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SEMI-MIN-STABLE PROCESSES

By MATHEW D. PENROSE

University of California, Santa Barbara

We define a semi-min-stable (SMS) process Y(¢) in [0, ) to be one which
is stable under the simultaneous operations of taking the minima of n
independent copies of Y(¢) (pointwise over time ¢) and rescaling space and
time. We show that the only possible rescaling of time is by a fixed power of
n and that SMS processes are essentially the only possible weak limits for
large m of a process obtained by taking the minimum, pointwise over ¢, of
m independent copies of a given process and then rescaling space and time.
We describe the representation of a SMS process as the minimum of a
Poisson process on a function space. We obtain a partial characterization of
sample continuous SMS processes, similar to that of de Haan in the case of
max-stable processes.

1. Introduction. A number of authors recently, notably de Haan (1984),
de Haan and Pickands (1986) and Giné, Hahn and Vatan (1990), have consid-
ered the class of min-stable stochastic processes (or, equivalently, the class of
max-stable processes). The main motivation for studying such processes is that
they are the possible weak limits for large n of a process obtained by taking
the rescaled minimum, at each time-point ¢, of n independent copies of some
given process X(¢). This is a natural generalization of the study of multivari-
ate sample extremes, which is by now well-established [see Resnick (1987) and
references therein].

Sometimes, however, it is necessary to rescale time as well as space to get an
interesting limiting process. This device is used by Brown and Resnick (1977),
Eddy and Gale [(1981), Section 4] and Penrose (1991); for further motivation,
see the discussion at the start of Hiisler and Reiss (1989). The limit process
need not then be min-stable. Here we consider a new class of limit processes,
suitable for this setting.

DEFINITION. For any a € R, define a stochastic process (Y(2), ¢ > 0) taking
values in [0,») to be (simple) semi-min-stable of order a (which we shall
sometimes abbreviate to a-SMS) if, for each positive integer n,

(1.1) (n min Yi(2), 2> 0) =, (Y(n%t), ¢ = 0).
l<i<n

Here Y,(-) are independent copies of the process Y(:), and =, refers to

equality of finite-dimensional distributions. The distribution of Y(0), if not

concentrated at one point, is exponential, a standard extreme value distribu-
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tion. The case a = 0 of a semi-min-stable process is a simple min-stable
process.

The terminology ‘‘semi-min-stable” is motivated by the terminology ‘‘semi-
stable” (or “self-similar’’) for a process whose distribution is invariant under
rescaling of space and time [see Lamperti (1962)]. See Vervaat (1985) and
references therein for more recent results on semistable processes.

Notation and conventions. The distribution function of any random vari-
able X is written as Fy(x). We write Fy(x) for 1 — Fy(x). We write Z, for
the set of positive integers, R, for the interval [0, ), and R ,_for the interval
[0, »]. The space of functions from [0, ©) to R, (respectively, R ) is written as
RE+ (respectively, RF+) and is equipped with the o-algebra generated by the
one-dimensional projections. We reserve the letter J for an arbitrary element
of Z,.

For any function (f(#), ¢ > 0) and any vector t = (¢,,...,¢;) € RY, we
abuse notation and write f(t) for the vector (f(¢,),..., f(¢;)). For vectors
x=(x,...,x)andy = (y;,...,5,), we writex >y if x; > y;, 1 <j <.

Unless stated otherwise, all stochastic processes discussed here are defined
on [0,x) and take values in [0,®). They are written as (X(¢), ¢t > 0) or as
(X(¢)),5 o or X(-) for short. As already mentioned, we identify the distribu-
tions of any two processes with the same finite-dimensional distributions. If
Y(¢) = Y(0) almost surely (a.s.) for all ¢ > 0, we shall say the process Y(-) is
constant.

Recall that a sequence of positive real numbers (b,, n € Z_) is said to be
regularly varying if, for all a > 0, b,,,,/b, converges to a strictly positive limit
as n — ». Such a sequence always has a unique index, that is, a number «
such that &,,,/b, > a* as n - o, for all a > 0. See Theorem 1.9.5 of
Bingham, Goldie and Teugels (1987).

Weak convergence. We introduce the following notion of weak convergence
of stochastic processes. For vectors t € R7, t, € R, n € Z,, we write t, |t
if each component of t, converges to the corresponding component of t from
above. Let A be a dense subset of R, with 0 € A. For processes (X,(-)),
n=012,..., wewrite X,(-) =, X,(-)if X,(t,) converges weakly to X(t)
in R whenever J €Z,,t, € R/, t € A7 and t, |t as n > o,

To motivate this notion of weak convergence, which we use in Theorem 2,
we consider three examples. First, if X,(-) =; X(-), and X(-) is right-con-
tinuous in probability, then X,(-) =, X,(-), with A =R .

We shall sometimes consider a continuous process, one with a version with
a.s. continuous sample paths. For such a process, we assume without comment
that we are considering this version. If X(-) and X,(-), n € Z, are continu-
ous processes and the sequence (X,(-)) converges narrowly (“weakly”’) in
C[0,») (with the locally uniform topology) to X(-) in the usual sense, then
X, (1) =, X(-), with A = R, [see Billingsley (1968), Theorem 5.5].
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Let D[0, ») be the space of Skorohod functions on [0, ), with Skorohod’s ¢/,
topology, as considered by Billingsley (1968) and amended to noncompact time
intervals in Whitt (1980). Suppose X(-) and X,(-), n € Z, have versions in
DI[0, »), such that the sequence (X,(-)) converges weakly to X(:) in DI[0, x).
Set A = {¢t > 0: P[J,] = 0}, where JJ, is the event that X(-) has a discontinuity
at ¢. Then 0 € A and A is dense in R, [in fact, its complement is at most
countable; see Billingsley (1968), page 124]. Also, X,(-) =, X(-), by Theorem
5.5 of Billingsley (1968) and the fact that if ¢ > 0 is a continuity point of a
Skorohod function x(:) and ¢, — ¢, then, for any sequence of Skorohod
functions x,(-) which converge in the Skorohod ¢/, topology to x(-), x,(¢,) —
x(t) [see Billingsley (1968), page 112].

Thus, weak convergence of X,(-) to X(-) in C[0,%) or D[0, %) implies
X, (-) =, X(-) for an appropriate choice of dense A with 0 € A. There is no
converse: If X,(-) and X(-) are deterministic processes given by setting X, ()
to be the characteristic function of [1 — 2/n,1 — 1/n) and X(-) to be zero
everywhere, then X, (1) =, X(-) with A = R, but X,(-) does not converge to
X(+) in D[0, x). There are similar counterexamples in C[0, «).

2. Motivating results. The next two results are analogous to Theorems
1 and 2 of Lamperti (1962).

THEOREM 1. Suppose (Y(8)), o, i € Z,, are independent copies of a non-
constant process (Y(t)),, , which is right-continuous in probability. Suppose
Y(0) has a nondegenerate distribution and, for constants a,,b, > 0,

(2.1) (lmjn Yi(8),t20) = (a,Y(b,t),t20), neZ,.
<it<n

Then there exist a unique y € 0 and a unique a € R such that (Y(¢)"),,, is
semi-min-stable of order a; that is, forall n, a, =n"'" and b, = n“.

THEOREM 2. Suppose that (X,(¢)),.,, i € Z, are independent copies of a
process (X(t)),, o Suppose Y(*) is a nonconstant process which is right-con-
tinuous in probability and Y(0) has a nondegenerate distribution. Suppose
there exists a dense subset A of R, and two sequences of constants a, > 0,
b, > 0, such that

(2.2) (anlmjn X,(b,t), 2 0) =, (Y(£),£20) asn -

Then, for some y > 0 and a € R, (Y(¢)"),,, is semi-min-stable of order a.
Also, (a,) is regularly varying with index vy~ ' and (b,) is regularly varying
with index (—a) as n — .

REMARKS. A converse to Theorem 2 is trivial. If Y(‘) is «-SMS and
right-continuous in probability, there exist X(-) and @, > 0 and b, > 0 such
that (2.2) holds. Just take X(-) = Y(-).
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A similar (but easier) argument to the proof of Theorem 2 shows that if in
(2.2) we are given b, = n~%, and if we assume only convergence (not right-con-
tinuous convergence) of all finite-dimensional distributions and make no conti-
nuity assumptions on Y(-), we may still conclude that Y(-)” is «-SMS for
some y > 0.

3. Spectral and other representations of semi-min-stable pro-
cesses. The next two theorems provide representations for an a-SMS pro-
cess in terms of a Poisson process on a space of functions. Later (Theorem 5)
we shall derive a more intuitive representation for members of a large subclass
of the continuous a-SMS processes.

The following representation is based on the spectral representation of
max-infinitely divisible processes by Balkema, de Haan and Karandikar (1991).
For background information on Poisson process, see Resnick (1987). Recall
that for vectors x and t in RY, the notation f(t) > x means f¢) = x;,
l<j<d.

TueoreM 3. (i) Suppose u is o-finite measure on R%+. Suppose that for all
a>0,JeZ,,xand t in R7 we have

(3.1) ap({f: f(t) = x}°) = u({f: f(at) > ax]")
(so w has infinite total mass). Then the R ,-valued process Y'(-) given by
(3.2) Y'(6) = nf(f(£), £20,

1=

where {f,, i € Z.} is a Poisson process on R+ with intensity u, is a-SMS.

(ii) Suppose that Y(-) is an a-SMS process which is right-continuous in
probability. Then there exists a o-finite measure u on RE-, satisfying (3.1) for
alla > 0, x and t in RY, such that Y(-) =; Y'(-), where the process Y'(-) is
given by (3.2).

REMARKS. We shall refer to the measure u of the Theorem 3(ii) as a
spectral measure of the SMS process Y(-) [Giné, Hahn and Vatan (1990) prefer
the term max-Lévy measure]. In the case that the a-SMS process Y(-) is
continuous, we might expect that it has a spectral measure which concentrates
on continuous functions. Using results of Giné, Hahn and Vatan (1990), we
obtain the following theorem.

THEOREM 4. If Y(-) is a continuous a-SMS process and Y(0) has a
nondegenerate distribution, then Y(-) has a spectral measure . which concen-
trates on C,(R ), where we define h: R,— R_, and C,(R ) by

h(t) = inf{x: P[Y(¢) <x] =1}, >0,
and
Cy(R,) = {feC(R,,R.): f < hpointwise, f # h},

equipped with the o-algebra generated by the one-dimensional projections.
Moreover, this spectral measure is unique.
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Theorem 3 implies the following alternative characterization of SMS pro-
cesses.

CoroLLARY 1. A process Y(-) which is right-continuous in probability is
a-SMS if and only if, foralla > 0 and b > 0,

(3.3) (min{¥ar(®), X)),z =a (Yia () .00
where we define Y, (¢) = a~'Y(ta®), and Y'(*) is an independent copy of Y(-).

4. Examples.

ExaMpLE 1. Let a € R, and let (Z(¢), ¢ > 0) be an arbitrary measurable
[see Doob (1953)] stochastic process taking values in R +- Suppose ¢ > 0 and
P={X,, X,,...} is a homogeneous rate-c Poisson process on R .. Suppose
Z{"),i € Z, are independent copies of Z(-), which are also independent of .

Then an a-SMS, R ,-valued process Y(-) can be obtained by setting
(4.1) Y(t) = jntl‘XiZi(X;“t), t>0. )
1=

Proor. By Propositions 3.8 and 3.7 of Resnick (1987), the random set of
functions {X,Z,(X;*-), i > 1} is a realization of a Poisson process on RE+
with intensity u, say, where for t and x in RY,

(4.2) wl(F: F(8) = x)°] = cf:(l ~ P[uZ(u""t) > x]) du.

For any a > 0, the change of variable £ = au in (4.2) gives us (3.1), so that
Y(-) is a-SMS by Theorem 3G). O

The next three examples are special cases of Example 1. In Theorem 5 we
characterize a large class of continuous semi-min-stable processes as special
cases of Example 1.

ExaMpLE 2 [Penrose (1991)]. Let d > 0, ¢ > 0. Let #= {P,, Py, P,,...} be
a Poisson process on R, with intensity u given by u([0, x]) = cx?/ 2 x>0.
Given a realization of &, let (X;(#), t > 0), i € Z, be independent squared
Bessel processes of dimension d [BESQ(d) processes], with initial positions
X,(0) =P, i € Z. Recall that a BESQ(d) process is a diffusion on [0, ©) with
generator L, say, where Lf(x) = 2xf"(x) + df'(x), for fe C2(0, ). See Re-
vuz and Yor (1991). Set

Y(t) = inf(X,(t):i€Z,}, ¢>0.

Then (Y(#)?/2, t > 0) is a stationary, continuous SMS process of order 2/d; in
fact, it is a special case of Example 1, as we now show.

Let (R*(?), t > 0) be a BESQ(d) process starting at 1 [i.e., R(0) = 1 a.s.]. By
the scaling property of the BESQ(d) process [see, for example, Revuz and Yor
(1991), page 413], the processes RX(-) given by R%(¢) = P, 1X.(P.t) are inde-
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pendent copies of R?(-), which are also independent of . Setting Z,(t) =
(R%(t))%/?, we have

(4.3) Y(£)%? = jnfl‘Pid/2Zi( P 1t).

The point process with points at {P{/2, PZ/2, ...} is a homogeneous Poisson
process on R, so (4.3) shows Y(:)?/2 is a special case of Example 1, with
a=2/d.

To see stationarity, observe that the measure u is invariant for the BESQ(d)
transition function [see Liggett (1985), Proposition 1.2.13; the restriction of L
to Cgl0, ®) is a core for L; see Ethier and Kurtz (1986), page 371]. Hence, if
the random point measure n(¢) on R, is defined to have atoms at the points
{X,(t), i € Z,}, then the point-measure-valued process (n(¢), ¢ > 0) is station-
ary (and Markov), so (Y(#))?/2 [which is determined by n(t)] is a stationary
process.

ExampLE 3. In Brown and Resnick (1977), the limit process, denoted M(-),
of a sequence of rescaled maxima of Brownian motions is given by -

M(t) = sup(T; + W**(¢)), ¢=0,
i>1

where {T;, i > 1} is an enumeration of the points of a Poisson process on R
with intensity e™* dx, and W;**(-), i > 1, are independent Wiener processes,
independent of {7}}, with drift — %, and W;**(0) = 0. So

exp(—M(t)) = ,inf{XiZi(t)}»

where {X;} = {exp(—T)} is a Poisson process on R, with Lebesgue measure
as intensity, and Z,(¢) = exp(—W;**(¢)), i > 1. This representation shows that
exp(—M(-)) is a special case of Example 1, with « = 0; thus, exp(—M(-)) is
simple min-stable.

This may at first surprise the reader, since in the limiting procedure of
Brown and Resnick (1977), time is rescaled by multiplication by a sequence of
constants approaching 0, whereas the limit process has a = 0. However,
Brown and Resnick obtained M(-) as the weak limit of a process M,(-) of the
form

Mn(t) = I.naxan(Xi(bnt)) + Cns
i<n

where {X;(-), i > 1} are independent Brownian motions with initial positions
having a normal distribution, and a,, b, and c,, are constants. By comparison
with (2.2), we see Brown and Resnick allowed themselves the addition of an
extra constant c¢, in their renormalization procedure.

ExampLE 4. If Y(-) is a-SMS, it is immediate that the law of Y(0), if
nondegenerate, is exponential. If « = 0, the same is true of Y(¢) for all ¢ [see
de Haan (1984)]. But if a # 0, if we make no continuity assumption on Y(-),
then for ¢ > 0, Y(¢) may have any distribution on R, as we shall now show.
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Let @ # 0, ¢t > 0, and let F be an arbitrary distribution function on R .. Let
G be the left-continuous inverse of the function log{1 /(1 — F(-))} [see Section
0.2 of Resnick (1987) for details]. Let (Z(u), u > 0) be the deterministic
process given by

Z(u) = (u/t)""G((u/t)"),

and let Z(u) = Z(u), i € Z,. Let Y(+) be given by (4.1). Then Y(-) is a special
case of Example 1, with Z(-) deterministic. In particular, Y(-) is a-SMS. The
distribution of Y(#) is given as follows, where I[ ] denotes the indicator
function:

P[Y(¢) 2y] = exp{—LmI[xZ(tx‘“) <yl dx}

- exp{—/:I[G(x) <y] dx}

=1-F(y-0),

where by definition F(y — 0) = sup{F(x): x <y} [the last equality is from
Resnick (1987), Exercise 0.2.2]. It follows that Y(¢) has the prescribed distribu-
tion function F.

Note that, in Example 4, Y(-) may not be continuous in probability at 0.
Such a continuity restriction on Y may restrict the possible finite-dimensional
distributions for Y(-).

ExampLE 5 (Essentially due to S. T. Rachev). Suppose #={(S;,U,): i =
1,2,3,...} is a Poisson process on R_ X R, with Lebesgue measure as
intensity. Suppose Z,/(-) are independent copies of an arbitrary measurable
stochastic process Z(-), which are also independent of &. Then, for any a and
v with ay > —1, an a-SMS process Y(-) can be obtained by setting

Y(¢) = jnfl'l/'il/‘1+“7)Zi(tVSi), t>0.
Proor. The random set of functions {f;, i > 1}, defined by fi(¥)=

UY/O+enZ(¢7S,), t > 0, is a realization of a Poisson process on R%+, with
intensity u, say, where, for t and x in R7,

w{f: f(t) =x)° = fmme[(uV(““”Z(st})) < x;, some j < J] du ds
0o

—E( [(1luva+e mi . .
(4.4) Efo j(; I{u Y 1rsrl}ISlJZ(st]) <xJ> duds

_ ® . y 1+ay
E A lréljaixJ(xj/Z(stJ )) ds,
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where I{ } denotes indicator function. Hence, for ¢ > 0,

w{f: f(a*t) > ax}°=E wmax(axj/Z(sa“Yt}))“w s
(4.5) 0 Jj=<J

=E mmax(axj/Z(at}))Hay doa™

(where we changed variable to o = sa®?), and comparison of (4.4) and (4.5)
shows that (3.1) holds. Thus Y(-) is a-SMS by Theorem 3(i). O

5. Spectral decomposition. By analogy with de Haan [(1984), Theorem
3] [see also de Haan and Pickands (1986), Theorem 2.1], one might ask if all
semi-min-stable processes are given by Example 1 (or by Example 5). That is,
we wish to decompose the spectral measure of a SMS process into a product.
For continuous processes witk. an extra condition on the spectral measure, this
is possible.

THEOREM 5. Suppose Y(-) is a continuous a-SMS process, such. that Y(0)
has a nondegenerate distribution and the spectral measure p on C,{(R ), given
by Theorem 4, satisfies

(5.1) ul{f: £(0) = =) =0.
Then there exists a continuous process Z(+) with Z(0) = 1 a.s. for which the

construction of Example 1 gives us a process with the same finite-dimensional
distributions as those of Y(+).

6. Proof of theorems. Before proving our theorems, we need the follow-
ing simple lemmas.

LEMMA 1. Suppose the process Y(-) is right-continuous in probability. If
for some b > 0, b # 1, we have
(6.1) (Y(bt),t>0) =, (Y(¢),t>0),

then Y(-) is constant.

Proor. For ¢ > 0, t > 0, (6.1) implies P[|Y(¢) — Y(0)| > ¢] = P[|Y(b"t) —
Y(0)| > €], and by letting n —» Fo according to whether b 21 we have
Y() =Y(0) as. O

LeMMA 2. Suppose Y,(-), n € Z, X(-) and X'(-) are stochastic processes,
with X(-) and X'(-) right-continuous in probability, and are not constant.
Suppose that for some dense A C R ,, with 0 € A, and for some sequence (B,,)
of strictly positive numbers,

(6.2) (Yu(2),t=0) =,(X(¢),t=0)
and
(6.3) (Yo(Bat), £ = 0) =4 (X'(2), ¢ 2 0).
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Then, for some B € (0,), B, = B and (X'(¢), t = 0) =, (X(B?), t > 0).

Proor. If B, — « along some subsequence, then, by (6.3),
(Ya(2),t 2 0) = Y, (Bu(£/B,), t 2 0) =, (X'(0),t = 0)

along that subsequence, where the limit is a constant process. By comparison
with (6.2), X(-) is a constant process.

Therefore, since X(-) is assumed nonconstant, the sequence (8,,) is bounded
away from «. So there exists B8 € [0, ©) such that B, — B along a subsequence.
Take ¢, |0 so that B,(1 + ¢,)| B along that subsequence. By (6.2),

Yo(Ba(1+€,)t, 1 2 0) =, (X(Bt), ¢ = 0)

along the subsequence. By comparison with (6.3), X'(-) =; X(B -). Also, by
Lemma 1 the sequential limit B is unique. Finally, 8 > 0 since X'(-) is
nonconstant. O

Proor oF THEOREM 1. By (2.1) and the special case X(-) =; Y(-) of
Theorem 2, there exist v > 0 and a € R such that the process (Y(-))” is
a-SMS. For each n € Z, by consideration of Y(0) in (2.1), y is unique and
there is no other choice of a, except n~'/?. Also, by Lemma 1, « is unique
and there is no other choice of (b,) except b, = n™% O

Proor oF THEOREM 2. By (2.2), Y(0) is the nondegenerate weak limit of the
random variables a, min;_, X;(0). Hence by one-dimensional extreme value

theory [for example, Proposition 0.3 of Resnick (1987)], there exist positive ¢
and y such that

Fyq(x) = exp(—(cx)”), x>0.

Set X = X(0). By Propositions 1.13 and 0.2 of Resnick (1987), the function
G(x) == 1/Fy(x™') is regularly varying of order y at infinity, and a;! ~
csup{x: 1/Fy(x) > n}, n > . The last expression implies a, ~ ¢~ !inf{x:
G(x) > n}, and, by Proposition (0.8)(v) of Resnick (1987), (a,) is regularly
varying of order 1/y.

Now use the fact that (—Y(¢), ¢ > 0) is max-infinitely divisible [for a
definition, see Balkema, de Haan and Karandikar (1991)]. By the proof of
Theorem 2.4 of that paper (using some dense subset of A where Balkema,
de Haan and Karandikar use the set of rationals), there is a function f(¢,u)
from R X R to R,, measurable in u, such that if {U;, i > 1} is a homoge-
neous rate-1 Poisson process on R, then Y(-) =; Y’(-), where we define

(6.4) Y'(t) = inff(£,U), ¢20.
Let &k € (0,). Let {V,, i > 1} be a homogeneous rate-k Poisson process on R
and define
(6.5) Y®(t) = infl‘f(t,‘fi), t>0.

1>
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Then, for any t € R and x € RY,

(6.6) P[Y®)(t) = x] = P[Y(t) = x]*.
In particular,
(6.7) (Y®(t), 22 0) = ( min (Y(1), 2 0), kez,.

For any k > 0, any t € A7, and any sequence t, |t and any continuity point
x € RY of the distribution function of Y(t), by (2.2)

P{anrl;;i’rllXi(b[nk]tn) > x}
[nk] n/[nkl
(6.8) = (PlopuXa(Barta) = (apuiy/an)x} )
- (P(Y(t) = BV7x))"" asn >,

Thus,
(6.9) (a,,lmjn Xi(bpnrt) t = 0) =, (R 7YVB(2), t > 0).
By comparison with (2.2) and by use of Lemma 2, (b,) is regularl}} varying;
moreover, if (—a) is the index of regular variation, then
(6.10) (B~ Y/B(2), ¢t 2 0) =, (Y(k°t), ¢t = 0),

so that taking k = 1/n, with n an integer, by (6.7) (Y(:))” is a-SMS as
desired. O

Proor oF THEOREM 3. (i) The process Y'(-) given by (3.2) satisfies
P[Y'(t) > x] = exp(—n{f: f(t) 2 x}°), t,xeR].
By applying (3.1) to a € Z,, we immediately find that Y'(:) is a-SMS.

(i) As in the proof of Theorem 2, the min-infinite divisibility of Y(-)
implies that there is a function f(¢,u) from R, X R to R, measurable in u,
such that Y(-) =, Y'(+), with Y'(-) given by (6.4); that is, Y'(¢) = inf { f(z, U))},
where {U;} is a homogeneous rate-1 Poisson process on R.

Define the measure u on RF+ to be the image of Lebesgue measure on R
under the mapping u — f(-, u), which is measurable. Set f;(¢) = f(¢, U;). By
Proposition 3.7 of Resnick (1987) (in which E, does not have to have a
countable base), {f;} = {f(-, U,)} is a Poisson process in R¥+ with intensity u.
Hence, (3.2) holds; that is, Y’(-) is the minimum (pointwise over time) of a
Poisson process in R%+ with intensity u. We have, for any t and x in R,

pY(t) = ] = exp(—u((: £(8) > x)°)).
So for a > 0, by (6.10) (setting 2 = 1/a) and (6.6),
w({f: f(a°t) > ax}°) = —log P[Y(a"t) > ax]
—log P[aY@(t) = ax]
—alog P[Y(t) > x],

and (3.1) follows. O
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Proor oF THEOREM 4. By definition, h(¢) = inf{x: P[Y(¢) < x] = 1}, that
is,
h(t) = inf{x: w{ f: £(2) <} =),
where u is a spectral measure of Y(-), as given by Theorem 3(ii). Note that

h(0) = « by the nondegeneracy of Y(0). By (3.1), h(a*t) = ah(¢) for all a > 0,
t > 0, so that either h = « or a # 0 and, for some ¢ € (0, »),

(6.11) h(t) =ctt/*, ¢t>0.

If @ > 0, (6.11) and continuity of Y(:) would imply Y(0) = 0 almost surely,
contradicting the assumed nondegeneracy of Y(0). So (6.11) is possible only
when « < 0, and in all cases h is continuous.

Let K > 0. Let C,[0, K] denote the set of continuous functions f: [0, K] —
R, with f(t) <h(®), 0 <t <K, and f(¢) < h(), for some ¢ < K. Define
Y,(¢) = g(Y(¢)), where g: [0,»] — [0, 1] is a decreasing homeomorphism. The
process (Y,(t), 0 < ¢t < K) is sample continuous and max-infinitely divisible on
a compact parameter space. By continuity of A~ and Theorem 2.4 of Giné,
Hahn and Vatan (1990), there exists a unique infinite sigma-finite measure u
on C,[0, K] for which (Y(¢), 0 <t < K) =, (Y'(#), 0 <t < K), with Y’ given
by (3.2), where {f;, i > 1} is a rate-uy Poisson process on C,[0, K 1.

The measures ug, K > 0, are consistent in the sense that for all t =
(ty,...,t;) € RY and Borel Ac (17400, R()D \ (R @)}, pglf: f(t) € A} is
the same for all K > max;_,(¢;). By a sigma-finite version of Kolmogorov’s
consistency theorem, there is a measure v on R9+, where @, denotes the
nonnegative rationals, which concentrates on functlons (f(q@),q €Q.) for
which f < h pointwise and f(g) < h(q), for some ¢ € @ _, such that v is
consistent with all the wg. Moreover, v is unique by a monotone class
argument.

Under the mapping

(f(g),q€Q,)~ ( limsup f(r),¢t > 0),

rot, req,

from R9+ to RE+, the measure » induces a measure u on RE+ which
concentrates on continuous functions (and is consistent with vy for each K).
This is the desired spectral measure for Y(-). O

Proor oF CoroLLARY 1. If (3.3) holds, then (1.1) holds by induction on n.
Conversely, if Y(-) is a-SMS, then, by Theorem 3, Y(:) has a spectral
measure u satisfying (3.1), which we may rewrite as

alog P[Y(t) > x] = log P[Y,(t) 2x|], x€R{,teR{,a>0.
Hence, for a > 0, b > 0 we have
log P[min(Y,,(t;), Y5(t;)) = %;, 1 <j < J| = (a + b) log P[Y(t) = x]|
=log P[Y,.p(t) 2x]. O
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Proor oF THEOREM 5. For f € Cy(R,), define f,, as in Corollary 1, that
is, fi,(#) = a”'f(a"t), t = 0. Then f,, € C,(R,), by (6.11). Define a measur-
able transformation T: C,(R,) = C,(R,) by T(f) = 0if f(0) = 0 or f(0) = o,

(TF)(t) = f(0) " F(f(0)°¢), ¢=0,
otherwise. It is easy to check that for a > 0 and f < C,(R.),
(612) T(f) = V.

Let u be the spectral measure on C,(R ) given by Theorem 4. By (3.1) and a
monotone class argument, we have for all measurable A c C,(R,) and a > 0,

(6.13) au(4) = u{f: fu, € 4).

By (3.1) and the assumption (5.1) that u concentrates on functions f with
f(0) < », we have, for some constant ¢ > 0,

(6.14) w{f: f(0) € -} = ¢ Lebesgue(-).
For measurable A c C,(R,) and a > 0, we have, by (6.12) and (6.13), that
u(f: F(0) < a,Tf € A} = u{f: fae(0) < 1/, T( faey) € A}
(6.15) =acuf{f: f(0) < 1/c, Tf € A}
=acP[Z € A],

where we define the law of the stochastic process Z(-) to be the measure
wT ™1, restricted to functions f with f(0) < 1/c (a probability measure). That
is, P[Ze€ ‘1=u{f: Tfe -, f(0) <1/c}. Note that Z(0) =1 and Z(-) is
continuous almost surely.

For x > 0 write [«x], for [nx + 1]/n and [x]% for ({x],)* Since u concen-
trates on continuous functions, for t € (0, )’ we have the following conver-
gence in R7*! for u-almost every f:

(£(0), f(8) = lim (T £(O)],., [ F(O)].. £(0) " ([ F(O)]." F(0)°F))
(6.16) .
Lim ([ £(O)] . [ FO1TF([ F(O)].°F))  ace. (du).

Let b > 0. By (6.14), u{f: f(0) <b + 1} < o and u{f: f(0) = b} = 0. So by
(6.16), for almost every x € R,

w({f: £(0) <B} N {f: f(t) = x}")
Tim u({ £: [ (O], <) 0 {£: [ FOLTF([ F(O],78) = x})

[nb]

tim 3 w((f:[FO1n = Gi/m)) 0 {f:TF((E/m) ") = (n/D)x] )
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by (6.15) this equals
[nb] c
c¢lim ¥ n 'P[Z((i/n) “t) = (n/i)x]
(6.17) rTTi=1
= cbe[uZ(u_"t) > x| du,
0

at least if the integrand on the right-hand side of (6.17) is Riemann-integrable.
Assuming for the moment that (6.17) is valid for almost every x € RY, we
have on taking b — « [and using the assumption (5.1)] that for each t € R,
(4.2) holds for almost every x € RY and hence for all x € RY. Thus, u can be
obtained by the construction of Example 1.

It remains to prove (6.17). The left-hand side of (6.17) equals

(6.18) c/o“"""‘”(1 — P[Z([u1,"t) = [u], 'x]) du.

By continuity of Z(:), for each u > 0, for almost every x we have -
(6.19) P[Z([u],"t) = [u],'x] > P[Z(u~*t) 2u"'x], n -

Since Z(-) is continuous, it is measurable [Doob (1953), Theorem 2.5]. Hence,
P[Z(t) > x] is a (jointly) Borel measurable function of (t,x). See Halmos
[(1974), Section 35, Theorem Al.

Hence, for fixed t, the left-hand side of (6.19) is jointly Borel measurable in
x and u; also, since the mapping (u,x) — (z~%t,u"'x) is continuous, the
right-hand side of (6.19) is jointly Borel measurable in x and u, and by a
standard argument the set of (x,«) for which (6.19) holds is jointly Borel
measurable in x and u.

By Fubini’s theorem, for almost every x, for almost all u (6.19) holds.
Finally, the integrand in the expression (6.18) for the left-hand side of (6.17) is
uniformly bounded by 1 and is zero outside {0 < u < b}, so that (6.19) and
dominated convergence give us (6.17) for almost every x.
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