.

LEMMA 1. Let T be a w X h rectangular region in the form of
(m—%,m—%+w]x(n—%,n—%+h],

where n, m,w, h are integers, w, h > 1. Then
(1.1) P(T is internally spanned) < (p(w A h))*"",
where w V h = max{w, h} and w A h = min{w, h}.

Proor. The idea of the proof can be found in the proof of Lemma 2 of
Aizenman and Lebowitz (1988). Suppose first that ~ < w. We partition I into
w disjoint strips of unit width parallel to the y axis. A necessary condition for

I' to be internally spanned is that each of those strips contains at least one
occupied site. Hence

P(T is internally spanned) < (ph)"” = (p(w A k))*"".

The case h > w can be proved similarly. O

Notice that in obtaining the estimate of P(T" is internally spanned) all we
need is the following fact: If we partition I' into disjoint strips of unit width,
parallel to either the x axis or the y axis, each strip contains at least one
occupied site. We would like to have a formal definition for this fact as follows.

DerFiNITION. Let I be a w X h rectangular region as in Lemma 1. We say
I' is weakly internally spanned if both of the following conditions are met:

(a) If T is partitioned into h disjoint strips of unit width parallel to the x
axis, then each of those strips contains at least one site occupied by £3.

(b) If T is partitioned into w disjoint strips of unit width parallel to the y
axis, then each of those strips contains at least one site occupied by &5.

Based on this definition and Lemma 1 we may easily obtain the following
corollary.

* COROLLARY 1. Suppose that T' is a w X h rectangular region as in Lemma
1. Then

(1.2) P(T is weakly internally spanned) < (p(w A h))w\/h.
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LEMMA 2. Let A, denote the square region (—L/2,L/2]? forL €{1,3, ...}
as before. For all k € {1,2, ...} such that L > k, a necessary condition for A,
to be internally spanned is that it contains at least one internally spanned
rectangular region whose longer side length is in the interval [k, 2k + 1].

This is a special case of Lemma 1 of Aizenman and Lebowitz (1988). We will
not reproduce its proof here.

1.2. The procedure of block renormalization. The first step of our argu-
ment is to partition the original lattice Z2 into a lattice of large blocks and to
rescale the lattice in such a way that we regard each block as a site in the new
lattice. The rescaled lattice will be called the level 1 lattice, denoted by Z?[1],
whereas the original lattice will be called the level 0 lattice. Our first major
goal is to define ‘“‘occupancy’ and ““vacancy’ for each level 1 site according to
the behavior of the process ¢7, ¢t > 0. We will define a set of conditions for the
occupancy of each level 1 site. These conditions will depend on the initial
configuration 7 of the original process £P and on w € Q. This construction
gives us a random configuration on the level 1 lattice which will lead to the
bootstrap percolation model on that level. We will then establish the relation-
ship between the original process ¢f and the bootstrap percolation model on
level 1. Iterating the same procedure inductively, we will obtain, for all
n=1,2,..., alevel n bootstrap percolation model and relate it to the original
process ¢P. This approach allows us to study the asymptotic behavior of &7,
t > 0, by studying the corresponding bootstrap percolation model on the level
n lattice instead of the original process itself.

To begin our procedure, we first consider the original lattice Z2 as a subset
of R? and partition R? into a lattice of L, X L, squares, where L, =
2|1/2p°] — 1, e = ; and |x] = the greatest integer less than or equal to x. We
situate these squares so that the origin is in the center of one of the squares.
Let T' be a rectangle of the form

((k - %)Lp(k + %)L1] X (yo — %,yo - % + H],

where k,y,, H are integers and H > 1.

For any given initial configuration n and o € Q, we call T' a short vertical
connector if H < L, and in its partition into L, vertical strips of unit width,
each strip contains at least one site which is occupied in the configuration 7.
We call T a long vertical connector if H > L, and T can be partitioned into j,
J = 2, vertical strips such that each strip S; is crossed horizontally by a
rectangle :

=(m-gm-3+w]x(n-—g3n-3+h]cT
=((k_%)L1»(k+%)L1]X(yo_%»yo“%"'H],

where m,n,w,, h; are integers, w;, h; > 1, such that I;, i =1,2,...,j, are
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| .E.':-...'-
|.l m '.H
..-.l.. lH

Fic. 1. A typical long vertical connector.

disjoint, internally spanned by 7 and satisfy at least one of the conditions
(1.3), or (1.3"):

(1.3) For i =1,2,...,J, let y, denote the y coordinate of the center of T},
Z;=y; —Yi—p and dy = || —hy/2, d; = |z}l = (h;/2+h;_1/2), i=
2,...,J. Let o, = inf{z: §,Finzz =¢} and, for i =1,2,...,j— 1, let ¢}
denote the asexual contact process with death rate 1 and birth rate A,
confined to the right edge E; of S, that is, E; is the rightmost vertical
1 X H strip in S;. Let the initial state of ¢/ be E,NT,NZ? and
m,=inf{t: N T,,; # ¢}. Then, for i =1,2,...,j — 1, either o,,, >
d;,.1/4Aor 7, < d; /4. '

(1.3) For each i let 87 =8, ., =T, ;,y, 6" =0, 1, BT =h; ;. ,,
wiT=wj—i+1 and yiT=yj—i+1' Let 2f =y{ — o, d} =lzfl - h{/Z,
2=yl -yl |, d¥=lz¥| - (W¥/2 + hY_,/2), i > 2. For i =1,2,...,
Jj—1,1let {'t" be the asexual process with death rate 1 and birth rate A,
confined to the left edge E! of ST. Let the initial state of { be
ETNTTNnZ%and 7* = inf(t: [N TL, # ¢). Then, fori = 1,...,7 — 1,
either o7 | > d¥, ,/4\ or 7} < d¥,,/4\.

We illustrate a typical vertical connector in Figure 1. The shaded regions
represent internally spanned regions. Of course, more than one partition may
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be possible and condition (1.3) or (1.8') is not reflected in the picture. Condi-
tion (1.3) or (1.3') means intuitively that the rectangles T are close enough
together so that a connection can be established between them through the
spreading of individuals in the population. Condition (1.3) concerns possible
spreading from left to right, whereas (1.3') concerns possible spreading from
right to left. We dominate the spreading of individuals from I, to I}, by
spreading in the asexual process ¢/, so 7; may be regarded as a lower bound on
the time it takes for individuals to spread from I to I}, ; in the sexual process.
The quantity d; is a measure of distance between I,_; and T;.

Short and long horizontal connectors can be defined similarly by rotating
the x-y axes 90°. In both cases we will use “length” L to denote the length of
the side perpendicular to the partition strips and ‘“height” H to denote the
length of the side parallel to the partition strips. For convenience, in what
follows we will discuss vertical connectors only; all conclusions apply to
horizontal connectors as well.

For a particular vertical connector

= ((k - %)Lh(k + %)Ll] X (yO - %73’0 - % + H]7
where &, y, and H are integers, H > 1, we call the line segments
((B = 3)Ly, (B + 2)L1] X {9, — 1 + H}
and
((k = 3)Ly, (B + 3)L1] X {50}

its upper edge and lower edge, respectively. The left edge and right edge of a
horizontal connector can be defined similarly.

For our purposes, we are only interested in a subset of the set of all
connectors. We use the following procedure to eliminate those connectors
which do not play a crucial role in our block renormalization procedure.

First of all, we will only consider connectors which are minimal, namely,
those connectors which do not contain any shorter connectors. Secondly, we
want to eliminate overlapping between connectors. To do this, we give an
inductive procedure to decide which connectors should be eliminated from a
set of overlapping connectors. Let V,, be the collection of all minimal vertical
connectors. Suppose that, for n > 0, we have defined a set of minimal connec-
tors V,. Let V.., be the set of connectors in V, whose lower edge does not
intersect any other member of V,. Let V,,; be the union of V} ; together
with all those connectors in V,, which do not overlap any member of V,*, ;.
This procedure produces a sequence of sets V;* ¢ Vf € -+ of minimal verti-
cal connectors. Let V* = U7 _,V,*. It is not difficult to check that the connec-
tors in V,* are disjoint for all » > 1 and hence that the connectors in V* are

«+ disjoint. Similarly (replacing lower edge by right edge), we may apply the same
procedure to horizontal connectors and obtain our desired collection H*.

REMARK (*). For some initial configurations n and some w, V*, H* could
be empty, either because there are no vertical connectors at all or every
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vertical connector is part of an infinitely long chain of overlapping vertical
connectors. For the kind of initial configurations that we will consider, namely,
&8 for p > 0, this event has probability 0. The reason for this is that each
rectangle with height H = 1 crossing a vertical strip S = (k¢ — 3)L,,
(k + $)L,]1 X Z has positive probability of being a connector. By the
Borel-Cantelli lemma, each infinite strip S will contain infinitely many such
connectors almost surely, so V, is not empty, and infinitely long connected
strips of overlapping connectors occur with probability 0.

Based on the preceding preliminaries we are now ready to define occupancy
and vacancy of each level 1 site for any given initial configuration n and
o € Q. For each level 1 site x[1] € Z%[1], let A(x[1]) denote its corresponding
square at level 0. We say x[1] is occupied if at least one of the following
conditions is met:

(1.4a) A(x[1]) contains the upper edge of a vertical connector in V*;
(1.4b) A(x[1]) contains the left edge of a horizontal connector in H*.

Intuitively, conditions (1.4a) and (1.4b) take care of two different situations.
First, if in the initial configuration n the square A(x[1]) has a tendency to be
filled even without the help of its neighboring squares [for instance, if A(x[1])
itself is internally spanned], then we will consider it as an occupied site in the
level 1 lattice [because A(x[1]) is internally spanned implies that it is a short
connector]. The second situation concerns those rectangles that may not be
capable of filling up on their own, but which may maintain a ‘ well-organized”
structure for a relatively long time (for instance, they are long connectors) so
that they may possibly be filled by spreading from neighboring squares.

The preceding intuitive statement can be formulated rigorously as follows.

ProPOSITION 1. Let T=(m — 3, m— 3 +L,Ix(n—%,n—%1+hlbea
level O rectangle where m,n, h are integers, h > 1, and L, is as before. Let
A € (1,). Restrict the dynamics to the region (—»,©) X (n — 3,n — 3 + hl.
If T does not contain any vertical connector, then there exists a vertical strip S
contained in T such that S will be entirely vacated in the time interval [0, T],
where T = max{L,, h}.

Proor. Partition I' into L, disjoint vertical strips with unit width, de-
noted by S;,i = 1,2,..., L,. If, for some i, S, is vacant initially, then by the
nature of the process it will be vacant forever, and we are done. Suppose that
each such strip S; contains at least one occupied site initially. Then we can
find (at least) a rectangle :

[* = (m = b,m = 5+ Ly] X (n* = b, — 3+ ]

cor:tained in T such that I'* can be partitioned into j, j > 2, disjoint vertical
strips such that each strip is crossed horizontally by an internally spanned
rectangle I}, and I, i = 1,2,,..., j, are disjoint. We call such a I'* a potential
vertical connector. If A* < L,, then by the definition of a short connector, I'*
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is actually a short connector and thus we obtain a contradiction. Therefore we
may assume that all potential vertical connectors contained in I' have vertical
height greater than L.

Let G* = {all potential vertical connectors contained in T'} = (I}, ..., %}
For each I} in G*, we have a sequence of internally spanned rectangles
corresponding to it. Let R be the collection consisting of all those internally
spanned rectangles corresponding to I'f,...,I%. For each i = 1,2,..., L, let
R; be a subcollection of R such that R; consists of all members in R which
intersect the unit vertical strip S,. We claim that there exists (at least) an
i, €{1,2,..., Ly} such that, for any member I in R, ig? 'n S;, will be entirely
vacated by t1me T, thus completing the proof.

PROOF OF THE CLAIM. Suppose the opposite. Then there exist disjoint
internally spanned rectangles I}, T, .. I‘ in R, 2 < < L,, corresponding to
some potential vertlcal connector such that each of them intersects at least
one of the strips S, , L1, and none of those F ie(1,2,...,/},is
vacated entirely by tlme T We w111 prove that this statement 1mphes that the
potential vertical connector corresponding to T, T, .. F 2 <j < L,, is actu-
ally a vertical connector and thus contradicts the hypothesis. To accomplish
our proof, we recall the notations d;, o;, 7; and ¢/ defined in the definition of
vertical connectors. B

Since T > d,;/4A, for all i = 1,..., j, the preceding statement implies that,
for i =1,...,7 — 1, at least one of the following must be the case:

(a) Either o;,, > d,, ;/4A or the individuals spreading from T; reach T
before time d;,,/4A.

(b) Either o, > d,,,/4A or the individuals spreading from T} , reach T
before time d; ., /4A.

Since the speed of the spreading of the individuals from I, to [, is domi-
nated by the asexual contact process ¢/, (a) implies that cither ;1> d; /4
or 7, <d,;,,;/4A and hence implies (1.3) in the definition of vertical connec-
tors. A similar argument verifies that (b) implies (1.3') in the definition of
vertical connectors.

The proof of Proposition 1 is complete. O

REMARK. The analogous results hold for the level 0 rectangle
I'=(n—-3n—-3+h]lX(m—-3,m—3+L,

if the dynamics is restricted to the region (n — 3,n = 3 + h] X (—,©) and T
does not contain any horizontal connector.

Now, for any given initial configuration on level 0 and w € Q associated
with the process £,, we have determined the corresponding initial configura-
tion on level 1, and thus we obtain a bootstrap percolation model defined on
the level 1 lattice Z%[1]. We may consider the rescaled lattice Z*[1] as a subset
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of R[1], which is the two-dimensional Euclidean space with the level 1 length
unit. Notice that if for integers m®, n®, w® and AP, where w®, A > 1,
IT1] is the w® X h® rectangle

(m® — 1 m® — 14 0] x (® =L p® _ 14 p]
at level 1, then it is the wPL; X h™L, rectangle (denoted by)
I=((m®-3)L;,(m® -3+ w®)L,] X((n® = 3)Ly, (n® = 5 + R®) L]

at level 0. We call T the corresponding region of I'[1] at level 0. Conversely, if
T is the w X h rectangle (m — 2, m — + + wl X (n — 3,n — § + hlat level 0,
then there is a unique minimal w® X A rectangle (m® — 2, m® — 7 +
wDI X (n® — 1 n® — 2 + D] at level 1 denoted by I1], such that the
corresponding region of I'[1] at level 0 contains T, that is, (w™® — DL, <w <
w®L, and (AY — 1)L, < h < hWL,. We call I'[1] the corresponding region of
T at level 1. For simplicity, in what follows when we use the phrase “a w X h
rectangle” (at any level) we always mean a w X h rectangle of the form
(m—-%im-3+wlx(n—-3,n—3+h]l (n,n are integers), as described
previously. Although the rectangles described above are R? regions and usu-
ally we use notation I' N Z2 to describe a rectangle in Z2, for simplicity
sometimes we also use I' to denote a rectangle in Z? in obvious situations.

Notice that at level 1 the occupancy of each site can be due to either
condition (1.4a) or (1.4b) (or both). In the case that a level 1 site is occupied
due to (1.4a) we say it is V-occupied (occupancy resulting from a vertical
connector of level 0), and in the case that it is occupied due to (1.4b) we say it
is H-occupied (occupancy resulting from a horizontal connector of level 0).

In terms of the definition of occupancy of sites in Z2[1], for each initial
configuration n[1] we may define a level 1 rectangle I'[1] being internally
spanned by 7[1] in the same manner as in the definition of a level 0 rectangle
being internally spanned. We now introduce the definition of a level 1 rectan-
gle being “ weakly internally spanned” as follows.

DeFINITION. Let T[1] be a w® X A® level 1 rectangle. We say IT1] is
weakly internally spanned at level 1, if both of the following two conditions
are met:

(a) If T[1]is partitioned into A" disjoint strips of unit width parallel to the
x axis, then each of those strips contains at least one H-occupied site.

(b) If T1] is partioned into w® disjoint strips of unit width parallel to the
y axis, then each of those strips contains at least one'V-occupied site.

REMARK. At level 0, a rectangle T' that is internally spanned is weakly
internally spanned, but this is no longer the case at level 1.

DeFINITION. We say a region is strongly internally spanned if it is both
internally spanned and weakly internally spanned.
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We would like to build a link between the original process and the bootstrap
percolation model on the level 1 lattice. We first introduce the following
definition.

DerFINITION. Let ' be a WX H level 0 rectangle. For a given initial
configuration n we say I is significantly spanned by the process £""T if, for
each ¢ € [0, T'], T is internally spanned by ¢7"", where T = W v H.

Note. Consider the bootstrap percolation model and restrict the dynamics
to a rectangle I'. In the final configuration, I' either is entirely occupied or
contains a collection of occupied rectangles strictly contained in I' which are
separated by a collection of vertical and /or horizontal vacant strips with width
at least one unit. In particular, we can find a polygonal path of vacant strips
connecting the top (left) edge and the bottom (right) edge of T (see Figure 2a).
We call such a collection of strips a separation of T'. Thus, the phrase “I" is
internally spanned by ¢7"T for each ¢ € [0,T]” means no separation of T
occurs in ¢7°T for ¢ € [0, T'].

Let I'[1] be a level 1 rectangle which is not internally spanned. Suppose that
in the final configuration I[1] contains a collection of disjoint, entirely
occupied rectangles TI'[1],...,Ty[1]. Let Sy [1l, i =1,2,...,m, Sy,[1],
t1=1,2,...,n, denote all vacant horizontal and vertical strips con-
tained in TI[1], respectively. Let Sg[1] = {Sy[1l,..., Sy, (1B, Sylll =
{Sylll,..., Sy, [1]}. Suppose without loss of generality that the collection

Fic. 2a.



246 H.-N. CHEN

Fic. 2b.

{Suwlll, ..., Su;-v[l], Sywlll,..., Sy 1}, 1 <j <m A n, forms a polygo-
nal path of vacant strips connecting the upper edge and bottom edge of IT1].
See Figure 2a for an illustration of this.

Let T, I; be the corresponding regions of I'[1], [;[1] at level 0. For Sy ;[1] €
SH[l] and SV(,)[l] € Sy[1], we use Sy;, and SV(;) to denote their correspond-
ing strlps at level 0, respectively. Let Sy = {Syy)y ..., Sym) Sv =
{Svy -+ +» Syny- For I'M1] and T' we claim the following proposition.

PROPOSITION 2. Suppose the dynamics is restricted to T' and A € (1, ).
Suppose, for i =1,...,m, Sy, does not contain any horizontal connector
and, fori = 1 , 1, SV(;) does not contain any vertical connector. Then, for
=12, 1 there is a horizontal substrip S, Hu) contained in Sy, and,
fori=1, 2 s Js there is a vertical substrip SV(Z) contained in Sy, such that
Shay s SH( -1y SV(I), . SV( Jy will be entirely vacated by time T and form a
polygonal path of vacant strzps which separates T at level 0 by time T. Thus T
is not significantly spanned.

Proor. Since I'1] is not internally spanned at level 1, in the final configu-
ration each of the entirely occupied rectangles I'j[1],..., I'y[1]is surrounded by
vertical and horizontal vacant strips. By the hypotheses, at level 0 each of the
rectangles I';,..., Iy is surrounded by horizontal strips in Sg which do not
contain any horizontal connector and vertical strips in Sy which do not
contain any vertical connector. Therefore, for each irdividual strip S € Sy Vv
Sy we only need to consider that the dynamics is restricted to R, where R is
the smallest rectangle that contains all I such that I; adjoins the strip S.
Without loss of generality we may consider the situation illustrated by Figure
2b, where the shaded regions are regarded as entirely occupied at level 0 when
¢t = 0. We want to show that there are horizontal substrips S, Hey contained in
Spuay © = 1,2, and vertical substrip Sy,,, contained in Sy, such that by time
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T, §H(l), §H(2) and S_V(I) will all be vacated entirely and form a vacant
polygonal path which separates T

The proof is fairly straightforward. First we apply Proposition 1 and directly
obtain that there are SH(;) contained in Sy ;), i = 1,2, such that SH(I), SH@)
will be vacated entirely by time 7', and they will remain vacant forever. That
shows that we can ignore the influence from the regions I'; and I'; and restrict
the dynamics to R,, where R, is the smallest rectangle that contains the
strips Sp1) Sme and Sy, Applying Proposition 1 again we obtain the
desired result. O

We are now ready to introduce the following proposition.

ProrosITION 3. Let A € (1, ). Suppose T is a W X H rectangle at level 0,
I(1] is its corresponding region at level 1 with dimension W® X H®,
WO, HO > 2. Let T11] be a (W® — 2) x (H® — 2) rectangle contained in
I'[1] with the same center as T'[1]. For almost all initial configurations n € &8,
if T is significantly spanned at level 0, then at level 1 there exists an internally
spanned rectangle (1] such that T11] c TT1] c IT1].

ProOF. Suppose we cannot find such a [1]. Then there exists a separation
at level 1 which separates both 1] and TIT1]. As in Proposition 2, we denote
the separation by {Sg(1], ..., Sp- 1], Syplll, ..., Sy,[1]} and denote the
collection of its correspondmg strips at level 0 by {S H(l)’ v Shg =1y
Syy -+ Syj)}- We wish to show that, for each i = 1,2,. -1, there is a
horlzontal substrip S H() contained in Sp;, and, for each i= 1 2,...,J, there
is a vertical substrip SV(,) contained in Sy, such that Shay > S, HG -1y
SV(D, o 8 v(;y Will be entirely vacated by time T' and form a polygonal path of
vacant strlps which separates I' at level 0 by time T'. It follows from Proposi-
tion 2 that we need only to show that, for each i = 1,2,...,j — 1, Sg;[1] does
not contain any horizontal connector and, for each i = 1,2,..., j, Sy;[1] does
not contain any vertical connector. Since the argument is essentially the same
whether the separation consists of one or more than one strip, we may assume
without loss of generality that it consists of a single vertical strip of height
H®, denoted by S[1]. We may also assume that the width of S[1] is one level 1
unit, and thus the corresponding strip of S[1] at level 0 is an L, X H®L,
strip, denoted by S.

It follows from the procedure of our rescaling scheme and the definition of
occupancy of a level 1 site that, at level 0, S does not contain any upper edge
of connectors in V*. This means, of course, that S does not contain any
connector in V*. We claim that S does not contain any vertical connector at
all. Suppose S contains a connector (say, G). Then the only possibility is that
G is a member of a string of overlapping connectors whose bottom edge is
beyond S. By Remark (*), we may rule out the possibility that the string of
connectors consists of infinitely many connectors whose bottom edge goes
down infinitely far. Thus G is a member of a string of overlapping connectors



248 H.-N. CHEN

whose bottom edge is within a finite distance of S. By the procedure in the
definition of V*, it is not hard to check that when 7 is sufficiently large either
G or one of the connectors (say, G') whose upper edge overlaps with the lower
edge of G will be in V* and, thus, in V*. But S contains both the upper and
lower edges of G, so S contains the upper edges of both G and G'. Hence S
contains the upper edge of some connector in V*, a contradiction. O

For a level 0 rectangle I" and its corresponding region I'[1] at level 1, if the
corresponding region of I'[1] at level 0 happens to be equal to I', then we can
improve the result of Proposition 3 and obtain the following corollary.

COROLLARY 2. Let A € (1,®). Suppose 1] is a WD x H® rectangle at
level 1, T is its corresponding region at level 0 with dimension W®L, X
H®L,. For almost all initial configurations n € ¢8, if T is significantly
spanned at level 0, then T[1] is strongly internally spanned at level 1.

Proor. We want to prove that if I'[1] is not strongly internally spanned at
level 1, then T is not significantly spanned at level 0. If I[1] is not strongly
internally spanned at level 1, then at least one of the following is the case:

(a) There exists a separation S[1] at level 1 which separates I1].

(b) If I'[1]is partitioned into disjoint vertical strips with unit width, there is
at least one of them that contains no V-occupied site.

(b’) If T[1] is partitioned into disjoint horizontal strips with unit width,
there is at least one of them that contains no H-occupied site.

It is not hard to observe that the argument employed in the proof of Proposi-
tion 8 can be applied readily to prove that any of the cases (a), (b) or (b")
implies that T' is not significantly spanned. O

Our next goal is to estimate the probability that a given level 1 site is
occupied. We use A; to denote this event. To estimate P(A,), we need first to
evaluate the probability that I' is a connector, where I' is a given rectangle
which has the form described in the definition of connectors. In order to do so,
we first prove the following lemma.

LeEMMA 3. Let A € (1,). Suppose that L is a sufficiently large integer, A is
an L X L square region in Z2. Let ¢} denote the type IV process with initial
state A and oy, = inf{t: ¢} = ¢). Then

L/2
(1.5) P(aL > (2A)L) <3L exp(— Lz; ),

where 0 is a positive constant independent of L and A.

»+ Nore. For the system with sexual reproduction we always have £} N
(Z2 \ A) = ¢ for all ¢ > 0; henceinf{t: £} = ¢} = inf{t: &2 N A = ¢).

Proor oF LEMMA 3. We partition A into L disjoint horizontal unit strips
and denote from the top to the bottom the ith strip as S;, thatis, A = U, S,.
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By the nature of the birth mechanism, for each i, if S, is vacated completely, it
will never be occupied again. Hence, if we let

b = inf{t: ErN S, = d)} and o = inf{t: egin S, = d)},
fori=2,...,L,
where G, = U %_,S, then by monotonicity and the Markov property it is clear

Jj=ij

that, for all t > 0,

L ot ¢
P(a, > t) gP( U {ag” > f}) sLP(aS) > f)'

i=1
Let ¢f, t = 0, denote the one-dimensional asexual contact process defined
on the finite set {1, 2, ..., L}, with birth rate A, death rate 1 and initial state
(E=A{1,2,..., L}). Then the process £} N S, is dominated by the process £/
Let 7, = mf{t {F = ¢}. Then, for all s >0, P(ofP > s) < P(r; > s). It has
been shown in the proof of Theorem 2 and Theorem 4 in Durrett and Liu
(1988) that when A > 1 and L is large, for any given y > 0,

P(rp, >s) < [1 —exp(—(1+7y)L ]Og/\)]lS/LOj

where 6 > 0 is a constant independent of L and A and |x] is the greatest
integer less than or equal to x. Set

1
s = Zexp((l + 2y)LlogA).
Then

1
(16) P('TL > Zexp((l + 2y) L log )\))

< [1-exp(—(1+ y)Llog A)]I(I/Lzo)exp(a””]“ log )],
Since 1 — x < e %, it follows from (1.6) that

P('TL > %exp((l + 2y) L log A))
< [exp{ —exp(—(1 + y)L log )\)}]1(1/1‘20)‘”‘"((”27)1‘1"“)J
= exp{ [le exp((1 + 2y)L log )\)}exp( (1+y)L log /\)}
< exp{ (LIZG exp((1 + 2y)Llog i) — l)exp( (1+y)L log /\)}
= exp{ L120 exp(yLlog A) + exp(—(1 + y)L log )\)}

1
< exp{ %0 exp(yL log A) + 1}

1
< 3exp{— %0 exp(yL log )\)}.
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Let y = (log, 2)/2. Then

2r) 4 Llo A Llog?2
L an yL log A = 2 5

1
s = Zexp{(l + 2y)Llog A} =

hence it follows that

L L/2
P(7L> (21) )s3exp(—2 ’ )

L L3
Hence
(2r)* (21)" oL/

P0£1)>T <P|r,> i3 s3exp—L20 .

Therefore
L L/2
L (22) 2
P(oy > (24)7) < LP 0£1’>T) 53Lexp(“ﬂ : o

Now we are ready to prove the following proposition.

ProPOSITION 4. Let A be a given fixed number such that A € (1,%). Sup-
pose that T is a rectangle of the form

((k - %)Ll’(k + %)Ll] X (yO - %7y0 - % + H]’

where k, y,, H are integers, H > 1, L, = 2|11/2p°] — 1, & = {, as described in
the definition of connectors.

(@) IfH < L, then
1
(1.7) P(T is a (short) vertical connector) < exp{—(l —¢)L,log ;}
(b) If H > L, then there exists a py(A) > 0 such that

P(T is a (long) vertical connector)

(1.8)

1 1
<(1+ O(pl/“))L‘iZI‘lH2 exp(—(l — 2¢)L, log %),
whenever p < py(A).

In what follows we will use C to denote a positive constant whose value may
change from line to line.

PROOF OF ProposITION 4. (a) This case is relatively simple. Denote the
probability in (1.7) as P;. By the definition of short connector and the same
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arguments as we applied in the proof of Lemma 1, we have

)

Pls<pH)Lls<pL1)Ll=( ( [
L 1
(1.9) < (p'™) 1=exp( —L, log o s)

1
= exp{—-(l —-¢e)L, log;}.

(b) We consider a specific partition 7 of T, m = {ky,...,k}}, ky + - +k;
=L, and j > 2. Let S; be the corresponding vertical strips. We will sum, over
all possible rectangles I, the probability that the condition (1.3) or (1.3) is
met. We only need to sum over rectangles I, whose right edge is contained in
the right edge of S;, except for the rightmost strip S;. Throughout our
estimate we will only deal with the case that the condition (1.3) is met; the
argument applies to the case that the condition (1.3') is met equally well.

For each i € {1,2,..., j}, recall that w;, h; denote the horizontal width and
vertical height of I'; which crosses S;. Let u; = h; Aw;, M, =h, Vv w;,. Then
l<p,<3L, -1, & M<HV3L1 Let 2 =1(2,29,...,2), W=
(wy,...,w)) and h= (hl, ..., h;), and let x; be the x coordinate ofthe center
of T;. leen Yo, 5, W, h and xj, the rectangles T, = I\(2, o, A, x;) in a vertical

connector are determined. Let
B(i,z,w,hk,x;)
= { I‘i(z”, W, h,x j) is internally spanned and satisfies condition (1 3)}

and denote
P, = P(T is a (long) vertical connector).

Then

J
<Yy Y P(ﬂB(i,z",w,fz,xj)),
T (¢,w,h,x)EK

i=1

where 7 runs over all possible partitions of L, with constraint 2; > 1, and K
is the set which consists of all possible ch01ces of (2,1, h, x;) such that

1 3
(’” E)L1<x'< (k+ g)Ln 1<p,<8L, -1, k<M, <HV3L,

hy h, hi hi, hi hi,
—Z-SZISH——z— and’ (§+ 2)5|zi|5H~(-—2—+ 5 |’
fori=2,...,j,

and the rectangles T; determined by (Z, lf;, h,x ;) are disjoint.
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Since, for (2,1, h ,%;) € K, the events B(i, 2, 0, h, x;) are increasing and
must happen dlSJ(_)lntly, it follows from the van den Berg—Kesten inequality
that, when (£, w, h, x;) € K,

-
—_——
o
——
o~
IS
S
&8
S—
S——

P rJ]B(i,z',Lb,ﬁ,xj)
i=1 =

[See van den Berg and Kesten (1985) for meaning of the words ‘“happen
disjointly” and for the details of the van den Berg-Kesten inequality.] By
translation invariance, for each i, P(B(i, 2, w, k, x; )) depends only on d;, w;
and h;. Thus we may define q(d,, w;, h;) = P(B(z w, h, x;)). Therefore,

P<}¥ )Y X )y )» Hq(d”w”h)

-2z [z (2 (T et

d

i

2[R [B(Zan )]

d;

i=1

J

2L 122 (Sate o)

T X M; \d; *wm,

=1+1I,

where kb, <M, <HV 3L, and 1 <pu, <@L, - 1AM, for i =1,2,...,],
and0<d,<H-h,and0<d, <H-(h;+h;_y), fori=23,...,j

We will only carry out the computation in finding an upper bound of I. All
arguments apply to IT as well.

Denote, for each i,

Q(d;, M,) = ZQ(di»/J‘i’Mi)’ N(M;) = gQ(di’Mi)

M
and

V(i) = X N(M,).
M,

Then

J
We first apply Lemma 1 to obtain, for each i = 1,..., j,

(1.10) q(d;, piy M;) < (ppy)™

Although the conclusion of (1.10) holds for all d;, i = 1,..., j, for our pur-
poses we need to obtain a better upper bound of g(d;, u;, M;) in the case that
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d;/4A > 2AM)M:V Lo where L, is chosen so that when L > L, the conclusion
of Lemma 3 holds. In this case we may improve (1.10) for i > 2 by using
condition (1.3). As a matter of fact, when d,/4A > (2A)M:V Lo we let I, =

log,,(d;/4A) and o, be defined as in Lemma 3. Then it follows from Lemma 3
that

‘ 1,/2
P >—| = > L ) -
(ali ) P(O‘li (21) ) < 3l; exp( 1% )

d, d,\\ 2
= 3(108‘2)‘( 4A ))exp 2(log2)\(d, /4)‘))/2 (logz/\(a)) 0_1

d di 1/[2(1+1logg A)] d. -2 .
=3(1°g“(4A))e"p (4A) (bgz*(u)) I

Since /; > M;, by monotonicity and translation invariance we obtain

di di 1/[2(1 +logg A)] di -2 .
<sfiosa 5 ool - (31 s 5]) o)

On the other hand, as a consequence of Lemma 9 of Durrett [(1988), Chapter
1], there are constants C,y € (0, ») such that

d;
P(Ti——l < Zx) < Cexp(_’ydi).

Therefore, for i = 2,..., j, when d,/4A > (2A0)™:V Lo we have

d. d. \1/121+logy V)] d.\\ "2
— - _t -1
q(di,ui,Mi)s3(10g2A(4A))exp{ (4A) (log“(u)) ’ }

(1) + Cexp(—vd,;)

< Cexp(-—-d}),

where a = a(A) = 1/[4(1 + log, A)].

Now we will obtain bounds for Q(d; i M) using (1.10) and (1.11). It follows
from (1.10) that, for each i = 1 2,...,J,
Q(d;, M) = X a(dinis M) < X (pr)™,

My wi=1

where v, = 3L, — 1) A M,.
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Note that L, = 2|1/2p°| — 1, & = § and p; < v; = (3L, — 1) A M;. There-
fore,

QUd,, M) < Y (pu)™i=p™ L (u)™
IJ‘;=1 l“’i=1

M+1
Mi(vi +1)

v;+1 .
SpMif T lMidy = p < pMi(v; + M

(1.12) 0 Mi+1
. = (p(v; + D)) < (3p1'5)Mi = exp(—Mi log 3—})%)
sexp(—Mi log 1_5) Sexp(—(l—s)Mi logi).
(9p) 9p
Moreover, if in addition d,/4A > (20)™:V Lo then by (1.11), for i = 2,3, ..., j,
(1.13) Q(d;, M;) = Y. q(d;, miys M) < CM; exp(—dy).

i
Furthermore, we are only considering the minimal connectors, so there exist
ii,€1{1,2,...,j}, iy + 1 < iy suchthat |z; 4| + - +lz,,| > H - (h; /2 +
h;,/2). Thus there is an i3, i; + 1 < i3 < iy, such that

h, h; o .
H- ( 21 + ?2) < (Bg —iy)lzl < (J — Dzl < (Ly — Dlzg |,

or

hi hi
H< (L, - Dlg)+—+ 72

2 2

hi3 hi3—1 hil hi2
=(L1—1)(di3+?+—2—)+?+ 2

M, Mg\ M, M,
s(Ll—l)(d,.3+ 2 +—2—)+7+ 5

Let i* be such that i; <i* < i, and M;+ = max{M;: i; <i < i,}. Then

H< (L, - 1)(d;, + M) + M < Ly(d; + Mys).

Case 1. d; VM;=d,;. In this case, H <2L,d;. When d; /4r >
(20)MisV Lo by (1.13) we get

: 1
Q(d;,, M,)) < CM;, exp(—d¢g) < —H—3(2L1di3)30Mi3 exp(—d3)

1
< CL??{—g exp(—dg + log8d?3Mi3).
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Note that M;, < log,,(d; /42), hence we have

1 de
(1.14) Q(d., M,,) < CLiz exp(_ 23).

When d; /41 < (2M)Mis¥ 2o, then H < 2L,d; < 8L (2M):s" o, s0 by (1.12)
we get

1 1
(1.15) Q(d;, M,) < (8/\)3L?{F(2A)3(MiaVL°)exp(—(l - &) M, 1og§; .

CasE 2. d; VM;«= My In this case, H < 2L,M;x. When d;«/4\ >
(21)Mx Vv Lo by 11.13) we get

1
Q(di*’ Mi*) < CMZ* exp( —'d?*) < F(2L1M;‘*)3CM;'* exp( “—dg*)

1
< CL?F (—d;’*+log8le4*).

Note that M« < log,,(d%/4A), hence we have

1 d%
1.1 . M. 5 1 exnf— &)
(1.16) Qdy M) < CLgrzems -

When d;«/4A < (20)M#*V Lo by (1.12) we get

1 1
Q(d;x, M;x) < F(2L1Mi*)3 exp(—(l — &) M« log %)
(1.17)

= CLEII H3

From (1.12)-(1.17) we conclude that, for i = 1,

1
M*exp( (1 -¢€)M;«log 9—5)

1
(1.18) Q(d, M,) Sexp(—(l - e)M, logg).
Fori=2,3,...,J,

1
(1.19) Q(d;, M, < exp(—(l —-&)M; log%);

if, in addition d,/4A > (2A)™:V Lo, then

dé 1
Q(d;, M;) < Cexp(-— -éz—), where @ = a(X) =

4(1 + logy A)
We also conclude that there exists (at least) an n € {1,2,..., j}, such that
when d, /4\ < (2A)M»V Lo then

1 1
(1.20) Q(d,, M,) s(8A)3L3{F(2/\)3(M"VL°)exp —(1-¢&)M, log% ,
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and when d,/4A > (2A)M»V Lo then

1 ds
3 -
(1.21) Q(d,,M,) <CL; FPE exp( 2 )

We are now ready to find an upper bound for N(M,). For i = 1, we ha}ve
1
(1.22) N(M,) sHexp(—(l—s)M1 log%).
Fori=2,...,J,let v; = v,(A) = 4A@)M: VLo v (1/9p)*/®. Then
N(M;) = E Q(d;, M)
4;

= Y Qd,M)+ Y QM)

d,<v, d,>v;

de
+ ) Cexp(——2‘—)

d;>v;

1
< Y exp(—(l - &) M; log%

d, <y

+ Cexp(-vf), forsomea € (0,a).

1
<v;exp|—(1—-¢)M; logg

If 4A(20)MiV Lo < (1/9p)°/®, then v; = (1/9p)*/° and we have
1)*° 1
_ (1 -&)M. log —
9p ) exp( ( 8) l Og 9p

1 ed /5
+ Cexp|—|— .
e -(55) )
Note that M, < log,,(1/9p)*/®, hence

1 ed /5 1 e/5 1
N _ —(1 - ) 1.
Cexp( (Qp) ) < (Qp) exp( ( e)M; log op ),

therefore,

N(M;) <

N(M,) <2( ! )5/5 ( (1= ¢) M, log — )
; — | exp|—(1—-¢)M,log—
(1.23) op o

1
< exp(—(l - 2¢)M; log %)
If 4A2A)MiV Lo > (1/9p)°/5, then v; = 4A(2A)M:Y Lo; it follows that
1
N(M,) < 4A(2A)M’VL° exp( —-(1 -¢e)M;log %)
+C exp( - (4A(2A)M‘VL°)a )
For sufficiently small p,

. 1
Cexp( - (4A(20)™V5)" ) < 4a(20)™ "0 exp(—(l — &) M, log %)~
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Thus we obtain
M,VL 1
(1.24) N(M;) <8A(20)" "™ exp|—(1 —¢e)M; log% .

Moreover, for i = n, it follows from (1.20) and (1.21) that we have
N(M,)< Y Qd,,M,)+ ¥ Q(d, M,)

d, <v d,>v,

n="%n

1 : 1
< Vn(8)\)3L?—ﬁ—5(2)\)3(M"VL°) exp(—(l — &)M, log %)

1 ’
+ CL?TI—geX})( —V,‘:).
If 4A(210)M-V Lo < (1/9p)¢/5, then v, = (1/9p)*/5. We have

1\¢/5 . 1 s 3¢/5 1
N(Mn)s(%) (81)° L3 775 (4)) (@) exp(—(l—e)Mnlogg)

1 1 ed' /5
+CL§—H,—38XP(—(§) )

5 1 48/5 1
=8L1?I—3‘ % exp —(I—E)Mn logg

1 1 ea’/5
3____ - —
+ CLngeXP( (Qp) )

16L3 . o 1 M 1 !
< _ —_ — -
< 9 exp| —( e)M, log 9

(1.25)

1g3
3 1 1
< LIT-I—?’eXP(_(l — 2¢)M,, log %)
If 4M(21)MV Lo > (1/9p)?/5, then v, = 4A(2A)M»V Lo and

1 1
N(M,) < 4)\(8)\)3L§E—5(2)\)4(M"VL°) exp( —(1-¢)M, log %)

1 a
(1.26) + CLﬁﬁ—gexp( ~ (4r(20) M 50))

1 - 1
< (8)\)4L‘}ﬁ—§(2A)4(M"VL°) exp( -(1-¢)M, log %).

Choose p, = po(A) so that (8A)4(21)*L0 <-1/(9p,)¢. Then, when p < p,(A), we
may rewrite the expression on the right-hand side of (1.24) and the last
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expression of (1.26) as follows:

1
8/\(2A)M"VL° exp( —-(1-¢e)M;log %)

= (8A(2A)Mi \Y% 8/\(2)¢)L°)exp(—(1 -&)M; log%)

1 \*M 1\° 1
(9—5) V(Q_ﬁ) )exp(—(l—e)Milogg—};)

L) 1= e)M, log —
<|lop| —(1-¢) ilog o

A

1 1
—(1-¢)M, log — + &M, log —
exp( (1-¢) jlog g +e ,loggp)

1
exp( —(1 - 2¢)M; log 9—5)
and, similarly,

1
(81)4(21)* ML exp| — (1 — &) M,, log 55)

= (8M)*((20)*M~ v (2/\)4L°)exp( _(1-¢&)M, log 51;)

1 1
< exp(—(l -e)M, log—él—) +eM, log—él—))

1
= exp(—(l — 2¢)M,, log —9-1—))
It follows from (1.22)-(1.26) that, when p < py(A),
1
N(M,) < Hexp(—(l — €)M, log —él—)),
fori=2,...,J,
1
N(M;) < exp(—(l — 2¢)M; log —él—))
I\;ioreover, for i = n,

1 1
N(Mn) < L:{—I{—3€){p(—(1 - 28)Mn log -9-1—))
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Therefore, it follows that

I
V(1) < Y N(M,) (whereI=HYV3L))
M=k,

1 1
< ) Hexp(—(l—s)Mllog—)
M=k, 9p

1
< Ha(p)exp(—(l —¢)k,log 51_7)

and, fori =2,...,J,
I

I 1
Vi)< Y N(M) < Y exp(—(l — 2¢) M, log——)
M;=k, M=k, 9p

1
< a(p)exp(—(l — 2¢)k; log %),

moreover, there is an n € {1,2,..., j} such that
I

1 1
V(n)<Li— X exp(—(l—Ze)Mn log——)
H m,k, op

1 1
< a(p)L?{Egexp(—(l — 2¢)k, log —él—)),

where
1

1
1_(9p)1—2e_1_3‘/17'

a(p) <

We finally obtain that

I<L,Y ILIIV(i)
1 ; 1
< Ll?g (a(p)) exp(—(l — 2¢)(ky + - tk;)log —él—))
Liya 1 1
< (a(p)) lezﬂ: exp(—(l — 2¢)L, log %)

Notice that L, < 1/p® = 1/p'/*, hence

1/p*/4
(a(p))" = (—1——)
1-3yp

Since when x € (0,1), 1 — yx < (1 — x) for all y > 1, thus when p is suffi-
q@ently small,

L, 1 et 1 _ 1
(a(p)) ™ < (“1 _ 3‘/1—)) < 1-— (1/p1/4)(3\/17) T 1-3p/
=1+ 0(p'*).
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Therefore

1 1
I<(1+ O(p1/4))L‘iF }'_;, exp( ~(1—2¢)L, log 5;)
As we pointed out earlier, II is bounded above by the same quantity. It follows

now that, when p is sufficiently small, p < py(A),

1 1
(1.27) P, <I+II<2(1+ O(p1/4))L‘§F Yy exp( —(1 - 2¢)L, log 5;)
For each j = 2,..., L, the number of possible different partitions {k,,..., k j}
of L, subject to the constraint k; > 1is equal to (L, — D!/[(j — DI(L,; — D!].
Therefore, the total number of all possible different partitions of L, subject to
the constraint k; > 1 is equal to ¥ ¥1,(L, — D!/[(j — DL, — D!], which is

equal to 2X171, Therefore, from (1.27), we have

P, = P(T is a (long) vertical connector in ¢§)

1 1
< (1 + O(pl/4))L‘i2LlI_I2 exp(—(l - 2¢)L, logg-l; .

The proof of Proposition 4 is now complete. O

It follows from Proposition 4 that, when p is sufficiently small, p < py(A),
L, 1
P(A) <2L, Y, exp{—(l —¢)L, log ——}
H=1 p

o

1
+2L, Y, (1+0(pY*))Li2M—;
H=L,;+1 H

1
exp{—(l ~ 2¢)L, log %}
1 1
(1.28) <212 exp{—(l - &)L, logl—)} + exp{-—(l ~ 2¢)L, 1og% + CLI}
1

< exp{—(l - 2¢)(1 -a(p))L, log;}

= { 1 - 2¢)(1 ! L 1 1}

= expi —(1 - 2¢)(1 - d(p)) 7 log 7,
where a(p), a'(p) = O(1/log(1/p)).

We have now concluded that the probability that a level 1 site is occupied
equals p;, where

1
pL<p; = exp{—(l - 2¢)(1 -a(p))L, log;}

1
- exp{~(1 - 20)(1 - ¢() 5 08 3 |.
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We will want to use this bound to estimate probabilities involving the
bootstrap percolation model at level 1. However, at level 1 the events that
different sites are occupied are not independent. To overcome this difficulty,
we notice that in future estimates we will not need to use the accurate value
py, but instead its upper bound p;. We will show that, for any set of level 1
sites x,[1], ..., x,[1], the probability that they are all V-occupied is bounded
above by p* and the probability that they are all H-occupied is also bounded
above by p%, which will be good enough for our purposes. First we consider the
case k = 2. Suppose that two level 1 sites x[1] and y[1] are V-occupied and
suppose that the corresponding squares of x[1] and y[1] at level 0 contain the
upper edges of vertical connectors I',(L,, H) and I,(L,, H') in V*, respec-
tively. I',(L,, H) and I(L,, H') are either completely separate or they are
adjoining. If they are completely separate, by the van den Berg-Kesten
inequality we have P(x[1] and y[1] are occupied) < p?, which is desired. The
problem arises when I,(L,, H) and I,(L,, H') are adjoining and the two
partition strips sharing their common border both are crossed by the same
internally spanned region I'; which satisfies the conditions (1.3) or (1.3') in the
definition of connectors; see Figure 3.

We will show that in this case P(x[1] and y[1] are V-occupied) < p? still
holds. Let 7; = {ky,...,k;} and 7y = {k;,4,..., k,,} be two speciﬁc partitions
for I, and I, respectively, that is, k; + -+ +k; = kJ+1 + -+ +k,=L; and
k;>1, for i=1,2,...,m. Strips S;, i=1,...,j—-1,j+2,...,m, are
crossed by disjoint internally spanned rectangles I whlch satisfy the condi-
tions (1.3) or (1.3') in the definition of vertical connectors. Strips S; and S,
share their common border and both are crossed by I'; (see Figure 3). This
means the combined strip S; U S, is crossed by I.

Consider the partition 7 ={ky,...,k;_1,k; +k;,1,kj s,...,k,} of the
region I, U T,. Notice that now all strips are crossed by disjoint internally
spanned rectangles. Hence the arguments we applied in the proof of Proposi-
tion 4 can be applied to I, U I,. In this case each of the two parts of the sum (I
and II) in the proof of Propos1t10n 4 is bounded above by L,X IT/_,V(?),
where

1
V(1) < Hexp| —(1 — 2¢)k, log %),

1
V(i) < a(p)exp —(1—2e)kilog%), 1=2,3,...,j—1,

1
V(i) < a(p)exp| —(1 —28)ki+110g§;), i=j+1,j+2,....m-—1

apd

1
V(Jj) <a(p)exp| —(1 — 2¢)(k; + k;,,)log 61;)’

where a(p) < 1/(1 — 3y/p) is the same as in the proof of Proposition 4. Also,
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] lﬁi

FiG. 3.

there exist at least j; € {1,2,. ,j} and j, € {j + 1,j +2,..., m} such that

1
V(j) <e(p)Liss I’E eXP( (1 — 2¢)k;, log g};)

and
s 1 1 1
V(Jjz) <a(p)L 3 exp (1—2s)kj2+llog§; .
Therefore,
1
I< L‘{—I_I—Z,L3 H’3 Y. (a(p)) exp{ (1 —2¢)(ky + - +ky)log 5;}

1 . 1
< (at(p))ZLIL‘iFL3 H’3 M exp{—(l — 2¢)(ky + + - +ky)log 5;}

o .1 1 1
< (1 + 0(p1/4)) 22(L1 DL‘i-I?z—L?F exp —2(1 - 28)L1 10g§; .
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Similarly, II is bounded above by the same quantity. This implies that the
upper bound of P(I; and T, are both long vertical connectors) is bounded
above by the product of the upper bound of P(T, is a long vertical connector)
and the upper bound of P(T}, is a long vertical connector). It follows that

(1.29) P(x[1] and y[1] are V-occupied) < p3.

This argument can be extended easily by a routine (but tedious) inductive
procedure to the case £ > 2. Namely, if x,[1], x,[1],..., x,[1] are & different
sites of level 1, then

(1.30) P(x[1], x5[1], ..., x,[1] are V-occupied initially) < p%.
The proof of P(x,[1], x,[1],..., x,[1] are H-occupied initially) < pf is much the

same. O

Because of these estimates and by the same argument we employed in the
proof of Lemma 1, we obtain the following corollary.

CoROLLARY 3. Suppose that T® is a w® X kY level 1 rectangle. Let
M=w®VvhrD m=wDA~rD, Then
P(I'D is weakly internally spanned) < ( pm)Y,
and hence
P(T'D is strongly internally spanned) < ( plm)M;
moreover,
P(T'® is internally spanned) < (4p,m)M"2.
ProOF. Only the third assertion needs a little further explanation. For
convenience we assume w® > AD, that is, w® = M, AV = m. As described in

the proof of Lemma 1, if we partition I'™ into w® disjoint vertical strips, then
each strip contains at least one occupied site (either H- or V-occupied). Denote

N = the number of those strips containing at least one V-occupied site,
K = the number of those strips containing at least one H-occupied site.

Then either N > M /2 or K > M /2. Assume without loss of generality that
N > M /2. Then, it follows from (1.30) that

M
P(T'Y is internally spanned) < ), Cjf (le)N
N=M/2

M
M2
< (pim) / Y Cy
N=M/2

< 2M(pm)™? = (4pm)™/2. u!
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Now we are going to continue our procedure inductively to define a boot-
strap percolation model on the level n lattice. Suppose the following, for some
n>2:

1. We have defined the level n — 1 lattice Z%n — 1] such that each site
x[n — 1] in Z%[n — 1] is a square region at level n — 2 with edge size
2[1 / 2p§"__21 ] — 1 level n — 2 units, and the corresponding region of the
level n — 1 origin O[n — 1] at level n — 2 is centered at 0[n — 2].

2. We have defined the concepts of a level n — 2 region being weakly inter-
nally spanned and strongly internally spanned.

3. We have defined the connectors at level n — 2 and thus defined the mean-
ing of occupancy and vacancy (also the meaning of V- and H-occupancy) for
a level n — 1 site and obtained that, for any set of % different level n — 1
sites x4[n — 1],..., x,[n — 1],

P(xy[n —1],...,x,[n — 1] are V-occupied) < p¥_, and

(1.31)
P(xy[n —1],...,x,[n — 1] are H-occupied) < p*_,,
where
. ) 1 1
Pp_1 = €Xp —(1 — 2¢" )(1 - a(pn—Z))—EnTIIOg
Pn—2 Pr-2
and

1
00|t )

To define the level n lattice from level n — 1, we repeat the same procedure.

Namely, each level n site x[n] is a square region at level n — 1 with edge
length 2|1/2p:” ;| — 1 (level n — 1 units). Similar to the case n = 1, at level
n>2if Inlis a w™ X A" rectangle, then its corresponding region I' at
level 0 is a w™L, X h"L, rectangle. Conversely, if I' is a w X h level 0
rectangle, then for each n there is a unique minimal w™ X A™ level n
rectangle I'[n], such that the corresponding region of I'[n] at level 0 contains
I'. Furthermore, we may choose appropriate n so that 1 <A™ v w™ <
2|1/2p:" ] - 1.

Let L, denote the edge size of the corresponding square region of a level n
site at level 0. Then L,/L,_, = 2[1/2pf,"_1] -1

We now define the sets V*[n — 1] and H*[n — 1] of connectors at level
n — 1 as follows (the coordinates and length unit are referred to the level
n — 1 lattice unless otherwise stated): Let

r 1 k L) L k L) L L 1+H
[n - ]_( "E)L ( +§)L X(yO_E’yO 2 ’

n—1 n—1

where %, y,, H are integers, H > 1, be a level n — 1 rectangle. For any given
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initial configuration n[n — 1] with respect to the level n — 1 bootstrap percola-
tion model, we call I'ln — 1] a short vertical connector at level n — 1 if
H<L,/L,_, and, in its partition into L, /L, _, vertical strips of unit width,
each strip contains at least one site which is V-occupied in n[n — 1]. We call
I'ln — 1] a long vertical connector at leveln — 1if H > L,/L, _, and it can be
partitioned into j, j > 2, vertical strips such that each strip S;[n — 1] is
crossed horizontally by a w; X h; rectangle,

e - e

n—1 n—1

1

1
X(yo—g,yo—§+H

)

such that the I)[n — 11,7 = 1,2,..., j, are disjoint, strongly internally spanned
by nln — 1] and satisfy at least one of the conditions (1.3)[n — 1] or (1.3)[n —
1]:

(1.3)n — 1] For i =1,2,...,J, let ¥, denote the y coordinate of the centers
of Ijin—1], 2, =y, —y,_1, and d, = lz;| — hy/2, d;, = |2;| —
(h,/2+ h,_,/2), i > 2. Let T; be the corresponding region of
Tln — 1] at level 0, o, = inf{t: £i"%" = ¢} and, for i =1,...,
Jj — 1,let ¢/, t > 0, denote the asexual contact process with death
rate 1 and birth rate A, confined to the right edge E; of the
corresponding region of S;[n — 1] at level 0, that is, E; is the
rightmost vertical 1 X HL,_; (level 0 length unit) strip in
the corresponding region of S;[n — 1] at level 0. Let the initial
state of ¢} be E,NT,, and r, = inf{¢: { N T,,, # ¢}. Then, for
i=1,2,...,j— 1,either o;,;, > d;, /41 0or 7, < d, . /4A.

(1.3)[n — 1] For each i = 1,2,..., j, let $7[n —11=8,_; 4[n - 1}, [[n -
1 =T ;4ln — 1], If = L ivn o = Oi—i+1s hY = Bj it w =
Wi_i+1 and sz:yj—iH- Let zf =y1T — Yo, di = lef| - h71‘/2,

2=yl —yI  and d¥ = |2¥| — (WT/2 + hT_,/2),i > 2. For i =
1,2,...,j—1, let f,‘ be the asexual contact process with death
rate 1 and birth rate A, confined to the left edge E of the
corresponding region of S7[n — 1] at level 0. Let the initial state
of {i be ET N T[T N 22, and 7F = inf{t: { N T%, # ¢}. Then, for
i=1,...,j — 1, either ¢%, > d¥, ,/4A or 7¥ < d}, /4A.

Note that conditions (1.3)[z — 1] and (1.3')[n — 1] are not quite the level
n — 1 analogues of conditions (1.3) and (1.3"), since the process ¢; and ¢} used
in (1.3)[n — 1] and (1.3')[n — 1] are still level 0 processes, as is the process ¢,.
. The horizontal connectors are similarly defined by rotating the x-y axes 90°,
and the collections H*[n — 1], V¥*[n — 1] are defined in the same way as in the
case n = 1.
Let x[n]be alevel n site and denote its corresponding square region at level
n—1 as A Y«x[n]). We regard x[n] as occupied if at least one of the
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following conditions is satisfied:

A®~D(x[n]) contains the upper edge of a vertical connector

1.32
(1:328) 0 vo[n — 1];
A®~Y(x[n]) contains the left edge of a horizontal connector
(1.32b)
in H*[n — 1].

As in the case n = 1, if a level n site is occupied due to (1.32a), we say it is
V-occupied, and if it is occupied due to (1.32b), we say it is H-occupied.

Now we state the following result, which is a generalization of Proposi-
tion 3.

PropOSITION 5. Let A € (1,%). Suppose T is a W X H rectangle at level 0,
Iln] is its corresponding region at level n with dimension W™ x H™,
Suppose W, H®™ > 2. Let I[n] be a (W™ — 2) x (H™ — 2) rectangle
properly contained in T[n] with the same center. For almost all initial
configurations n € €2, if T is significantly spanned at level 0, then at level n
there exists an internally spanned rectangle T1n] such that fn] cn]l cInl

ProoOF. Since the idea of the proof is essentially the same as in Proposition
3, we will only give a brief description. We prove it by induction. Proposition 3
proves that the conclusion is true when n = 1. Now we assume that n > 2 and
the conclusion is true for n — 1. We want to prove that the conclusion is true
for n as well. Suppose that we cannot find such a level n rectangle I'ln] as
stated previously. Then there exists a separation S[n] at level n which
separates both I'[n] and I'[n]. The first half of the proof is the same as in
Proposition 3. Without loss of generality, we may assume that S[n] is a
vertical separation with height H™ and width 1 (at level n). Let S[n — 1] be
the corresponding region of S[n] at level n — 1. We know that S[n — 1] has
height H™L, /L, , and width L,/L,_; level n — 1 units. Then S[n — 1]
does not contain any level n — 1 connectors at all. (For details, see the proof of
Proposition 3.).

By the definition of a level n — 1 connector, the preceding facts mean that
at level n — 1 we can find a strip S[n — 1] contained in S[n — 1] with height
H™L /L, _, such that it does not intersect any strongly internally spanned
level n — 1 rectangle satisfying conditions (1.3)[n — 1] or (1.3')[n — 1]. By the
induction hypothesis (namely, the level n — 1 version of Corollary 2), the
relationship between a level n — 1 region being strongly internally spanned at
level n — 1 and its corresponding region at level 0 being significantly spanned
is well-established. Therefore, the preceding fact means S[n — 1] can only
possibly contain occupied regions whose corresponding regions at level 0 will
be.vacated before any possible spreading from either side of the corresponding
region of S[n — 1] at level 0. Hence the corresponding region of Sln — 1] at
level 0 contains a region which will be vacated by time T =
max{W™L_, H®L, } and separate both the corresponding regions of I'[n]
and [{rn], and thus separate I'. Therefore I is not significantly spanned. O
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Analogous to the case n = 1, for a level 0 rectangle I' and its corresponding
region I'[n] at level n > 2, if the corresponding region of I'[n] at level 0
happens to be equal to I', then we can improve the result of Proposition 5 as
follows.

COROLLARY 4. Let A € (1,). Suppose I'ln] is a W™ X H™ rectangle at
level n, T is its corresponding region at level 0 with dimension WL, X
H®™L, . For almost all initial configurations n € &, if T is significantly
spanned at level 0, then T[n] is strongly internally spanned at level n.

Now we are going to estimate the probability of the occupancy of a level n
site. We use A, to denote the event that a given level n site x[n] is initially
occupied. As in the case n = 1, to evaluate P(A,), we need first evaluate the
probability that a level n — 1 rectangular region I'[n — 1] is a vertical connec-
tor. Applying the same method as in the Proof of Proposition 4 with ¢, p and
L, replaced by ¢, p,,_, and L, /L, _,, respectively, we obtain

P(T'"~D is a short vertical connector at level n — 1)

(1.33) { (e L, 1 }
<exp{—(1-¢&" og )
Ln—l DPn-1
P(I'™~D is a long vertical connector at level n — 1)
L, \* 1
<(1+O(pi* ( - )an/Ln—l—
(1.34) ( (Pn74)) L, , H?

{ (1 - 2¢e™) Ln 1 ! }
Xexp{ —(1 — 2¢" og .

L n—1 9p n—1
(Here we still use H to denote the vertical length of '™V, which is measured
in level n — 1 units.) Then, applying the same argument as used in evaluating
P(A)) in (1.28) with the same replacement, we obtain

L 1
P(A,) < exp{—(l - 26")(1 = a(p,-) 7 log }
(1.35) not not

n—-1 Dn-1 } ’
where a(p,_,), d(p,_,) = 01 /log(1/p,_,), € = ;. Hence,
p, = P(asite of level n is initially occupied) = P(A,)

1
- exp{—(l ~2")(1 = @(Py-1)) o log

. . L, 1
<p,= exp{—(l =~ 2e")(1 - a(pn_l))L— logp }

n—1 n—1

1
—expl —(1 - 2¢")(1 - d(p,_;))——lo .
XP{ ( ) (p 1))1):_1 gpn_1}
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The same argument as in the proof of (1.30) can be applied to the case n > 2,

and we can obtain that, for any k&, k > 2, level n sites x,[n], x,[n],..., x,[n],
P(xy[n],x5[n],...,x,[n] are V-occupied) < p?

and
P(xy[n], xy[n],..., x,[n] are H-occupied) < p%.

Also, the conclusions of Corollary 3 can be extended to the case n > 2 as
follows.

COROLLARY 5. Suppose that T[n] is a w™ X h™ level n rectangle. Let
M =w™ Vv A", m =w™ A h™. Then

P(T[n] is weakly internally spanned) < (p,m) M
and hence
P(T[n] is strongly internally spanned) < (p,m) M.

moreover,

P(T'[n] is internally spanned) < (4p,m) M7z,

This completes our block renormalization procedure.

1.3. Proof of Theorem 1. Let A, = (—L/2, L/2]? as before, 2P be
the state at time ¢ for the process with initial distribution £)2°? described as
follows: For all x € A, N Z? events {x € ¢, 7} are independent, P(x € £)©7)
=p, and all sites in £}-? N A9 are vacant. We first prove the following
lemma.

LEMMA 4. Let A € (1, ), t € [0, ) be fixed real numbers. Then there are
constants vy, C € (0, ) such that

(1.36) P({0 € &P} \ {0 € glver)) < Cexp(—ve).

Proor. Let £%#7 denote the state at time s for the system with initial
distribution £8»? described as follows: For x € A4, N Z%, events {x € £}
are independent, P(x € £3+P) = p and all sites in £8v? N A%, are occupied. It
is obvious that {0 € £7} \ {0 € 2P} C {0 € £7#P) \ (0 € ¢+ P}, hence we
need only to show

(1.37) P({0 € goP} \ {0 € £fveP)) < Cexp(—vt).

To prove (1.37), we define x, = (£%P, g2 P), 0 < s < ». Since £§0P D £ P,
we know by the discussion in Section 0 that ¢%#P(x) > ¢l P(x), for all s and
x. Thus x,(x) can only take three values: (0, 0), (1,0) and (1, 1). We will regard
in the system y, a site x as “occupied” at time s whenever x,(x) = (1,0) and
as “vacant” at time s whenever y,(x) ='(0,0) or (1, 1). Using this interpreta-
tion, it is clear that the initial state of the process y, is all sites in A%,, N Z?
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are occupied and all sites in A,,, N Z? are vacant. Furthermore,
{0 eglery N {0 € gforr} = {x,(0) = (1,0)} = {0 is occupied by x,}.

A little thought reveals that the death rate of the system y, is at least 1, and
the birth rate is dominated by that of the asexual contact process on Z2 with
birth rate A. Hence, if we denote {2 as the state at time s for the asexual
contact process with death rate identically 0 and birth rate A, starting with the
initial state that all sites in A,,, N Z? are vacant but all sites in A%,, N Z? are
occupied, then the process y, is dominated by {24, that is, y, C (X~ for all
s € [0, x). Therefore,

(1.38) P({0 € glvP} \ {0 € grovr)) < P(0 € ffav),
An important property of the asexual contact process is that for all s € [0, «),
(1.39) o< =P U (0ea),

x€ A%,

where (¥ denote the same process with 1n1t1a1 state {x}. [See Liggett
(1985), Chapter VI]. Let A; = A1 N Agpp Ao = Agppio N A4u+1, A, =
Apsin N Agsin_1 Then AS,, = US_,A,. For any x € AS,, N Z2, let 7(x) =
inf{s: 0 € {¥}. Then for each x € A, N Z2 by Lemma 9 of Durrett (1988),
there are constants C,y € (0, ») such that

P(r(x) <t) <Cexp(—y(t+n)),
and hence

e}

P(0 € {7, for some x € AY,,) = Y. P(0 € {7, for some x € A,)

S
oy

Ms

< 4Cn exp(—y(t +n)) = Cexp(—vt).

n

From (1.38) and (1.39) our assertlon now follows. O

Conclusion of the proof of Theorem 1. As a consequence of Lemma 4,
P(0 € ¢P) <P(0 € gMwrp) + Coexp(~yt).
Therefore, to prove Theorem 1, it suffices to prove that, for any fixed A > 1, if

p > 0 is sufficiently small (p may depend on A), there exists a constant ¢ > 0
such that, for all large ¢,
(1.40) p(o e gtAw,p) < %t“010g2A(1/P).

To prove (1.40), we notice that, if we cannot find any rectangle inside the
region A,,, with edge length greater than log,, ¢ which is significantly spanned
and contains the origin, then, by Lemma 3, with* very small probability the
origin will be occupied at time ¢. To be more precise, we let

E = {A,,, contains some rectangular region containing the
origin with length greater than log,, ¢ which is signifi-
cantly spanned}.
Suppose T is a significantly spanned region contained in A,,,. If the longer
edge length of T is less than log,, ¢, then, by Lemma 3 and the monotonicity
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property, the probability that I' is not completely vacated by time ¢ is bounded
by
3(log, t)exp{ — 20°6x9/%(log,, ¢) "*671}.
Hence,
P(0 € ¢faeP, E°) < 3(logs, £)? exp{ — 20821 2/%(log,, t)*91}

(1.41) 1 1
< 4 exp —c(log,, t)log; .

Thus, we need only to show that
1 1
P(E) < 1 exp{ —c(logs, t)log }—)}

To bound P(E), we will apply the results established in Section 1.2. Our
scheme is to rescale the original lattice up to level n, for some n > 0, so that at
level n the corresponding region of the square region A; (I =log,, t) has
“reasonable’ size. We will obtain a good upper bound of the probability that
the corresponding region of A; at level n is internally spanned, and then
Proposition 5 will give us the desired bound on P(E).

To execute our scheme, we first need to verify that the lattice size of level n
tends to infinity when n — . The verification is as follows: From the con-
struction given in the block renormalization procedure, we notice that

L, . 1 . 1,
—_ = j— Z_'__
L, 2p5° pi
{2(1 2)(1 '( ))11 1} 2> (1)
= exps € — 2¢ —d(p)) —Zlog—; — exp| — |-
p p p

Inductively, suppose we have shown, for some n >3, that L, _,/L, >
exp”~2(1/p*), where exp™)(-) stands for iterating the exponential function n

times, that is, exp®(-) = exp(-), exp®(-) = exp{exp(-)}, ..., and so forth. Then

L, 1 9
=~ —
L,y pria

n n—1 Ln—l 1

= exp{e™(1 = 26" )(1 ~ a(pn-2)) T ) log —— =2
L,_

(1.42) = exp{e(l -2e"" (1 - a(p,,_z))z—1 log F——l} -2

n—-2 n—2

n—1 Ln—l Ln—l
= exp{e(l — 2¢" ") (1 - a(pn_z))L—2 log 3 -2

1
> exp(”‘l)(}?).

Hence L,/L,_; — », as n > .
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Thus we may choose n such that [L, < log,, t < (I + 2)L,, 1™ is an
odd integer and

- 1.

1<I™<2

+1

2ps"

Let A™(I™) = (—1™/2,1™ /2]%. Note that the corresponding region of A; at
level n is (—(I™ + 2)/2,(I™ + 2)/2]2. Let AW(M™) = (-M™ /2, M™ /212
denote the corresponding region of A,,, at level n. Then

1.43) M®™ <
(143) M® < -

n n

4A(2/\)(l(n)+2)Ln 4A
—t =\ exp{(1™ + 2) L, log(21)}.

Note that

n—1

L, 1
pn=exp{—(1 - 2&™)(1 ——a(pn_l))i————logp },
' n—1

hence
1

n

1
log—=(1-2¢")(1 -a(p,_;))— 1o
g = )1 = a(pa-i)) g log

L

n n— n—1

n , 1
= [T -2¢)(1 - a(p;-1))L, log —,
i=1 p

where

1 i
a(po) =a(p) = O(W),

€

1
a(py) = O(M) <p

and

1 L\
a(pi)=0(m)_<_(z) , foralli=2,...,n.

By (1.42), L,/L,_, > exp®~ (1 /p®), for all i = 2,...,n; thus

1 1
y=0| —— a-nf - — 1i=2,...,n.
a(p:) O(log(l/pi))sexp ( pa)’ foralli=2,....n

Hence I[17_ (1 — 2¢°X1 — a(p;-,)) > b > 0. When p is sufficiently small, b can
be chosen independent of p. Therefore,

log(1/p,)

or < ——.
"~ blog(1/p)

1 1
(1.44) log — > bL, log —
pPr p
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It now follows from (1.43) that

(1.45) M®™ < (4—)‘)exp{jtﬂ(l(”)+2)logi
’ “\L, blog(1/p) Pa)
Denote

Py, = P(A(M ™) contains some rectangular region con-
taining the origin 0[n] with length greater than [
which is internally spanned).

By Lemma 2,

Py, < P(A™(M™) contains some rectangular region with
length between [I(,2]"™ + 1] which is internally
spanned).

Let [*™ e [I™,21™ + 1], and note that

2p,, 4
hence [™ < [*™ < 2 /pe""". By Corollary 5, we have
P(A™(1*™) is internally spanned at level n)

™ 8 e 1
)" n —ent
< (4p, ") < (p,,(p——m)) = exp{gl*( log(8p, 1)}

1 1
1<l(n)$2l n+1J_1< gntl _1’

€
n

(1.46)

_}__ <e —1(1—8'”1)1*(")10 1
’]]:_En+1 - Xp 2 g64pn

= exp{ — ll*(") log

1
sexp{—§(1—5"+1)l(")log 61p }

Note that
Py < (M™™ + 1))2P(A<")(l*(")) is internally spanned at level 7);
it follows from (1.45) and (1.46) that

64p, }
AA(I™ + 1) { log 2A 1 })2
Xp

1
PM < (M(n)(l(n) + 1))2 exp{—-i(l _ sn+1)l(n) log

1™ + 2)log —
3 bloa(ip) L TR

n

1
1.47) (1 — enty ™ ]
( Xexp{ 2(1 e"")1™ log 64pn}

1 1 1
<7 eXP{— 5 (1= e"")(1 —a*(p)) L™ log E}’

where a*(p) = Om.
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Recall (1.44): log(1/p,) = bL,, log(1/p). It follows from (1.47) that

4

1 1
(1.48) <7 exp{ —c(I™ + 2)L, log ;}

1

: exp{  ¢(logz, t)log })}
where c is a positive constant. By Proposition 5, (1.48) implies that
1 1
P(E) < 1 exp{ —c(log,, t)log I—’}
Therefore,
1 1
(1.49) P(0 € &P E) < P(E) < 1 exp{ —c(log,, t)log 1_7}
Combining (1.41) with (1.49) we finally obtain (1.40):

P(O c ft/\m».l’) = P(O c §tA4).tvp’ E) + P(O e gt/\wyp’ EC)

2

The proof of Theorem 1 is now complete. O

1 1 1
< —exp{ —c(logy, t)log; = Et—clogm(l/py

2. Proof of Theorem 2. To prove Theorem 2, it suffices to show that,
when A is sufficiently large, there is a constant ¢ € (0, 1), such that, for any
given B >0 and x € Z2, P(x € ¢2#) > ¢ for large t. By the monotonicity
property of the process, for each x € Z2, P(0 € ¢2f) increases when B
increases; thus we may focus our attention only on the case that g > 0 is
sufficiently small.

For any given 8 > 0, we let N be an odd integer such that N > 1/B. Recall
that Ay = (—N/2, N/2]%. Let ¢V#, t > 0, denote the type IV system with
spontaneous birth at rate 8 and initial state A, N Z2.

As in Section 0, for each x € Z2 we denote its neighboring sites {x — e,
x — ey} as pair 1, {x + e;,x — e,} as pair 2, {x + e;,x + e,} as pair 3 and
{x — e, x + e,} as pair 4. Let n{), ¢ > 0, i = 1,2, 3,4, be the systems with
death rate identically 1 and birth rate 5{")(¢) defined as follows:

; A, if the pair i is occupied, .
b(¢) = {O othervf/)ise 1e{1,2,3,4}.

The initial state n{ for each i = 1,2, 3,4 is Z2.

As we already discussed in Section 0, all of the preceding five systems ¢N'#
and n{, i = 1,2, 3,4, can be constructed by the graphical representation in a
common probability space (Q, F, P). Define x = (¢N'F, n), for t > 0. We
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regard a site x € Z? as occupied by x{* if x{)(x) = (1, 1), (1, 0) or (0,0), and a
site x € Z? is vacant for x if x{)(x) = (0, 1). Then, for each i = 1,2, 3,4, the
initial state of x(* is that all sites in Ay N Z? are occupied and all sites in
(Ay N Z2)° are vacant. For convenience, in what follows we will use “x € Xﬁi)”
and “x & xV” to denote “x is occupied” and ‘“‘x is vacant” at time ¢ in the
system x{? interpreted as before, and we use (x{)° to denote the set of sites
in Z2 which are vacant at time ¢ in the system x{”, although x{* is not a
set in Z2.

Let Q(i), i = 1,2, 3, 4, denote the ith quadrant of Z2, respectively. We will
first prove that, for i = 1,2,3,4, the probability that the set Ay N Q@)
remains entirely occupied by x(*, for all ¢ € [0, exp(2N?/3)], is large. This will
be used to show that, for i = 1,2, 8, 4, the probability that the set A, N Qi)
is entirely occupied by x(*, for all ¢ € [Ty, ,, exp(2(N + 2)?/3)], is large, where
Tyn.2 = exp(N?/3) + 1 + 2N 2 We will then conclude by induction that, for all
n=N,N+2,... and i = 1,2, 3,4, the probability that the set A, N Q(i) is
entirely occupied by x(?, for all ¢ € [T,, exp(2n?/3)], is large, where {T,} is a
time sequence such that

To=0 and T,—-T, ,=exp((n —2)"%) + 1+ %(n-2)°

forn=N+2,N+4,....
That will imply that with large probability the process £V'# will dominate

s

() N Q(i)) N A,

i=1

after time T, for all n = N, N + 2, ... . Since when A is sufficiently large, for
any given x € Z2, lim,_,_, P(x € n{") is strictly greater than 0, for all i =
1,2,8,4, it follows that for each given B >0 and x € Z2, lim,_, P(x €
£,(N:B) > ¢ > 0. Finally, we will prove that, with probability 1, there exists at
least one N X N square region in Z? which is entirely occupied by £ #; thus
by translation invariance and the result obtained for ¢N'# we will obtain the
desired result.
To achieve our goal we first introduce the following definitions.

DEFINITION. A function : [s, ¢] » Z2 is called an [s, ¢]-path if 7 is a step
function with jumps only to the nearest neighbors.

DEFINITION. A space-time set A c Z2 X [0, ) is called path-connected if,
for all (x,s),(y,t) € A, there exists an [s,t]-path 7 such that =(s)=x,
m(t) =y and (7(u), u) € A for all u € [s,¢].

We will focus on the coupled process x{" only. Analogous results can be
obtained for x{, i = 2,8,4, in much the same manner. Fix o € Q, for
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N

(2+1,0)

Fic. 4.

n=N,N+2,... and T > 0. Let

G(n,T) = (—g- - 1,—%) X (—% - 152"-) % [0,T],
) 3

n n
H(n,T) = (—5 -1,5

Hy(n,T S (=3 L sqor

o1 = (-5.5)x (-5 -3) <011

We illustrate the cross sections of the preceding sets intersected by the plane
t = 0 in Figure 4. We now claim the following.

LEMMA 5. Fix 0 €9, let s €[0,T], V(T) = U, ;o 1(xP) X {t) and
V(N, T)=V(T)N((-N/2 -1, N/2)? X [0,T)). Suppose there is a y, €
Ax N Q1) such that y, & xV. Then there exists a path-connected set A =
Urer o Ac X {8) © VN, T) such that A, X {u} € G(N,T) U H(N, T) N Z2
and A; X {s} 2 (y,, $).
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Proor. By the definition of x(V, for any x € Z2%, if x € x¥) but x & xV,
the only possibility is that x & ¢¥'f, x & 7{¥ and, at time ¢, x is replenished
by 7" but not by £N'#. This means that x — e; € n¥, x — e, € 0¥ but
either x —e; € (NP or x — e, (VP and thus either x — e, &y or
x— e, & x L.

Note that the initial state (" = Ay N Z%; it follows from the preceding
argument that there emsts t, € (0, s) such that Yo € X5, ¥ & XV, for all
t € (t,s],and y; & x{7, for y; =y, — e, or y, — e,. Apply the same argument
to y,: we find £, € (0, ¢,) such that y, € X2, y1 & x{Y, for all t € (t,,¢,], and
ys € x{, for y, =y, —e; or y, — e,. By the fact that X = Ay N Z? this

procedure can be continued until we obtain a time sequence 0 < ¢, < -+ <
t, < s and a set of sites {y,, ..., y,} in Z2 such that,fori = 1,...,k,y,_; € X(l)
Yio1 € X0, for all t € (¢,,¢,_,], and y; & x{P, for y, =y, , — el or y,_; — €.

Moreover, (y,,t,) € G(N,T) U H(N,T) N 'Z2. Tt is easy to observe that the
preceding procedure produces a path-connected set contained in V(N,T)
which contains (y,, ¢,) and (y,, s). [A path-connected set produced as before
will be simply called later “a y-vacant path starting from (y,, ¢,) and ending
at (y,, $)”.] The proof is completed by letting u =¢,. D

COROLLARY 6. Fix w € Q. Suppose that for any u,s € [0,T], u < s, there
is no path-connected set A = U te[u,s](At X {t}) ¢ V(N, T) such that
(A, x{u})n(G(N,T) UH(N,T)) # ¢
and
(A, X {s}) N (G(N,T) UH(N,T) n Z2) * ¢.
Then Ay N Q(1) remains entirely occupied by x, for all t € [0, T].

Let ®,(N,T) denote the event described in the hypothesis of Corollary 6.
Let ®,(N,T) denote the analogous events correspondmg to the systems x,
for i = 2,3,4. By Corollary 6 we know that if N#_,®(N,T) occurs, then
Ay N Q(i) remains entirely occupied by x for all ¢ [O, Tland i =1,2,3,4.

We would like first to prove that P(N % ,®,(N,exp(2N?/?))) is large. In
order to do so we introduce the following lemma.

LEMMA 6. Suppose A is sufficiently large. For n =N,N + 2,... and
i=1,2,3,4, let

K(i,n,T) = [ T]((Zz\n“))x t})m(A x [0,T]).
telo,

Let A c K(i,n,T) be a path-connected set. Then, for any real number y > 0,
P(S(A) >v) <n®’Texp{—a(A)vy},

where a(A) is an increasing function of A independent of n and T and, for
sufficiently large A, a(A) > 0; S(A) denotes the surface area of A with respect

w
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topu =vXAon Z2 X [0,), where v is the counting measure on Z? and A is
Lebesgue measure on [0, «).

This result is implied in the proof of Theorem 1 in Durrett and Gray (1990).
The key to the proof is to define a ““vacant dual process” for #¢{) and then to
apply the “contour method.” We will take it as granted. ’

By the description given in the proof of Lemma 5, a y™-vacant path
contained in V(N,T) can only start from the sites in the lower or the left
boundary of A,., and it can only go up or right. Similar behaviors about
x®-vacant paths, i = 2, 3,4, also can be obtained easily. Therefore, if a x®-
vacant path contained in V(N, T') enters Ay N Q(i), i = 2,4, it will stay there
until it reaches A, N @(1). Analogous consequences can be drawn for y®-
vacant paths, i = 2,3, 4, as well.

Now we assume without loss of generality that the event

(®,(N, exp(2N%?)))*

occurs before any of the events (®,(N, exp(2N?2/3)))°, i = 2, 3,4, occurs. Then
there is at least one yV-vacant path 7 contained in V(N, T') starting from the
sites in G(N,exp(2N?2/3)) U H(N,exp(2N?/3)) and ending at the sites in
G(N,exp(2N?/3)) U H(N, exp(2N?2/3)). It follows from the argument dis-
cussed in the preceding paragraph that there are two possibilities:

1. 7 entirely lies in one quadrant, namely, m C Ay, o, N Q(i), for some i €
{2,3,4};

2. m=m, Umy, where m; =71 N AN, s NQMB), mo =7 N Ay, o, NQGE), I =2
or 4, and both 7, and m, are connected paths with length at least 1.

Note that S(7) > N/2, hence in either case there is at least one i € {2, 3, 4}
such that S(7w) N Ay, N Q) = S(7)/2 = N/4. Since none of the events
(®,(N,exp(2N2/3)))¢, (i € {2,3,4)), has occurred, it follows that there is an
n®-vacant path 7*(i) such that 7*(i) coincides with 7 N Ay, N Q@) and
thus S(7*(i)) > N/4. Applying Lemma 6 we now obtain the following corol-

lary.

COROLLARY 7. Suppose that A is sufficiently large. Then
4

(2.1) P( U (®,(N, exp(2N2/3)))c) < CNZ%exp(2N?/3)exp{ —a(A) N},
i=1

and thus

. 4 .

(2.2) P( N CDi(N,exp(2N2/3))) >1 - CN%exp(2N?/3)exp{ —a(A) N},
i=1

where C is a positive constant and a(A) is the same as in Lemma 6.
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Combining Lemma 5 and (2.2) we obtain
P(for i = 1,2,3,4, Ay N Q(i) are entirely occupied by x{”,
(2.3) for all ¢ € [0, exp(2N?/3)])
>1 - CN?exp(2N?®)exp{ —a(A)N}.
Based on the preceding results we are now going to prove the following

proposition.

PROPOSITION 6. Suppose that A is sufficiently large. Then

P( fori=1,2,38,4, Ay, N Q(i) are entirely occupied by x{",
forallt € [Ty, exp(2(N + 2)*°)])

2 (1 - exp{—3a(M)(N + 2)})(1 - exp{-3a(2)VN}),
where Ty, , = exp(N2/3) + 1 + IN?2,
In order to prove Proposition 6, we need to introduce some preliminaries.

We will still focus on the case i = 1.
For n =N,N+2,..., let G(n,T) and H(n,T) be as before. Let

, n n n n
G(n,T) = (5,“2— + 1) X (—5 - 1,5 + 1) X [O,T],
, n n n n
H(n,T) = (—E - 1,5 + 1) X (‘2—,5 + 1) X [O,T]
Then
(Ayaz ™ Ay) X [0,T] = G(N,T) U H(N,T) U G'(N,T) UH'(N,T).
Let

)

n n
Il(n)=(§,§+l)>< 2

I(n) = [—\/17, —%) x (%% + 1).

See Figure 5 for illustration.
Recall the sets D, = {(x, S,(x)): n > 1} and B} = {(x, U,(x)): n > 1} intro-
duced in Section 0. Define, for each x € Z2 and % € {0, 1, ...},
J(x, k) = {there is an s € (k, k& + 1] such that (x,s) € B}
and (x,t) € D, for all ¢t € (k, k + 1]},
E(N, k)= [\ Jd(x,k), Ey(N,k)= [ J(x,k).
x€I(N) x€Iy)(N)
Let E(N) = U,x(E(N, k) N EXN,k)), where K=K(N)=1{0,1,...,
|exp(N?/3)|}. We first claim the following lemma.
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—~Y=-/%

FiG. 5.

LEMMA 7. P(E(N)) > 1 — exp{—exp(N2%/3/2)}.

Proor. Since, for each site x € Z2 and %k € {0, 1, ...}, the probability that
there is an s € (k, & + 1] such that (x, s) € B¥ is equal to 1 — e™#, and that
(x,t) & D, for all t € (k, k + 1] is equal to e~ !, it follows that

P(J(x,k)) =e (1 —e7P).

For each k €{0,1,...}, the events J(x, k), x € Z? are independent. Hence,
when B is sufficiently small, for each &,

2/N

P(Ey(N, k) N Ey(N, k)) = 272N (1 - oy _ (l B — 1)

e ef
()= (4 ()"
el+B = =

3N

3

exp{ —2VN log3N}.

Notice that the events E(N, k) N EyN, k), k=0,1,..., are independent.
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Therefore,

P(E(N)) =P U (BN, %) 0 Ey(N, 1))

~1- P () (BN, ) 0 Ey(N. B))')
keK

>1-(1- exp{—2VN log3N})lK|,

where |K| denotes the cardinality of K, which is equal to |exp(N2/3)]. Since
1 — x < e %, it follows that

P(E(N)) > 1 — (exp{—exp{—2/N log3N}})™
= 1 — (exp{—Klexp{—2VN log3N}})
=1 — exp{— |exp(N??)|exp{—2VN log3N}}
=1 — exp{ —exp{| N*/?| — 2VN log3N}}

> 1 — exp{—exp(N?3/2)}. O

ReEMARK. Notice that if E(N, k) N Ey(N, k) occurs, then for all x €
I(N) UIN), either xP(x)=(1,1) or x(x)=(1,0) at time ¢t =Fk + 1.
Lemma 7 concludes that the probability that E (N, k) N E,(N, k) occurs for
some k € K(N) ={0,1,..., |exp(N%?)|} is large.

Recall that
v(T)= U ((x®) x{8);

£€[0,T]
let
V*(N,T) =V(T) = V(T) N (Anse X [0,T]).
Let

and _
I}(N) = (—g -1, —W) X (ﬂ,ﬁ + 1).

Let x, = (N/2 + %,0), 2, = (0, N/2 + 3). We now claim the following lemma.
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LeEmMmA 8. Suppose that A is sufficiently large. Let W(N,T), ®(N) and
O*(N, k), k € K(N)={0,1,...,|exp( N?/3)|}, be the events described as fol-
lows:

W(N,T)={fori=1,2,3,4, Ay N Qi) is entirely occupied

by xP, forall t €[0,T]}
O(N) = {for any u,s, 0 <u <s <|exp(N?3)] +1 + N2,

there is no path-connected set U, u’s](At X {t})
C V¥(N,exp(2N?/3)) such that (A, X {u}) N
(G(N,exp(2N?/3)) U H(N,exp(2N?%®)) # ¢ and
A, X{s}N{x, — e, xy—ey,2) — €,2, — €3} * P);

O*(N,k) ={for any u,s€(k+1,k+1+N?], u<s,
there is no path-connected set U,c(, (A, X
{t) c V*(N, exp(2N?/3)) such that -either
(A, X {uD NIF(N) X[+ 1, K+ 1+ N2+
¢ and (A, X{sP)N{x,—e;,x,— ey} #¢ or
(A, Xx{whNIFN)X[k+1,k+1+N2?]=+
¢ and (A, X {s) N{z, — e}, 2z, — e,} # ¢}.

Let k* = k*(w) = inf{k: E(N, k) N E,(N, k) occurs}. Then

{k* € K(N)} =E(N) = U (E(N,k) NEy(N,k)).
keK

Let E(N) = W(N,exp(2N2/3)) n O(N) N {k* € K(N)} N ©*(N, k*). Then
P(Ap.o N Q(1) is entirely occupied by x{"
forallt € (k* + 1+ §N* k* + 1+ N*)E(N))
>1— 2exp(—bN),

where b is a positive constant.

Proor. Since W(N, exp(2N2/3)) occurs, it suffices to show that

P(N/2,N/2+ 1) X (- 2, N/2)U(-1/2,N/2 + 1) X (N/2,
. N/2 + 1) N Z? is entirely occupied by x(V, for all t €
(B* + 1+ 2N% k* + 1 + N?)|E(N))

>1-2exp(—bN).

Under the condition E(N), if a spontaneous birth occurs at site x, at
t=1y ¥+ 1<7y<k*+ 1+ N2 x, will remain occupied by x* at least
until ¢ = k* + 1 + N2 After that happens, if a spontaneous birth occurs at
site x, + ey at t =7, 7 <7, <k* + 1 + N2, then x, + e, will remain occu-
pied by x( at least until ¢ = k* + 1 + N2. This procedure will continue until
the last site (N/2 + 3, N/2 — 3) is hit by a spontaneous birth at time
t=1yn,9-150 Let og=7y—(*+ 1, oj=7,—7,_,, j=1,...,N/2 - 3.
Then oy,...,0y5/5_1/, are iid. random variables with common distribution

exponential with mean 1/B8. Therefore, by the large deviation principle, for
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V & > 0, there exists a b'(¢) > 0 such that

< exp(—%b’(s)N);

1
in particular, we may choose ¢ = 1 and denote &' = b'(1). Then
1 1 1

Note that N > 1/B8 and B is sufficiently small, hence
Plog+oy+ " +oyp 102 IN?) < exp(—3b'N).
Therefore
P((N/2,N/2 + 1) X (— 3, N/2) N Z? is entirely occupied by
xO, for all t € (k* + 1 + 2N? k* + 1 + N?)|E(N))
> 1 — exp(—3b'N).
Similarly, we may obtain that
P((— L, N/2 + 1) X (N/2,N/2 + 1) N Z? is entirely occupied
by xV for all t € (B* + 1 + INZ k¥ + 1+ N?|E(N))
> 1 — exp(—3b'N).
Therefore,

P(N/2,N/2 + DX (-3, N/2)u (- 3, N/2 + D X
(N/2,N/2 + 1) N Z? is entirely occupied by x{, for
all t € (B* + 1+ 2N% k* + 1 + NOIE(N)

>1 - 2exp(—3b'N).
The conclusion follows by letting b = 3b'. O

When A is sufficiently large, from (2.3) we know that
(24) P(¥(N,exp(2N?/?)))>1- CN?exp(2N?%)exp{—a(A)N}.
It follows from Corollary 7 that
(2.5) P(O(N)) = 1—- N%(exp(N*?) + 1+ N2)*exp{—a(A)N}.

By an argument similar to that employed in the proof of Corollary 7, combined
with Lemma 7, we obtain

P({k* € K(N)} n @*(N, k*))

N2/3 9
>1- exp{—e:ip( 5 )} — (N?)" exp{—a(A)VN}

(2.6)

N2/3
=1- exp{—exp( 5 )}— N*exp{-a(A)VN}.
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Therefore, it follows from (2.4), (2.5) and (2.6) that
P(E(N)) = P(¥(N,exp(2N*?)) n O(N) n {k* € K(N)} N 0*(N, k*))
> 1 - CN?exp(2N?/3)exp{ —a(A) N}
— N%(exp(N?/%) + 1 + N2)2 exp{ —a(A)N}
N2/3
- exp{—exp( 5 )} — N*exp{—a(A)VN}
>1 - 4N*exp{—a(A)VN}.

PROOF OF ProPOSITION 6. Combining Lemma 8 and (2.7), we obtain

P@3 k € K(N) such that Ay,, N Q(1) is entirely occupied
by XV, forall ¢ € (k + 1 + 3N% k + 1+ N?))

> (1 - 2exp(—bN))(1 - 4N*exp{—a(A)VN})
>1— 2exp(—bN) — 4N*exp{—a(A)VN}
>1 - 5N*exp{—a(A)VN}.
Similarly, we may obtain the preceding conclusion for i =2,3,4 as well.
Therefore,
P(for i=1,2,3,4, 3 ke K(N) such that Ay,, N QG) is
entirely occupied by x{, for all te(k* + 1+ 3N?
E* + 1+ N?)

>1 - 20N*exp{—a(A)VN}.
By the strong Markov property, we may apply the same argument as in the
proof of Corollary 7 and (2.3) to the process x{, i = 1,2,3,4, for ¢ > k* +
1 + 2N? and obtain that
P(for all i = 1,2,3,4, 3 k € K(N) such that Ay,, N QG)
is entirely occupied by 9, for all te€ (k* + 1+
2N?2 exp[2(N + 2)*/°])

> (1-C(N+1)° exp[2(N + 2)7*|exp{ —a(A)(N + 2)})
X(1-20N* exp{—a(A)VN}).
Note that 1 < k < |exp(N?/3)]; it follows then that
P(forall i = 1,2,3,4, Ay, N @(i) is entirely occupied by x{,
for all t € Ty, exp{2(N + 2)”%)))
> (1- C(N + 1)* exp{2(N + 2)**Jexp{-a(V)(N + 2)})
x(1- 20 N*exp{—a(A)VN})
> (1 - exp{—za(A)(N + 211 - exp{—3a(A)VN}),
where Ty, = exp(N?3) + 1 + N2 O

(2.7)




284 H.-N. CHEN

By the Markov property we may iterate the procedure employed in the
Proof of Proposition 6 inductively and obtain, for all n = N+ 4, N + 6,...,

P(foralli = 1,2,3,4, A, N Q(i) is entirely occupied by x{,
for all ¢ € (T,, exp(2n?/3}))
(2.8) > (1 - exp{—3a(A)VN})(1 — exp{-3a(M)VN + 2}) ---
X (1 — exp{~a(A)Vn — 2})(1 - exp{—3a(A)n})
> 1 — 2VN exp{-3a(A)VN},

where T,, n =N + 4, N +6,..., are so defined that T, — T,_, = expl(n —
2)?/3] + 1 + 2(n — 2)%. Notice that, for each n € {N,N+2,...}, T,.5 €
(T, exp[2n?/3]); hence (2.8) implies that

P(forall i = 1,2,3,4, A, N Q(7) is entirely occupied by x{?,
(2.9) forall t € (T,,x))
> 1 - 2VN exp{-3a(A)VN}.

For any given x € Z?, thereis an N, € {N, N + 2,...,} such that x € Ay, N
Q(7) for some i € (1,2, 3,4}. Without loss of generality we may assume i = 1.
It follows from (2.9) that

P(x € x{", forall ¢ € (Ty,,®)) = 1 — 2VN exp{—3a(A1)VN}.
That is,
P((¢MP(x), (%)) = (1,1), (0,0) or (1,0) for all ¢ € (Ty,,))
=1 - 2VN exp{—3a(A)VN}.

By Theorem 1 of Durrett and Gray (1990), when A is sufficiently large,
lim, ,, P(x € n{V) is strictly greater than 0. Therefore, it follows that there
exists ¢ € (0,1) which is independent of 8 such that lim,_,, P(x € ¢¥F) > c.

Our final step of the proof of Theorem 2 is to claim that, with probability 1,
there is at least one N X N square region in Z2 such that it is entirely
occupied by ¢2# at time ¢ = 1. Then, by the Markov property and translation
invariance and the preceding results, we finally conclude that for any given
B> 0,lim, ., P(x € ¢»F) > c, provided A is sufficiently large.

PROOF OF THE CLAIM. Partition R? into N X N square regions and situate
those squares so that one of them has the origin as its center (this one is
actually A y.) Remember that N is an odd integer; thus, if the square regions
are so situated, their centers belong to Z2. Let Y be a subset of Z2 which
consists of all centers of the previously mentioned square regions. Then each
of those squares can be denoted by Ay, for some y €Y.
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Recall the sets D, and B defined in Section 0 and the definition of the
event J(x, 0):
J(x,0) = {there is an s € (0,1] such that (x,s) € B} and
(x,t) & D, for all ¢ € (0, 1]}.

Forx€Z?and y € Y, let
E,= (| J(x,0).

7 XEAN,,
In the proof of Lemma 7 we have already shown that
P(J(x,0)) =e }(1—e#).
The events J(x,0), x € Z?, are independent; hence, for each y € Y,

P(E,)) = e ¥'(1 - e~#)™

et -1\ [ g \M B\ 1\
=) =) = (5] = () o

Since the events E, y €Y, are independent, it follows from the Borel-Cantelli
lemma that

P(UE)-1.

yeY
The proof of Theorem 2 is complete. O
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