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ON THE POSITION OF A RANDOM WALK AT THE TIME OF
FIRST EXIT FROM A SPHERE

By PuiLip S. GRIFFIN! AND TERRY R. McCONNELL?

Syracuse University

Let T, be the first time a sum S, of nondegenerate i.i.d. random
vectors leaves the sphere of radius r. The spheres are determined by some
given norm on R? which need not be the Euclidean norm. As a particular
case of our results, we obtain, for mean-zero random vectors and each
0 <p <wand 0 < ¢q < », necessary and sufficient conditions on the distri-
bution of the summands to have E(||Sr | — r)? = O(r?) as r - ». We also
characterize tightness of the family {||Sy Il — 7} and obtain other related
results on the rate of growth of || ST II. In particular, we obtain a simple
necessary and sufficient condition for IIST Il/r -, L

1. Introduction and statement of main results. We study the posi-
tion of a d-dimensional random walk at the time of first exit from a sphere of
radius r. In particular, for mean-zero walks, we obtain necessary and sufficient
conditions for the moments of the overshoot to be bounded independently of r.
One interesting aspect of this work is that the spheres need not be based upon
the udsual Euclidean norm. Indeed all of our results hold for an arbitrary norm
on R°.

Let X, X,, X,,... be nondegenerate i.i.d. R%valued random vectors with
distribution function F and set S, = L7_;X;. Let || || be some given norm on
R? (we reserve the symbol || ||z for the usual Euclidean norm), and let
T, = min{n: ||S,|| > r}. Broadly speaking, all of our results concern the rate of
g‘rowth of IIST | relative to r, as influenced by the distribution of X. The
relevant influence of the distribution is measured by four fundamental func-
tions: G(A) = P(I X > A), M(A) = A7 E(X; |1 XIl < VI, K(A) = A7 2E(1 X1
X1l < A), and A(A) = M(A) + G(A) + K()). It is also convenient to introduce
Q(A) = G(A) + K(A) = A72E(]| X|| A A)?. The importance of these functions
can be seen from the estimate

(1.1) ET. =~ h(r)™"

of Pruitt [10]. (See also the paragraph following Lemma 2.3.) Here, and
elsewhere in this paper, two variable quantities A and B are related by =
and said to be comparable, if there are constants ¢ and C such that cA < B <
CA.
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In Section 3 we begin our investigation by studying the size of ISy |l
relative to powers of r. For example, we give necessary and sufficient condi-
tions for sup,>1(EIIST II”/r?) < o for all 0 < p < q < » (Theorem 3.3). The
case p = q is the most’ interesting and can be viewed as giving conditions for
E(|Sy | — r)P = O(rP). This leads naturally to more precise results on the
overshoot Sy |l — r. As a first step in this direction, we show in Theorem 3.5
that

ISzl —r
_T

(1.2) " »
if and only if

. [G(r)
(13 li“( h(r) ) -

Our remaining results, the principal ones of this paper, all deal with
stronger conditions than (1.2). Before describing these results, we would like
to discuss the role of the three terms in the function k. Each measures aspects
of the distribution function which have differing effects on the rate of growth
of ISz IIl. In the relatively crude measures of this growth discussed above, only
the large jumps, controlled by G/h, are important. On a finer scale, diffusion
and drift, associated respectively with K and M, become important. When M
is the dominant influence (e.g., when the X, have nonzero mean), the study of
St |l is very closely related to renewal theory, and there is a sizable literature,
even in higher dimensions. (See, e.g., [1] and [5], and the references cited
there.) We will focus on the phenomena which arise when M does not
dominate, that is, when h = Q. This occurs, for example, when X is symmet-
ric or, by Lemma 2.1, when EX = 0 and X € L?, a case studied in dimension
d = 1 for the one-sided overshoot by Lai [9].

In order to state our main results, we need to introduce an exit condition
which we shall refer to as condition (E);

The family ——— has no subsequential limit supported

Sr
IIST I
on a closed half space.

(E)

We shall always, in the following, assume that the X, are genuinely d-dimen-
sional, that is, have probability distribution not supported in any affine
hyperplane. For L2 random variables, this is equivalent to assuming a nonsin-
gular covariance matrix. Finally, recall that a random vector X is said to
belong to weak L? (WLP?) if sup, . (r?G(r) < o.

THEOREM 1.1. For genuinely d-dimensional random vectors and 0 < q <
p A 2, the following are equivalent:

(1.4) E(1Sy)l =)' =0(r?) asr— and (E),
(1.5) X e WL**?"¢ and EX=0.



EXIT OF RANDOM WALK FROM A SPHERE 827

The case 2 < q < p is less interesting and is dealt with in Theorem 6.2.
Next, we consider the limiting case of Theorem 1.1 as ¢ — 0. Note that if we
formally set ¢ = 0 in (1.4) and (1.5), the result is not quite right.

THEOREM 1.2. For genuinely d-dimensional random vectors and 0 < p <
o, the following are equivalent:

(1.6) sup E(IISg Il - r)p <® and (E),
0<r<eo
(1.7) E|X|**? <o and EX=0.

We also settle the limiting case of this latter result as p — 0.

THEOREM 1.3. For genuinely d-dimensional random vectors, the following
are equivalent:

(1.8) {18 11 - r}rzo is tight and (E),
(1.9) E|X|I?<» and EX=0.

Several remarks are in order about these results, each of which states the
equivalence of a probabilistic and an analytic condition.

REMARK 1.4. It is perhaps not immediately apparent that all of these
results deal with the situation where A = @. We could have assumed this as a
side condition, but there is no need since conditions (1.4)—(1.9) all imply 2 = @
(recall EX =0and X € L2 imply & = Q).

REMARK 1.5. If we assume EX = 0 as a side condition, then it may be
deduced from Theorem 1.2 that for 0 < p < o,

(1.10) supE(lI8yl - )" <o iff EIX|**" <,

r>0

thus giving the necessary and sufficient condition mentioned in the opening
paragraph. The reason we have chosen not to phrase our result in this form is
that Theorem 1.2 is more general. In addition, assuming a finite first moment
as a side condition seems unnatural for 0 < p < 1 in (1.6).

REMARK 1.6. It is well known that the behavior of the one-sided overshoot
in one dimension depends heavily upon whether EX = 0 or EX # 0. Since we
have not placed any side conditions on our random vectors, one expects that
some condition needs to be added to the various bounds on the overshoot in
(1.4), (1.6) and (1.8) to ensure the validity of our results. This is the role played
by condition (E). It is a probabilistic condition which ensures that M does not
dominate (see Proposition 4.5). Observe that in dimension 1 it simply states
that the walk exits from both ends of the interval with positive probability;
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more precisely,
liminf (P(Sy, > 0) A P(Sy, <0)) > 0.

It is an interesting problem to determine an analytic condition equivalent to
(E). It is not sufficient for example to assume EX = 0, even in dimension 1
(see Example 7.1). If (1.2) is assumed, then we are able to show that (E) is
equivalent to A = @ in dimension d = 1, thus confirming that in some sense
(E) is the right condition in our setting. For this and the higher-dimensional
analog, see Corollary 4.8. If condition (E) is omitted in (1.4), (1.6) and (1.8),
then Theorems 1.1-1.3 all break down. This is a consequence of standard
results on the overshoot for nonnegative random variables; see, for example,

[71.

REMARK 1.7. It is clear that the analytic conditions (1.5), (1.7) and (1.9) are
all independent of the norm. This is because all norms on R? are comparable.
Note, however, that this is not obvious for probabilistic conditions (1.4), (1.6)
and (1.8) since the exit time 7, depends on the norm. Indeed we do not see
how to prove this independence directly.

ReMARK 1.8. In dimension d = 1 the implication (1.7) = (1.6) follows from
known results. In [9] Lai proves this for integer p and the overshoot of a
one-sided boundary. The two-sided result (1.6) is an immediate consequence
for such p. Other values of p may be handled by using the results of [2]. Lai’s
method is to reduce to the case of nonnegative variables by passing to the
ladder height process. This approach, of course, does not extend directly to
higher dimensions.

The plan of the paper is as follows. Section 2 is devoted to notation and
some preliminary results. In Section 3 we study the rate of growth of the
moments of [|Sy, || relative to powers of r, and in Section 6 we study the rate of
growth of the moments of ISz Il — r relative to powers of r. Section 6 also
contains the proofs of Theorems "1.1-1.3. In Sections 4 and 5 we collect various
subsidiary results according to topic. Section 4 contains results pertaining to
condition (E), while Section 5 concerns bounds on the occupation times of
annuli. Finally, Section 7 presents two examples which show that various
hypotheses cannot be weakened.

2. Notation and preliminary results. Recall that the symbol || || stands
for an arbitrary given norm on R?, and || ||z stands for the Euclidean norm.
Since we are working in finite dimensions, these norms are comparable, that
is, we have

(2.1) p izl < llxlle < pllxll

for some constant p > 1. We use the symbol (x, y) for the usual inner product
of vectors x and y. The symbols B(x;r) and Bg(x;r) denote the open balls



EXIT OF RANDOM WALK FROM A SPHERE 829

centered at x of radius r based upon the given and Euclidean norms respec-
tively. Their boundaries will be denoted by dB(x;r) and dBg(x;r), their
complements by B(x;r)° and Bg(x;r)° and their closures by B(x;r) and
By (x; 7). The Euclidean unit sphere will be denoted by S¢~™.

Given x € R% 0 S? ! and B <[0,1], let T,(0,B)={y: {y —x,0) >
Blly — xllg}. Thus T,(6,B) is a closed solid cone with vertex at x and axis
pointing in the direction 6. The number B is the cosine of the angle at the
vertex between the axis and any generator of the cone. For v > 0 let

(2.2) L.(0,B8,v) =T.(6,8) N {y:llx =yl > v}.

The functions G, M, K, @ and h associated with the distribution of the
random vector X have been defined above in Section 1. We shall often use the
following elementary properties of these functions which the reader may easily
verify (also see [10] and [11]): @ is nonincreasing and v2@(v) is nondecreasing;
h satisfies a doubling condition,

(2.3) %h(v) < h(2v) <ch(v), v>0,

for some constant c. (Throughout the rest of this paper, ¢ will stand for a
constant which may change from line to line.) @ also satisfies (2.3). One
further useful property is that if G(v)/Q(v) — 0, then Q is regularly varying
with exponent —2; for this see [7]. When the norm is the usual Euclidean
norm, we will denote the functions by Gg, Mg, Kz, Qg and Ay respectively.

LEmMa 2.1. Suppose EX =0 and lim,_(G(r)/Q(r)) = 0. Then
lim, , (Q(r)/h(r)) = 1.

Proor. For r > 0,
IEX1(I1X]l < r)I = IEX1(IX ] > )l
<EIXI1(IXI>r)

= rG(r) +j:°=rG(u)du

<rG(r) + sup QEZ; LirQ(u)du

G(u)
~rG(r) + sip Q%) rQ(r),

since Q is regularly varying with exponent —2; see [7]. Thus M(r)/Q(r) — 0.
Hence

.. Q(r)
ll'l"!l)lilf 0 > 1.

Since Q(r) < h(r) for all r, this proves the lemma. O
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LEMMaA 2.2. We have E(Q(IXI)) ™! < « if and only if E|| X||* < .

Proor. If E|X|®> < o, then Q(\) ~ (E|X|*A~2 as A — o, hence
EQUXIN™! < .

Now assume E(Q(|X|))~! < «. Then E[K(|X|D™%; | X|| > ¢] < » for some

¢ > 0. Let f be the right-continuous inverse of the tail probability function of
X1, X||> e Since

-1
flfz(t)(flfz(u) du) dt < o,
0 t
we have by the dominated convergence theorem,
-1
[ro([riw d) d-o
a t
as 0 <a<b- 0. But

1

by 1, -1 [2f2%(u) du
[rro(frwa) a|1- f:lfz(u)du)'
Thus

(fblfz(u) du)(j;lfz(u) du)—1 -1

as 0 <a < b — 0. From this we may conclude

EIXI? = *P(IXll < ¢) + [ f*(u) du < =. 0
0

An analog of the above argument for series is given in [12], Exercise 11,
page 79.

LeEmMA 2.3. There exists a constant ¢ > 1 such that for all r > 0,
¢ h(r) < hg(r) <ch(r).
Proor. Fix r > 0. Then
Q(r) = r2E(IIXI A r)?
= p2r2E(p X A p~ir)°
<p?r2E(IX g A p~ir)’
= Qg(p”'r)

<p 2QE ( r) ’
since v2@y(v) is nondecreasing. Thus

Q(r) <p*Qg(r).
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We now consider two cases:

Case 1: M(r) > 2p>Q(r). Then
M(r) =lr'EX1(IIXllg < r) + r Y(EX1(I1XI < r) — EX1(I Xz < )l
<pMg(r) + r'ElXI1,,
where
A=(IXllsr)a(lXllg <r)
and A denotes symmetric difference. But A c (p~r < || X|| < pr), hence
r'El X1, < pG(p~'r)
<pQ(p~'r)
<p’Q(r)
< :iM(r).
Hence M(r) < pMg(r) + 3M(r), that is, M(r) < 2pMy(r). Thus
h(r) =Q(r) + M(r)
< p*Qg(r) + 2pMy(r)
<(pV 2)’hg(r).
Case 2: M(r) < 2p3Q(r). Then
h(r)=Q(r) + M(r)
< (2p3 +1)Q(r)
< (20 + 1)p?Qg(r)
< (203 + 1)p%hg(r).

Thus if we take ¢ = max{(p Vv 2)% (2p® + 1)p3}, then for any r > 0, A(r) <
ch g(r). By interchanging || - || and || - ||z we obtain (for the same c)

hg(r) <ch(r). a

Observe that (1.1) for an arbitrary norm can now be easily deduced from the
corresponding result for the Euclidean norm (Theorem 1 of [10]). This is
because

Bg(x;p~'r) € B(x;r) C Bg(x;pr)

and £ satisfies (2.3).

Next we use (1.1) to obtain some growth rates on ET, relative to powers
of r.

LemMa 24. (D IfFXe WL, 0<t<1l;orXe WL, 1<t <2, and EX = 0;
orXelL!t=1,and EX = 0, then liminf, , ET./r' > 0.
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(i) If X € L? and EX = 0, then

ET,
liminf —" > 0.

r—o r

Proor. If0 <t < 2and X € WL, then
Q(r) = ['2uG(u) du = O(r™).
0
If0 <t <1and X € WL/, then

M(r) <r! Ax"guxu dF(x)

<r [ G(u)d
rf=0(u)u

u

=0(r™),
which, by (1.1), proves the first part of (i). If EX = 0, then
M(r)=r7Y[  xdF(x)
lell>r

<r! dF
r Luwllxll (x)

=G(r) + 77" [(G(u)du.

Thus if 1 <t < 2 and X € WL?, the second part of (i) follows from G(u) =
O(u™).If t =1 and X € L', then we use E||X| = [fG(u)du < = to obtain
the result. Part (ii) follows similarly. O

We will need two of Wald’s identities, which we list here for ease of
reference; let S, be a sum of i.i.d. random vectors X; with mean EX; = u and
finite variance E| X, — ull% = o2 Let {F,},., be an increasing sequence of
o-fields such that F, 2 o(X;, X,,..., X)) and such that o(X,,,) and F, are
independent for n > 1. If T is a stopping time relative to F, and ET < ,
then

(2.4) ES; = uET
and
(2.5) Var(Sy) = o?ET.

A convenient reference for both results is the textbook of Chow and Teicher
[3]. The first identity is Theorem 1 on page 137 and the second is Theorem 3
on page 139. (While these results are stated for the one-dimensional case, they
carry over to higher dimensions with essentially the same proofs.)

The remainder of this section is devoted to preliminary geometric results.
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LEMMA 2.5. There exists a covering of R? by a finite number of closed cones
each with vertex at the origin, say {T;}[L,, such that for some constant a > 0
and every 1 <j < m,

lx + yll = llxll + alyll ifx,y €T;.
Proor. Fix x,y € R Let h € (R, || [D* satisfy ||kl = 1 and h(x) = ||x]|.
Then
lx + yll = h(x +y)

= llxll + h(y)
xlyllz  xlyllg
—llxll + Ry -
Y7 Uxlly  lallg
llxll lyll 2 xlyllg
=l + ———— + Ay - —=F
||x||E ||x||E
x|yl z
> llxll + p~2llyll + h|y — :
lxllg
Observe that
. xllyll g <” _ xllyll g
Y7 Maliz )| lxlz
< x||y||E
P Talle ||,
lyllz 12
= plllyl — 2(x, )= + llyll%
e
(x,y) 2
= 2Vllyllgl1 - =22
e N P
<x,y> 1/2
< 2122|yll1 - —2
P Izl zly
Hence
<x,y> 1/2
2.6 I+ yll > llxll + {p=2 — 2V202(1 — ——22 | ||yl
(2.6) y p P\ ey

Now choose B € (0, 1) so that for all § € S¢~1, if x,y € ['(6, B), then

(x,5) = (1 - (80%) )llxlglyllz-
In particular, by (2.6)

llz + 3l = llzll + (202) iy,
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It is now easy to produce the desired cover of the form {I'(6;, )}/, by
means of a compactness argument. O

LemMma 2.6. For x € B(0;1) let d(x) denote the Euclidean distance to
dB(0; 1). Then for any B € (0,1] there isa § = 8, € S?~! so that

(2.7) I(6, B, pB~"d()) € B(0;1)".

Proor. Fix z €dB(0;1) so that d(x)=|x —zllzg. Let 6 =(z —x)/
lz — x|lgz. Then the linear functional ¢(y) = (y, 8) satisfies

#(y) <¢(2), y€B(0;1).

This follows from a general result in convex analysis (see, e.g., [8], pages
87-89). But it is then easy to check that if y € I' (6, B) satisfies ||y — x|l >
pB~1d(x), then ¢(y) > ¢(2). This implies (2.7). O

REMARK 2.7. We shall use the result of Lemma 2.6 in a different form. Fix
B €(0,1] and let y = p?8~L. Then for any r >0, any 0 < u < r, and any x
with r — u < ||x|| < r, we claim

r.(6,8,yu) cB(0;r)° for some g € S¢~1.
If ||x|| < r, then this follows directly from Lemma 2.6 and the observation

d(r'lx)y<r! <pr i« <prlu.

E

r
X —r— - —x

(EF] [EF]
If ||lx|l = r (u = 0), then we obtain the desired conclusion by taking for 8 the
outward unit normal to any hyperplane which supports B(0; r) at x.

LEMMA 2.8. Let w be a Borel probability measure which is genuinely
d-dimensional, that is, w(H,) <1 for any hyperplane H,, and which has
mean 0, that is, [x;w(dx) =0, j =1,2,...,d, where x; is the jth coordinate
function. Then the origin belongs to the interior of the convex hull of the

support of w.

Proor. Let C denote the convex hull of S = support(w). If the assertion
were false, we would find ¢ € (R%)*, ¢ # 0, such that ¢ > 0 on C. (See [8],
Corollary 4B, page 15.) But

[o(x)w(dx) =0,

implying that ¢ vanishes w-a.e. Since ¢ is continuous, ¢ must vanish
identically on S, and so w({x: ¢(x) = 0}) = 1. This contradicts the fact that w
is genuinely d-dimensional. O

3. The rate of growth of [|Sy |l Let P* denote the probability measure
under which the random walk starts at x € R%; thus P*(S, = x) = 1. We will
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write P for P°. For Borel subsets A of R? and r > 0 let
Ur(A) = Z P(”Sk”* <r, Sk EA)
k=0

where [|S,|I* = max, _; _,IIS;|l. Thus U,(A) is the expected number of visits to
A before time T,. The following proposition is basic to our approach.

ProposiTiON 3.1. Foranyr > 0 and any A > 0,

P(ISgll—=r>a)= [  P(IX +xl>r+2)dUy(x).

llxll<r

Proor. This is a straightforward computation:

P(ISzll = r > )

TMs TDs

P(lISpll>r+ A, T, = k)
1

P(IISll>r + A, IS, _4lI* <)
1

Yy | P(IS > r+ A S, _4lI* <7, S,_, € dx)
k=1

lxll<r
=Y PUX +xll>r+M)P(S,_I* <r, 8,_; € dx)
r=1"llxll<r
=f P(IX + xll>r + 1) dU,(x). 0
llxll<r

Since [, <,dU(x) = ET,, we obtain:

COROLLARY 3.2. For A > 1 we have

IS
r

P(IXI> (A + 1)r)ET, < P( > ,\) <P(IIXIl> (A — 1)r)ET,.

This result is quite useful in conjunction with (1.1) and leads immediately to
results on the rate of growth of ”ST,”-

THEOREM 3.3. For 0 <p < q < © we have

L
su ® 7 su
L oon TR (r)

[ 7161 da < .
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We also have that {ISy |I° /r9), ., is uniformly integrable if and only if

lim sup

©APTIG(A) da = o.
£o0 5 rqh(r) j;gr)q/p ( )

Proor. We have by Corollary 3.2 that

ElIS, I 1 ISl
r — P 1
r? rq_pj;)p P( r A) i
2° ISyl
pP—q p-1
< —r +r pf A P( " )t) dA

e (X
< 2PpP~9 4 pP qp[ AP7IP|— > /2| dA ET,
2

= 2PrP9 + pET,27r~7 [ AP 'P(IX||> 1) dA.

Similarly,

ElSy|I”  pET,
ra = 9P

r=e [APTP(IXI > 2) dA.
2r

Thus the first statement of the theorem follows from (1.1) and (2.3). The
statement about uniform integrability is proved by a similar estimation of
E(Sy 1P /re; IS7 I” > (¢7)?) for large £. O

As an immediate consequence of Corollary 3.2 and (2.3), we also have what
may be regarded as the limiting case of Theorem 3.3 as p = g — 0.

THEOREM 3.4. {I|Sy Il/7}, ., is tight if and only if

G(¢r)
lim sup

= 0.
£owpn1 h(T)

The final result of this section gives the necessary and sufficient condition
for ”ST," /r—,1as mentioned in Section 1.

TueEOREM 3.5. We have

ISl-r G(r)
————r— —)p 0 lff }2101071-(—'-’— =
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Proor. By Proposition 3.1, for any ¢ > 0 we have

P(ISgll—r>er)= [ P(IX +xll> (1 +¢)r) dU,(x)

llxll<r

< j” P(IXIl> er) dU,(x) = G(er)ET..

xll<r

On the other hand,

P(ISp )l - r>r) = f P(IX + x|l > 2r) dU,(x)

lxll<r
> P(IIX|l > 3r)ET, = G(3r)ET,.
The desired result now follows from (1.1) and (2.3). O

4. Results related to condition (E). For the rest of this paper we will
be primarily interested in stronger conditions than (1.2). In this section we will
study condition (E) and in particular obtain an analytic characterization of it
when (1.2) holds.

The first result is a technical strengthening of condition (E) which will be
used later. The proof, involving a straightforward compactness argument, is
omitted.

LEmMMA 4.1. Assume (E); then there exist B > 0 and n > 0 such that
(4.1) liminf inf P(S; €Ty(8,B))=n.

ro© ge Sd—l
We shall occasionally need a stronger exit condition than (4.1).

LEmMMA 4.2. Suppose EX = 0 and E|X||? < ». Then for every B €1[0,1)
there exists m > 0 such that (4.1) holds.

We will only sketch the proof since it is a standard application of an
invariance principle.

Let T be the covariance matrix of X and B(¢) be Brownian motion with
covariance matrix I'; that is, B has all the usual properties of Brownian
motion on R? except that B(1) is normally distributed with mean 0 and
covariance matrix I'. Let Y,(¢) = (1/r)L j’:‘fX . By combining Theorems 2.2.6
(page 168) and 1.6.5 (page 31) of [6], it is not difficult to show that

Y,(-) » B(*) asr— o, weaklyon D([0,x)).

For any path w € D([0, ©)), let 7, = inf{z > 0: lw(#)]| > 1}. For f € C(3B(0; 1)),
let f(r8) = f(8) be its radial extension. Then

Ef(Yr(TY,)) - Ef(B(TB))-
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But Ef(Y(rY ) = Ef(Sy /ISy, |D. Thus the law of Sr, /ISy, || converges weakly
to the exit distribution (harmonic measure) of B on dB(0; 1). It then suffices
to show that this harmonic measure has a strictly positive density relative to
surface measure a.e., or, by making an orthogonal linear change of variables,
that ordinary harmonic measure (i.e., with respect to standard Brownian
motion) has this property on the image of B(0;1). Since the latter domain is
easily shown to be Lipschitz, the desired result follows from the well-known
result of Dahlberg [4].

Since condition (E) plays an important role in our results, the remainder of
this section is devoted to obtaining a better understanding of it and its
relationship to the overshoot. We begin by showing that, in dimension 1,
bounds on the overshoot can imply (E).

ProposiTION 4.3. Ifd =1, EX =0 and E(ISy| — r) = o(r), then
(4.2) P(Sy,>0) - ;.

Proor. Since ES; = 0 by (2.4), we have
E(ST,; ST,. > O) = _E(ST,.; STr < 0).

Thus
E|Sr| = 2E(Sy; Sp, > 0) = 2rP(Sy, > 0).
Hence
E(IS;| —-r
LT;——Z > 2P(8y, > 0) - 1,

from which we have that
limsup P(Sy, > 0) <

r—>00

[N

The same argument shows
limsup P(Sy < 0) <

r—o

(SIS
-

which proves (4.2). O
We obtain the following result by a similar use of Wald’s identity.
PrOPOSITION 4.4. Suppose d = 1, EX = 0, and X is bounded below. Then
liﬂiilfP(STr <0) > 3.
Proor. We have

E|S
1< ISz

P(Sy <0),

where | - |l denotes the L” norm. The desired result now follows by letting
r—oow 0

2 r+1X1(X < 0)ll..
= — . 2
~E(ISp,); Sy, < 0) < -
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In higher dimensions, E|lSy || — r = o(r) does not imply condition (E). As
illustrated by Example 7.2 below, this can be due to the fact that Sz /IS |l
may have weak limit points which are not genuinely d-dimensional. To
prevent this, we will later sometimes impose the following strong nondegener-
acy condition:

E(K6, X)Xl <7
(4.3) lim inf « 7 Xl <r) >0 forallg e S9-1
roo  E(IXI% 11X < r) /

Although we will not need it, we should point out that (4.3) is equivalent to the
seemingly stronger

E(0, X)% I1XIl < r)
liminf inf o3
row gegd-t E(IIXI% 11X <r)

This is proved by a compactness argument. It is also interesting to note that
E(|Sy,| — r)? = o(r?) does not imply (E) even in dimension 1 if 0 <p < 1.
This can be seen from Example 7.1. i

We now come to our first result which directly links condition (E) to the
analytic condition h = Q.

ProposITION 4.5. Assume (E) holds. Then h =~ Q.

ProOF. Assume there is a sequence r, — « such that
Q(ry)
h(ry)
Let H, be the half space given by
H, = {x: (x, EX1(II Xl < r,)> < 0}.

(4.4) - 0.

We claim that
(4.5) P(STr,, S Hk) -0,

which combined with Lemma 4.1 proves that (E) fails. To prove (4.5), we begin
by observing that for any ¢ > 0,

{ {
P(STrker) <P|T, > A +P|Sy, €H,,T, < h(rk))
<P|T. > d + P{IS,Il > r,, S, € H, some n < d )
U R(r) * * — h(r)
<P|T, > ‘ + P{IU,l>r,, U, € H, some n < d )
=T R mT R T " h(n)
+ Pl X <
I X,Il > r, some n < R )

=1+ 1I + III,
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where
U, = ilxil("Xi” <r,).
Letting [-] denote the greatest integer function, we have
I=P(IS/nerpl™ < 74)

c
< —
4
by (1.2) of [10]. Next

{
III <

h(ry)

Q(ry)
<{ -

h(ry)
by (4.4). Finally, by definition of H, and Doob’s inequality for nonnegative

submartingales,

P(IXI> r,)

0

{
I<P >rp!
II < (IIUnIIE rep~ ', U, € H, some n < h ) )

< P(IIUn — EU|lg > r,p ' some n <

)

= (o)’
¢ LEIXIPI(IXN < ry)
= P
h(ry) ry
{Q(ry)
4 b d
=P h(ry) 0

by (4.4). Combining the estimates for I, I and III, we have for any ¢ > 0,

. c
IITEEPP(STr,, S Hk) < 7

Letting { — « proves (4.5) and completes the proof. O

The following result, in dimension d = 1, can be viewed in part as a
converse to Proposition 4.5 when (1.2) holds (see Corollary 4.8 for this and the
higher-dimensional analog). We have not formulated it this way since the
stated result is interesting in its own right, and will be used in this form in
the proofs in Section 6. Note that it relates an analytic condition (4.7) which is
just slightly weaker than (1.9) (see Remark 4.7 below) to a probabilistic
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condition (4.6) which should be contrasted with (1.8). By comparing with
Theorem 3.5, it also illustrates the effect that assuming condition (E) can have.

THEOREM 4.6. The following two statements are equivalent:

”STr" -r
(4.6) — T 7 0 and (E) holds,
. G(r)
(4.7) EX =0, lim T)— =0 and (4.3) holds.

ProOF. Suppose (4.6) holds; then combining Theorem 3.5 and Proposition
4.5, we have

G(r)
Q(r)
It then follows that E[|X|| < «; see [7]. If u = EX were not 0, the one-dimen-

sional random walk {(u, S,) would drift to +=, contradicting (E). To prove
(4.6) = (4.3), first note that (4.6) and Lemma 4.1 give

<0’ ST >2
liminf inf E|———;IIS;ll<2r|>0.
r r

row gegd-l

(4.8) lim 0.

Since || X;ll < 8r on {Sy | < 2r} for j = 1,...,T,, there is a constant ¢ > 0
such that for every § € S¢~! and all r large,

T, 2
(4.9) E 6, X)H1(I1X; 1l < 3r)) > er?.

j=1

Next, by (4.8), Lemma 2.1, (1.1) and (2.3), we have
1
;IIE(X; IXI| < 3r)IET, - 0 asr — .

It then follows from (4.9), (2.4) and (2.5) that for large r,
E({8, X)*; Xl < 3r)ET, = cr2.

Finally we deduce (4.3) from (1.1) and (2.3).

To prove the converse, (4.7) = (4.6), first note that (1.2) holds, by Theorem
3.5, so it is enough to show that (E) holds. For this it is enough to show that
for any given § € S?~! there exists & > 0 such that

(4.10) liminfP(<0, Sy > 8r) > 0.

r—o
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Define X by

X = X
J 3r—L, if | X;|l>3r
ix I
and set S, = 7=1X ;. Note that S, and S, have the same exit time from
B(0; ) and
(4.11) P(8y, # Sr,) < P(ISy,l > 2r) - 0

by (1.2). Thus it suffices to prove (4.10) with S;,_replaced by S, . Observe also
that by (1.2), §T /r and Sy /|ISy || have the same weak limit points. Now by
(2.4),

IES,, I
r

(4.12) < (3G(3r) + 3M(3r))ET, - 0

by (1.1) and Lemma 2.1. Thus by (2.5) and (4.12),
E<6,8; )  Var(<e, X)) E6, XY
— > ET. = ———

r r2

" > - ET, + o(1)

E({8, X)% Xl < 3r)
=¢ r2h(r) +o(1)

as r — . Hence by Lemma 2.1, (2.3) and (4.3), there is a constant ¢ > 0 so
that

€9, 87,
E——5—=>c
r

for all r sufficiently large. Since also ||Sy l/r < 4, it follows from a well-known
reverse Chebyshev inequality (see, e.g., [7] page 152) that for each § € S~!
there exists a & > 0 such that

(4.13) lim inf P(\<8, $7,)1 > &r) > 0.

But by (4.12) any weak limit point Y of §T /r must satisfy EY = 0. This
together with (4.11) and (4.13) forces (4.10) to hold, since if not there would

exist a weak limit ¥ and a 8 € S ! such that (Y, 8) is nondegenerate,
E(Y,0) = 0and PKY,6)>0)=0.0

ReMARK 4.7. Recall that a one-dimensional random variable X belongs to
the domain of attraction of the normal (X € D(2)) if and only if
lim, , (G(r)/Q(r)) = 0. Thus, in dimension d = 1, Theorem 4.6 asserts that
X € D(2), EX = 0 is equivalent to (4.6). In higher dimensions (4.7) is equiva-
lent to the existence of a sequence a, such that S,/a, is tight and all
subsequential limits are genuinely d-dimensional Gaussian.



EXIT OF RANDOM WALK FROM A SPHERE 843

COROLLARY 4.8. In the presence of condition (1.2), condition (E) is equiva-
lent to h = @ and (4.3).

This follows from Proposition 4.5, Theorems 4.6 and 3.5 and the remark in
Section 1 that M dominates when EX # 0.

CoROLLARY 4.9. Suppose (4.6) holds. Then every subsequential weak limit
of St /ISy |l is genuinely d-dimensional and has mean 0.

This follows from the proof of Theorem 4.6.

We have characterized (1.2) analytically in Theorem 3.5 and (1.2) together
with (E) in Theorem 4.6. It is an interesting and natural problem to character-
ize (E) analytically by itself.

5. Bounds on occupation times. For 0 <a <b <r let U(a, b) denote
the expected occupation time of the annulus e < ||lxl| < & by S,, prior to time
T,.. Thus

U(a,b) = fasnxusde’(x)'

In this section we obtain upper and lower bounds on this and related quanti-
ties.

ProrosiTION 5.1. Assume (E); then for every r > 0 and every 0 <u <r,
we have
cP@n<T,IS,I€[r-u,r])
h(u)

U(r—u,r) <
where c is independent of u and r.

Proor. For notational convenience, assume that the random walk is given
as the canonical process on sequence space (R?)*; thus S,(w) = w(k) for
we R Fix r>0and 0 <u <r. Choose B8 >0 as in Lemma 4.1. Let
v = p28~1! as in Remark 2.7. Let

r=inf{ln>0:r—u <|S,ll<r},
o =inf{n > 0: IS, — S,ll > yu}

and define
TI =T,

o,=(7°0,) + 1,
The1 = (1'°0¢k) + oy,

Opi1=(00°0, )+ Thurs
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where 6, are the usual shift operators defined by (6,w)(k) = w(k + n). Ob-
serve that

T,
Ur(r - u, r) = E Z l[r—u,r](”Sn”)
n=0

o C’k/\Tr
=E Z Z l[r—u,r](”Sn”)
k=1 1,AT,
® oy,
=< Z E Z l[r—u,r]("Sn”); Tr > Tk
k=1 Th
< Y E(o, - T, > 1)
k=1

|
™Ms
=
&=
_SIJ
3
~N

. >1,)  (strong Markov property)

= ¥ ET,,P(T, > 7).
1

Now again by the Markov property, for any j > 1,
P(T, > 7;,,) < P(T, > 0;)
= E(PSTJ(T, >a); T, > Tj).
Butif r —u <llxll<r,
P¥(T,.>0)=1-P*T, <o)
<1-P*(IS,lII>r)
<1-P*(S, € L,(6,B,y1)),

where 6 is chosen as in Remark 2.7. Now by Lemma 4.1 there exists n > 0
such that

P*(S, € T,(9,8,yu)) = P°(Sr,, € To(6,B)) = m,
provided u is sufficiently large. In that case
P(T, > 7;.1) < (1 = n)P(T, > ;).
Hence for u sufficiently large, say u > u,,

U.(r—u,r) <ET,P(T,>7) ¥ (1-n)"""
k=1

P(T.>
( r 71) ETyu
n
cP(T,. > 1,)
h(u)



EXIT OF RANDOM WALK FROM A SPHERE 845

by (1.1) and (2.3). Finally, if 0 < u < u,, then a slight modification of the
above argument gives

¢P(T,. > 7,)

h(u,)
h(w) \ P(T. > r,)

(offi’uoh(uo)) h(x)

P(T, > 1)

h(w)

U(r—u,r) <

<c

O

LEMMA 5.2. Assume EX = 0, E||X|® < » and that ISg Il = 7}.5 o is tight.
Fix B €[0,1). Then forall 6 € S® ' and 0 <u <,

C
dU.(x) > ——,
'/I‘lelelr—u,r] (=) h(u)
xely(6,B)

where ¢ > 0 depends on B but not on 0, u or r, provided u and r — u are
sufficiently large.

Proor. Fix B < B, <1 and let I'; = '\(, B;). By Lemma 4.2 there exists
& > 0 such that

P(Sy en) =3,

r—2u/3

provided r — 2u /3 is sufficiently large. By tightness,

2u u o
p(isy,_, Ji- (r - ?) =)< 2,

provided r — 2u/3 and u/3 are sufficiently large. Hence if z and r — u are
large,

2u u 0
(5.1) P(Sn el and |IS,ll € (r— ?,r— 5) for somen < T, | > 3
Let
2u u
A= {xel‘lzllxlle (r— ?,r— —3—)}
and

To(8,B;r—u,r)=Ty0,B) N{y:r—uc<lyl<r}.

Then for x € A a little geometry shows that for some { > 0, independent of r
and u,

B(x;{u) cTy(0,B8;r —u,r).
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Set T, = inf{n: S, € A}. Then by the Markov property,
| dU,(x)

llxllelr—u,r]
xeTly(6,B)

> [ ¥ P*S,eT,(6,B;r—u,r);n<T,)P(Sp, €dx; T, <T,)
An=1

> jA Y. P(S, € B(x;{u);n < T,)P(Sy, €dx; T, < T,)
n=1

> ET,,P(T,<T,) >

c
h(u)
by (1.1), (2.3) and (5.1). O

REMARK 5.3. The tightness assumption may be omitted in Lemma 5.2
since, as we show later in the proof of Theorem 1.3, it follows from the other
assumptions.

If we had Theorem 1.3 at our disposal, the next proposition would be an
immediate consequence of Lemma 5.2, since the hypotheses are equivalent.
However, in order to prove Theorem 1.3 we need the following result.

ProposITION 5.4.  Assume {|Sy |l — 1}, ¢ is tight and (E) holds. Let 6, €
S4-1 gnd B, €[0,1) be given. Then there exist a sequence R, —» © and
constants ¢ > 0 and u, > 0 so that

c
dUg (x) = , Ug<u<—.
'II.IxIIE[R,,—u,R,‘] 2 (%) h(u) 0 2

x€Ty(6,, By)
Proor. Choose B;, B, such that B, < B, < B, < 1, and let T'; = ['(8, B,).
We will construct the sequence R, so that for some 8 > 0 and all n,
(5.2) P(Tg, =1,) 239,
where
7, =min{n: S, € D,}
and

D, = B(O; %’-) u (Iy N B(0; R,)).

As in the proof of Lemma 5.2, this together with tightness shows that for u
and R, — u sufficiently large and u < R, /2,

N >

P(S,€Asomen <Tp) =

)

where A = {x € T: lzll € (R, — 2u/3, R, — u/3)} as before. The proof of
the proposition is then completed exactly as in Lemma 5.2.
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To prove (5.2), let r, 1 be such that S /IIST | -, Y, for some
dB(0; 1)-valued random variable Y. Note that ST /T —> Y also, by the
tightness assumption. Since condition (E) holds, Y is genulnely d-dimensional.
Also EY = 0 by Corollary 4.9. Let w be the probability distribution of Y and
S the support of w. Then by Lemma 2.8 the convex hull of S contains an open
neighborhood of 0. Choose a vector vy # 0 in this neighborhood such that
Uo/"vo” = 0,.

There is a finite collection 6,,...,6, € S €dB(0;1), and p; >0, j=
1,2,...,m, with ¥ 7", p;= 1, such that Vo = LT ,p,0;. By considering ratio-
nal number approx1mat10ns to the p;, it is easy to see that there are positive
integers a,...,a, and M, and a vector v (close to v,) so that v € I'(8,, B),
7 (e;/M ) = 1 and L™ (a;/M)8; = v. To simplify the notation, repeat each
0, a; times so that we have

1 M
(5.3) ﬂ—;o =

j=1
Let r, = 2Mr,,.

CramM. There exists p > 0 so that P(S,, € T'(8,, B5) and ||S,|l > (llvll/4)r,
for some k£ < T,) = p.

To see this, by (5.3) and continuity we may choose neighborhoods U; of 6;
such that U, ¢ B(0;2) and such that if {; € U; are any vectors, i = 1,2,..., M,
then

M 1
Y £ €To(6,,B;) and Ellvll < < 2|jvll.
j=1

35
M=

Since the 6, belong to the support of w, there is a number ¢ > 0 such that
(5.4) P(Sy /reU)z¢ i=12,..., M,

for all large n. By omitting the first few terms in the sequence r,,, if necessary,
we may assume (5.4) holds for all n.

For a fixed n define stopping times wg,pq,..., 4y by wo=0, u;=
T, 6, , +m;_forl<j< M. On the event

- {(Sn -8, )/reu, - 1,2,...,M},

we have S, & To(6,, B;) and IS, lI/7, = llull/4. Also, for any j < py, IIS;ll <
2riM =r, Thus puy < T, on E The claim follows since by 1ndependence
P(E) > §M

To complete the proof of (5.2), we may assume B, has been chosen close
enough to 1 so that for some a > 0,

(5.5) x,y € [5(0,, B2) = llx + yll = llxll + allyl
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(see Lemma 2.5). Choose A so large that if x € I'((6,, B,) and ||x|| > Ar, /2 —
r,, then

(5.6) B(x,1,) €To(8¢,B1)-
We will show that if R, = Ar, and L = [4A/a||v||] + 1, then for all n, (5.2)

holds with 6 = pZ, where p is as in the previous claim. To see this, define for
fixed n a sequence of stopping times vy, vy, ..., as follows; recalling (2.2), let

llvll
u=inf{k:Sk—SOGFO(GO,Bz,Trn)}, inf¢ = +o,
then set v, = 0 and for j > 1,
- ved,  +viy, on {v;_; < «}
+ oo, otherwise.

Since FO(OO, B5) is closed under vector addition, we have that S, € T(6,, B5)
for any j such that v; < . It then follows from (5.5) that Tp, < VL

Let E,={v; < T, ry °0,  tvi_y, j=1,...,L}). Then by the strong Markov
property P(EO) > plL. Now v, < ® on Eo Also on E,, if ||S,ll= R, /2 for
some k < vy, then ||S, || >R,/2 —r,,where 0 <j < L satisfies v; <k <v;_;.
Thus S, € I')(6,, By) by (5.6). Hence

R,
E,c {Sk € (B(O; 7) U FO(BO,BI)) all k <wvp;v, < 00}

Q {TRn = Tn},

which completes the proof of (5.2). O

6. The rate of growth of (IIST | —r). We begin with an important
lemma which enables us to estimate the moments of Sg Il = 7.

LemMA 6.1. Foranyp > 0,
E(IS7) - )" < E(IXIPU.(r — 1 X1, r); 1 X1 < r)

+ ET, E(IXII”; 1 X1 > 7).

On the other hand, let T be any cone with vertex at 0 such that

(6.1)

lx + yll > llxll + allyl, x,y€T.
Then
E(IISp )l - r) fp)J’ P(all Xl > 24, X eT) [ dU,(x) dA
lxllelr—A,r]
(6.2) xel

+ ET,prAP‘lP(IIXII > 31) dA.

Proor. Integrating the result of Proposition 3.1, we have

6.3) E(ISp)I-r)” f||| fA pAPTIP(IX + xll > A + 1) dA dU(x).
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Letting L(x) = P(|| X|| < x), we have

E(ISg)l-7)" < [

j P PIXI > A + r — lxll) dA dUL(x)

lxll<ra

= j pAr~t [ dL(u) dA dU,(x)
llxll<r/A u>A+r—|xll

- / j“ AP -1 dA dL () dUL(x)
llxll<r’u>r—|lxll*A=0

<]

f uP dL(u) dU,(x)

Hxll<ru>r—|lx||

Oupf dU,(x) dL(u)

u= r—u<|lx|l<r

+
u>

< [ wPU(r-u,r)dL(u) + ET,[ u?dL(u),
u=0 u>r

r

up'/;)sllxllsrdUr(x) oL(x)

which is (6.1).

849

For (6.2), we divide the range of the A integration in (6.3) into two parts:

[0, r] and (7, ). The latter integral becomes

f' [ pAPPIX + xll > A + r) dA dU,(x)

lxll<r’r

> [ oA P(IXN > A + 7+ lizl) dA dUL(x),

llxll<r’r

which dominates the last term in (6.2).
For the other range of integration, we have

}

lxll<r’0

jp)w P(IX + x| > A + r) dAdU.(x)

‘/I;xllsr
xel

fp)w P(all XIl> A +r - |lzll, X € T) dA dU,(x)

> j AP~ IP(allX|l > 21, X € T) dA dU.(x)
lxll<r/A=r—|lx]|
xel

2[’ pAP~P(all Xl > 21, X T) [ dU.(x) dA.
A=0 llxllelr—aA,r]

xel
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ProoF oF THEOREM 1.1. First assume that (1.4) holds. Since this implies
(4.6) we have that EX = 0 by Theorem 4.6. Next observe that

ET, ["pa»'P(IX|| > 34) dA = (27 — 1) ET,r*P(IX]| > 6r),

thus by (6.2),
(6.4) lim sup ET,.r? 9P (|| X|| > 6r) < .

r—wo

Since EX = 0, we have by Lemma 2.4,

ET.

r—ow
Thus by (6.4), X € WL'*?~9. If 1 + (p — q) < 2, then by Lemma 2.4,

r

= > 0.

lim inf
r—o

Thus by (6.4), X € WL'*%P~9, Tterating this procedure, we obtain X €
WL+™>~9 where

m=min{j:1+j(p —q) = 2}.

If 1+m(p—q)>2, then XeL? If 1+ m(p —q) =2, then since 1 +
(m —3(p —q) <2, we can use the above argument to get X €
WL“(’"“/ 2XP-9 and hence again X € L2 Now use Lemma 2.4(ii) together
with (6.4) to obtain X € WL2*P~4,

Now assume (1.5). Since ¢ <p we have X € L?, hence (E) follows from
Lemma 4.2. Furthermore, when X € L? and EX = 0, it is easily seen (using
Lemma 2.1, for example) that A(x) ~ El| X|?u~2 It then follows from (6.1),
(1.1) and PropOS1t10n 5.1 that

(6.5) E(IISTrII - r)p < cE(IIXII2+p; I1XIl<r) +er?2E(IXIP; I1X] > 1).
A straightforward calculation shows that the right-hand side is O(r?) as

r—>oo, 0

Before moving on to the proof of Theorem 1.2, we will give the analog of
Theorem 1.1 for 2 < g < p. Since the proof works equally well for ¢ = p, we
include this case also, although it can be easily deduced from Theorem 3.3.

THEOREM 6.2. If 2 < q < p, then the following are equivalent:

(@) E(ISy |l — r)? = O(r?) and (E) holds.
(D) E(IIST | = r)? = o(r?) and (E) holds.
(iii) X € L? and EX = 0.

Proor. We have by (6.2),

E(ISy )| - r)’ = ET,[  pa»~'P(IX]| > 3)) dA.
A=r
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Thus if E(|Sy |l - r)? < for any r, then X & L*. Since p>2, un = EX
exists. If u # 0, then {u, S,) would drift to +, forcing (E) to fail. Hence
each of the first two condltlons implies the third.

Now assume X € LP and EX = 0. Since p > 2, (E) holds by Lemma 4.2
and we have as in the proof of Theorem 1.1,

E(ISg)l - )" < cE(IXIZ*?; 1 XN < r) + crB(IXI7; 1 X1 > r) = o(r?).
Since ¢ > 2, this completes the proof. O

ProoF OF THEOREM 1.2. If X € L?*? and EX =0, then (E) holds by
Lemma 4.2. Hence, as in the proof of Theorem 1.1, we have (6.5) holds. Then

E(ISq,l - )" < cEIX|*™ < o.

On the other hand, if (1.6) holds, then |ISy || — r is tight. Also by Theorem
1.1, X € L? and EX = 0. Now let {T;}]*, be the covering introduced in Lemma
2.5. Then by Lemma 5.2 there is a constant ¢ so that

fl dU.(z) = h_(')J’

lxllelr—a,rl]
xeFJ

provided A and r — A are sufficiently large. Thus by (6.2) there is a A, so that
for all large r,

B -z o X [ “op(all X1l > 24, XEI‘)Z{BpAP LA
j= 0

1
m
2
f’ op ( 1 X > —A))J’“dA
since h(A) ~ A~2E|| X||%. Letting r — o, we conclude E|X|?*? < . O

PrOOF OF THEOREM 1.3. If X € L? and EX = 0, then (E) holds by Lemma
4.2. Recalling that L(x) = P(| X|| < x), by Proposition 3.1,

P(ISz )l — r>A) [ PUIXN > A + r —llxll) dU,(x)

llxll<r

f dL(u) dU,(x)
lxll<r/u>A+r—|xll

-[ [ dU,(x) dL(u)
u=A"|zle(A+r—-u,r]

+fu>mf| dU,(x) dL(u)

llxll<r
r+a dL(u)
< —  +er?P(IlX
<ch\ OEDS cr?P(I XNl > r+ 1),

the last inequality following from Proposition 5.1.
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Now since & > @ and @ is nonincreasing, we obtain

supP(ISpll—r> 1) < cfw oL (u) + csupr?P(IIXI > r + ).
r ” u=2 Q(u) r
But X € L? implies @(u) ~ v~ 2E|| X||?, which means
fm dL(u) -0 as A —> oo,
u=2 Q(u)

Also, X € L? implies
r
supr?P(IIX|| > r + A) < sup——E(IXI% 1 XI > r + A)
r r (r + )\)

<E(IXI%;1X1>A) >0

as A — o, which completes the proof of the implication (1.9) = (1.8).

For the proof of the reverse implication, (1.8) = (1.9), fix any cone I' =
I'(8,, B,) among the covering {I';} of Lemma 2.5. Let R, 1, u, and ¢ be as in
Proposition 5.4 for the chosen T. Let L(u)= P(aIIXlI < u, X €T). Then by
Proposition 3.1,

P(lISz, | = R, > A)

>[  P(IX+xl>A+R,, X€T)dUs(x)
llxll<R, "

xel’
> [ P(alX> A +R, ~ lzl, X €T) dUp ()
lxll<R, "
xel
-[ dLr(u) dUp (%)
lxll<R,”’u>Ar+R,—lxl "
xel’
R,+A
> [ dUy (x)dL(u
'/;(,=A 'll;xlle(/\+R,,—u,R,‘] R"( ) r(u)
xel

(R, +1n,2 ALr(u)
u=2A\A h(u - A)
for A > u, by Proposition 5.4. Letting n — «, we obtain
dLy(u)
6.6 1>c¢
( ) -[ =2A h(u - )t)

Now v2Q(v) is nondecreasing, hence Q(u — A) < 4Q(u) for u > 2A. Thus
Proposition 4.5 and (6.6) imply that for A > u,

« dL
(6.7) 1> cfu=2A inl;)

=c
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Now recall that there is a covering of R? by cones I, ..., T,, such that (6.7)
holds for each cone. One may then apply the above argument to each cone,
provided A exceeds the largest u, from the applications of Proposition 5.4 to
each of the various cones. Summing the estimates obtained, we have for all
large enough A,

mo dLrj(u) © P(allX|l € du)
,Zl Jn0 =h e

We conclude that EQ(a|| X|)~! < «, and hence EQ(| X|)~! < «. Hence X € L?
by Lemma 2.2. Finally, EX = 0 by Theorem 4.6. O

7. Examples. The first example shows that condition (E) cannot be omit-
ted in (1.8) or in (4.6), even if mean 0 is assumed as a side condition. It also
shows that E(|Sy,| — r)? = o(r?) for 0 < p < 1 does not imply (E); cf. Proposi-
tion 4.3.

ExampLE 7.1. Let d = 1. Let X be bounded below, have mean 0 and
satisfy

1
P(X>\) = —, A>3
( ) A(log 1)?

Then it is easy to check that for large r,
M(r)=r YE(X;|X| <r)l = r HE(X; X] > r)l

=r' [[P(X>x)dx + P(X>r)~(rlogr) "},

whereas Q(r) ~ 2(r log? r)~!. By Theorem 3.5, (ISg) —r)/r—,0. But X¢&
D(2), so (E) cannot be omitted from (4.6).

We claim that in fact {|Sy | — 7}, ., is tight. Since X is bounded below this
follows if we can show hm,_,m P(Sy < 0)=1.

Let X S, = }:"_IX be the truncations introduced above just before
statement (4 11) Then by (2.5),

Var(fT—) _ Var(X) . _ QB

r r? "7 h(r)

Thus any weak limit point of S, /T, hence of Sy, /r, must be concentrated on
+1 or —1. In fact, the latter must be true by Propos1t10n 4.4. Since X ¢ L?,
condition (E) cannot be omitted in (1.8).

It is also interesting to note that r?E(|Sy| — r)? — 0 for 0 < p < 1 since
{r PISy [P}, . is uniformly integrable by Theorem 3.3. Thus the conditions
EX =0 and E(ISy| — r)? = o(r?) do not imply (E) when 0 <p <1, in con-
trast to the case p > 1 (see Proposition 4.3).

The next example shows that condition (4.3) cannot be omitted in (4.7).
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ExampLE 7.2. Let d =2 and | || be the box norm on RZ Let X =
(XD X®) where EX® = EX® = 0, E|X®|? < o, EIX®|? = o, but XV e
D(2). Let T®, i = 1,2, denote the exit times for the one-dimensional random
walks based on X®, and h® the corresponding h-functions. It is easy to
check, using Lemma 2.1, that for any ¢ > 0,

L R)
reo h®(er)
It then follows from (1.2) in [10] that lim, , P(T" < T®) = 1, hence (E)

does not hold.
Also E(ISy |l = r)? = o(rP) for all 0 < p < 2 because

T p T® p
(IS Il - r)” < ( Y X0 - r) + ( Y X®| - r) ,
=1 i=1

and the right-hand side of this inequality is o(r?) by Theorem 4.6 and the
uniform integrability result in Theorem 3.3. Thus the result of Proposition 4.3
does not extend to higher dimensions.
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