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RENORMALIZATION AND LIMIT THEOREMS FOR
SELF-INTERSECTIONS OF SUPERPROCESSES!

By Jay Rosen
Technion and College of Staten Island, CUNY

In this paper, we study a renormalized self-intersection local time for
superprocesses over stable processes and classical diffusions. When the
renormalization breaks down, we obtain limit theorems.

1. Introduction. With any nice Markov process z, in R? we associate a
new Markov Z, taking values in the space of finite measures on R¢. The
process Z, is called the superprocess over z,, and we refer to Dynkin (1988) for
an introduction to superprocesses and for further references.

We will use the notation

(9.2 = [o(x)Z(dx),

(F(%,9), Z.(dx)Z(dy)) = [[f(x,9)Z,(dx)Z(dy).

Throughout this paper we assume that the initial measure Z,=pu has a
bounded and integrable density with respect to Lebesgue measure. Also we use
|v| for the mass of a measure v. Our starting point is the formal expression

(1.1) jjB<a(x ~y), Z,(dx)Z,(dy)) ds dt,

which intuitively should measure the “self-intersections” of Z_. In (1.1), & is
the Dirac delta function and B ¢ R2. In an attempt to make (1.1) rigorous, we
replace 6 by an approximate delta function. Let f(x) > 0 be a continuous
symmetric function with support in the unit ball and such that [f(x)dx = 1.
Set

1 (x
fo(x) = g—df(;)
and replace (1.1) by

(1.2) [] (Fulx = ), 2,(dx) Z(dy)) ds dt.
B
We will describe the behavior of (1.2) as ¢ — 0.
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1342 J. ROSEN

To be specific, let us first take Z, to be the superprocess over Brownian
motion in R?. Dynkin (1988) has shown that if d < 7 and if B is bounded
with B C {(x, y)llx — y| = y} for some y > 0, then (1.2) has a limit as ¢ — 0.
This limit is called the self-intersection local time. In this paper, we study what
happens when we lift the restriction that B be separated from the diagonal. If
d < 3 there are no problems with the ¢ —» 0 limit [and no real interest in
self-intersections; Z, itself has a local time; see Dynkin (1988)]. However, if
d > 4, the case we study here, (1.2) will typically diverge as ¢ — 0. In Theorem
1 we will show that if d = 4 or 5, then (1.2) can be renormalized; that is, by
subtracting a singular term which does not involve intersections, we can
obtain a nontrivial limit.

This is the analogue of a result for Brownian motion in R? which goes back
to Varadhan (1969); see also Le Gall (1985), Rosen (1986), Yor (1985a) and
Dynkin (1988b). The renormalized intersection local time for Brownian motion
in R2 turns out to be the right tool for analyzing fluctuations of the Wiener
sausage [see Le Gall (1986b), Chavel, Feldman and Rosen (1991), Wienryb
(1988)] and the range of random walks [Le Gall (1986a) and Le Gall and Rosen
(1991)]. It is our hope that the renormalized intersection local time of Theorem
1 will find similar applications to the study of measure-valued processes.

When d = 6, we can no longer obtain a renormalized intersection local time.
However, Theorem 1 shows that a suitably scaled version converges in distri-
bution. This is the analogue of Yor’s theorem for Brownian motion in R3 [Yor
(1985b); Rosen (1988)].

We use B, to denote a real Brownian motion independent of our superpro-
cess.

THEOREM 1. Let Z, denote the superprocess over Brownian motion in R?
and set

(13) w(T)=[ ! [ "Cf(x —y), Z,(dx) Z,(dy)) dsdt — [ "o (T - 5)1Z,| ds,

where

8 e = [ [[p) £z = 9)pu() dwdy ] dras

and
e~ Y?/2s

p(y) = (2m5)?

is the transition density for Brownian motion in R?.
Ifd = 4 or 5, then y(T) converges in L? as ¢ > 0.
If d = 6, then y,(T)/log(1/¢) converges weakly to By, where

1 .7
(1.5) M, = —2}—5[0 \Z,| ds.
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REMARK. More generally, if for & € C3(R?) we set

T /T T
YT k) = [ [Xh(x) fu(x = 9), Z,(d%) Z(dY)) ~ [ (9.7, Z,) ds,
0’0 0
where now
t rt
. = h(z + . (x — (%) dsd )d ds,
¢, (2) j;fo(ff (z+x)p.(x)f(x —y)p,(x)dsdy]|drds
then y,(T, k) converges in L? for d = 4,5 while if d = 6,
Y(T, k)
log(1/¢)
converges weakly to B, ,, where
1 .7 9
Myp(h) = ﬁfo (h?,Z,)ds.

Theorem 1 will be derived with the aid of the following very explicit
theorem.

THEOREM 2. Let x, be Brownian motion in R? killed at an independent

exponential time and let X, be the superprocess over x,.
(@ Ifd = 4, then

(1.6) f[<f(x ), X(dx)X(dy)>dsdt——log( )[ 1X,| ds

converges in L? as ¢ — 0.
() Ifd = 5, then

(1.7) [:f:<fs(x y), X.(dx) X,(dy)) ds dt———l——(—f)f X, ds

where ¢(f) = [f(xX1/|x|) dx, converges in L% as ¢ — 0.
(¢) Ifd = 6 and

(18) %=/ ) [ “fulx — y), X,(dx) X(dy)) dsdt — a(e) [ Ix, ds,
where

1 1 1 1
(1.9) a(a)=2—W3(;3ff(y)37dy—10g(;)),

then vy,/log(1/¢) converges in distribution and we have

A 1 A2
(110) E‘L(exp[—/\(m”) - exp |U|§(1 - 1- F )

for A small, as ¢ — 0.
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REMARK. X, is not the same as Z, killed at an independent exponential
time.

Theorem 1 can be generalized to nice diffusions in R?. Let Z, be a diffusion
with generator

1 @ d
(1.11) 5 L a (x)——— + Z b(x)—
2 i,j=1 / dx; ox i=1
If a,;, b, are smooth and uniformly bounded together with their derivatives
and
d d
(1.12) Y e (x)AA =28) A
i,j=1 i=1

for some & > 0, uniformly in x and A;, we will say that 2z, is a smooth
uniformly elliptic diffusion.

THEOREM 3. Let Z, denote the superprocess over z,, a smooth uniformly
elliptic diffusion in R and set

(1.18) %(T) = [ [ fulx = 9), Z,(d0)Z(dy)> dsdlt — [, p-0, Z,) ds,
0 -0 0

where

19 p) = ['[[ [p(e0) s = b5, 2) dudy | drds

and p(x, y) is the transition density for z,.
Ifd = 4 or 5, then y(T) converges in L* as ¢ — 0.
If d = 6, then y(T)/log(1/¢) converges weakly to By, where

T
(115) MT = '2? o <(/I,Zs>d8
and
(1.16) W(x) = e

We now generalize Theorem 1 to symmetric stable processes of order B8 in
Re. As before, only the case B < d/2 is of interest, since if B8 > d/2, the
superprocess has a local time, Dynkin (1988a).
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THEOREM 4. Let Y, denote the superprocess over the symmetric stable
process y, of order B in R? and

(117) 7= [ ! A "f(x = y), Y(dx)Y(dy)) ds dt — A "ol (T — $)Y,l ds,

where

18 w0 = [[([[p.5) filx = 9Ipi(5) dndy ) drds

and p(y) denotes the transition density for y,.
Ifd/3 < B <d/2, then y(T) converges in L?> as ¢ — 0.
If B = d/3, then v,(T)/log(1/¢) converges weakly to By, where

(1.19) My = 2a(d) [ 1Y,/ ds
0
and
26—2d 1
D) =—T Txam)

Sections 2—6 are devoted to Theorem 2, that is, the superprocess over killed
Brownian motion. In Section 7, we derive Theorem 1 with the aid of Theorem
2. Because of space limitations, proofs of Theorems 3 and 4 are omitted. They
follow, in general, the lines of the proofs of Theorems 1 and 2.

2. Theorem 2: Preliminaries. Our proofs involve the calculation of
moments, and in this section we derive a formula for moments of the approxi-
mate renormalized intersection local time. Our starting point is Dynkin’s
formula (1988a):

E,_,,( i];[l<fi’ Xti>) = % fvl—.[v_M’(dyv)al;.Lpsf(a)—si(a)(yf(a) —yi(a))
(2.1) " i
X 1_.[ dsu dyu ]._.[fl(zt) dzi'
i=1

veV,
In (2.1),

e—x2/2s

(2ms)?/?

is the transition density for exponentially killed Brownian motion in R<,
where by convention p (x) = 0if s < 0. D, is the set of directed binary graphs
with n exits marked 1,2,...,n. Given such a graph, A is the set of arrows,
and if the arrow a € A goes from the vertex v to w, we write v = i(a),
w = f(a). To each vertex v we associate two variables

(s,,%,) € R, X RY,

(2.2) py(x) =e”
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which we refer to as the time and space coordinates of v. V_ denotes the set of
entrances for our graph, and if v € V_, we set s, = 0. If v is the exit labelled
by j, i <j < n, we set

(smyv) = (tj’zj)'

Finally, V, denotes the set of internal vertices; that is, those vertices which are
neither entrances nor exits.
Let

(2.3) G(x) = [ p(x) ds

denote the Green’s function for exponentially killed Brownian motion in R?.
From (2.1) we see that

Eﬁ(ﬁj“m,x,i)dti)

i=170

(2.4) .

= Z f ].—I d/“'(dyv) n G(yf(a) _yi(a)) ].—I dyv ].—I fi(zi) dzi'
D,  veV_ acA veV, i=1

From this it follows that

Eu([f:f:< £i(x - y), X,(dx) X,(dy)) dsdt]")

(2.5) -z J IT du(x) T G(p = Yicw)

veV_
n
x 11 dy, ﬂ fe(22; — 22i-1) d2y; dzg; 5.
veV, i=1
We will say that the pair of exits v, w are coupled if for some £ we have

22k = Yo» 2ok-1 = Yuw
or
(2.6) 2ok = Yuw> 22k-1 = Yu-

We will say that a pair of exits v, w are twins if they have the same immediate
predecessor; that is, if we can find a, b € A and a vertex u such that

(2.7) i(a) =i(b)=u
and

f(a) =v,  f(b) = w.
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If twins v, w are coupled, and for example, zox = ¥,, 2551 = ¥, and (2.7)
holds, then we get a factor in (2.5) of the form

[[6(5, = 2)G (0 = 3.) £.(30 = 3.) By, dy,

(2.8) = [[G(3.)G(3.) (3, — y.) dy, dy,,
= [£.(5)G *G(y) dy.

Set

(2.9) o(e) = [f(9)G *G(y) dy.

Then it is easy to check that

Eu([_/:)w[(j( fo(x—y), X,(dx)X,(dy)) dsdt — 2c(e)j:<1, X ds] )
210) = E [ IT du(2) I1 60 = Yi)

x I1 dy, er(ZZi — 2g;_1) dzy; dzy;_;,

veV,

where C,, is the set of binary graphs with 2n labelled exits; 1,2, ..., 2n, such
that no twin exits are coupled, that is, no twin exits are labelled 2; — 1, 2i for
any i.

Thus, the effect of the subtraction term in (2.9) is to eliminate all coupled
twins. The factor 2 comes from the two possibilities in (2.6).

We now calculate the asymptotics of c(e). We first note that

G+G(y) = [d ["["p(y ~ =)pi(x) ds
= [ [ Pord) dsa

-/ ) [[pi(y) dsdt
(2.11)

[ “ip(y) dt

1 e—y2/2t

E,/(; e (27Tt)(d_2)/2 dt

1
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where g(y), with obvious notation, corresponds to the Green’s function for
killed Brownian motion in d — 2 dimensions.
If d = 4, it is known that for |y| < 1,

(2.12) g(y) = l[log(||)+log(¢'z-)-K + 0(yl),

where « is Euler’s constant; see, for example, Knight [(1981), page 38]. Hence

c(e) = / f(y)G*G(y)dy

(2.13)

ff (y)(log( ) dy +log(V2) — k) + O(Iyl))

2; (log( ) ff(y)log(l|

If d = 5, it is known that

dy + log(vV2) — K) + 0(¢).

1 e Wl

(214) £0) = 3=

see again Knight [(1981), page 38]. Hence

el

o(e) = o R oY

’

1 .e—cbl

m [ ) ay

1
= - f(y) oz * 0(e).
Finally, for d = 6 let us analyze ul(x), the one-potential for Brownian
motion in R*. Iterating the resolvent equation we find
u(x) — ul(x) = ul*u’(x)
=ulxul(x) +ul*ul*u(x).

By (2.11) and (2.12), we know that u!#*ul(x) = (1/27%)log(1/lx]) + O(1),
lx|] < 1, and it is easy to see that

ulxut+u’(x) = 0(1),

(2.15)

(2.16)

so that for |x| < %,

1 1 1 1
G+G(x) = %ul(x) = Euo(x) - 13 log(l-x—) + 0(1)
(2.17) L.

=—— - ——log(lll) + O(1).
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Hence

c(e) = [f(9)G*G(y) dy
(2.18)
1 f(¥) 1 1
== 52/ el Al 31og( )+0(1), d=6.
We also note for future reference that, as in (2.11),

G*G*G(y) = [O“’- fowf:pm”(y) dr ds dt
- fwftfsp,(y) drds dt

= f Pt(y) dt

1 o e /2%
—¢
= e dt
872 /)y 2t

(2.19)

#Z(y) (the Green’s function in R?)

1
log(' '
We also find that, as in (2.16),
G%x) - G(x) = G*G°(x)
=G*G(x) +G+xG*G°
=G+G(x) +G*G*G(x) + G*G+G *G°(x),

- 872

+ 0(1).

so that

G(x) = G(x) + 0(712)

1 1 01
T2 O\

3. Theorem 2: The second moment. In this section, we compute the
asymptotics of

(2.20)

I(e) = EM[([:[:( fo(x, —y), X,(dx) X,(dy)) ds dt
(3.1)

_zc(e)[:u, X, ds)2].
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By (2.10) we obtain a contribution from each binary graph with four exits,
such that no twin exits are coupled.

We first sketch the possible graphs and write down their contribution. Later
we will work out the combinatoric factors.

e
O
N

N

ez

[ 2

4
Graph 1

[,U«(du)G(z —u)G(x - 2)G(y — 2)G(x — 2)G(x — 23) G(y — 2,)
XG(y = 24) f.(21 — 23) fo(25 — 2,) dxdydz

32y = JO(z-u)dzdu(u) [G(x)G()(G*Gx f(x ) dxdy
= lul [G(2)G()(G*G* f.(x —y))" dudy

= lul[G*G(%)(G * G * f.(x))’ dx.

21
[ ] [ ¥/

[
y\.z4 8

Graph 2

N J

f,.;(du)G(z —u)G(z, - 2)G(y —2)G(x —y)G(x — 23)G(x — 23)
XG(y = 24) f(21 — 25) f(23 — 24) dx dydZ

(3.3)
= el [G(0G(x = y)G *G* f,(x — y)G + G f,(x) dudy

= lul [G(x)G* G * £,(x)G G * G f,(x) dx.
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oz ez
° o/ 1 ° o/ 2
u x v y
\.23 \.z4
Graph 3

Jr(du)u(dv)G(u — x)G (v - y)G(x — 2,)G(x - 23)G(y — 2,)

XG(y = 24) (2, — 2,) f(z3 — 2,) dx dy dz
(3.4)

= [u(du)u(dv)G(u - x)G(v — )G *Gx f(x - y)) dxdy
= fu(du)u(dv)G *G(x = (u~v))(G*G+ f(x)) dx.

N

N J

ez
o/ 2
y
\.24
Graph 4

Jr(@um(dv)G(u ~ 2)G(w - 0)G(x - 20)G(x — VG(y — z3)
XG(y — 2y f(z — zz)fe(z3 —2z4)dxdydz
3.5
35 _ Jr(du)n(dn)G (v —2)G * G * fo(u —y)G(x - 3)G + G » fu(x —y)dxdy

= [1(du)u(dv)G * G+ G * f.(x — (u — v)G(x)G * G * f.(x) dx.

/ b
° ° o e °
u zZ, v Z; w x
\.24
Graph 5

(3.6) [p,(du)p,(dv)p,(dw)G(x —w)GxG* f(x —u)G+*G* f.(x —v)dx.

° o o o o o o °
u 2, v 2y w 23 2 A

Graph 6

(3.7)  [u(du)u(dv)u(dw)u(dz)G » G + f(u —w)G G+ f(v - 2).
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We will use the following simple lemma:

LEMMA 4. Let u(x) be a measurable function with exponential rate of decay
as |x| - « and

|u(x)|soﬁa—, a<d.
Then u * f(x) has exponential rate of decay as |x| — « and
1
c- '|—|a—, IxI =€,
(3.8) lu= f,(x)| <
c:— lx| <e.

)
80

Proor. The exponential rate of decay as |x| — = is clear. If |x| > 2¢,

ux f(x) = [u(x —y)fe(y) dy
< jl |af(y) ly

while if |x| < 2¢,
ux* f(x) = fu(x -y)f.(y)dy

= [u(x —ey) F(3) dy

scf u(x —ey) dy

lyl<1
1 1
e f -
|y|s:s|x yI
1 1 1
c— dy < E—a‘
e '[yl <3¢ Iyl

Similarly, if [u(x)| < c log(1/|x|) for |x| < 7, then

IA

dy

IA

clog( |1| ) lx| > &,
(3.9) lu* f(x)] <
clog(;), lx| < e.
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The functions G, G *G and G * G * G are of the above form as we saw in
Section 2. They all have exponential rate of decay as |x| — «, while for small x
we have the following bounds:

G(x) cx~? cx 3 ex~*
1
(3.10) G*G(x) clog:(| I) cx™! cx™2
1
G+xG*G(x) c c clog:(| |)

Using (3.10) and Lemma 4, it is easy to check that all the integrals
(3.2)-(3.7) are uniformly bounded as ¢ - 0 when d = 4 or 5.

We thus concentrate on d = 6. The integrals for Graphs 3, 5 and 6 are
uniformly bounded as ¢ — 0, while the above shows that the integrals for
Graphs 1 and 4 are O(log(1/¢)). We now carefully compute the integral (3.3)
corresponding to Graph 2. We will show that it is ~ c(log(1/¢))?. -

Using (2.17), (2.19) and (2.20), we find

J(e) = [G(x)G*G* f,(x)G*G*G* f,(x) dx

= G(x)G*G* f(x)G*G*G+* f(x)dx + O(1)

lxl<1/2
1 1
- lesl/22_'77'3x_44_7'r3( f)(x)g 3(log(| I) fs)(x)
1
(3.11) + O(log(;))
1 1
B #fzeslxlsl/zxﬂ(x_z* fs)(x)(log(m) * fs)(x) + 0(108'(;))

1 1 1 ) (
= — o
6417° 25|x|51/2:—:/ xt |x — 2 & elx — yl

ol
64177 fzs|x|<1/2e : (l g(l) +log(| |))dx * O(log(;))
641779 (3 [1/28 ( og( ! ) - log(r)) dr + O(log(é))

a3 () ol 7))

)f(y) f(z) dxdydz
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We now count the number of graphs in C, which give rise to a contribution
(3.3).

We first consider those graphs which have four unlabelled exits and which
are of the form of Graph 2. With obvious notation they are

a (b (cd))
a ((b c¢)d)
(3.12) (@ (b c)d

((e b)) c)d.
Consider the unlabelled graph
a(b(cd)).

We can assign any of the four labels, 1,2,3,4 to ¢, but of the three
remaining labels, one will be forbidden to d by our restriction that no twins
are coupled. The remaining two labels can be assigned arbitrarily to a, b.
Thus, to each graph in (3.12) there are 4% labelling schemes, for a total of 43
terms of the form (3.3).

Thus

1 1 1 1
(3.13) I(s) = 4%ul(e) + O(log(—)) - —elp,llogz(—) + O(log(—)).
€ 21 € €
4. Proof of Theorem 2(a) and (b). Let

(4.1) v, = [0°°[0°°< f.(x — ), X,(dx) X,(dy)) dsdt — 2c(£)f:(1, X, ds,

where
! 1 1) d=4
L I S Y€ S
472 /) |yl Y )
We will show that
(4.2) E[(v.- %) 20 ase g 0.

By the discussion in Section 3, we know that (4.2) can be written as a sum
of terms which are of the form (3.2)-(38.7), except that in those formulas we

replace f, by f. — f.
Let us define

e—x2/2t

(4.3) H,(x) =f0e“t(—amdt.
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It is clear that H (x) falls off exponentially as |x| — «, and by scaling in the
region 0 < ¢ < 1, we find that for |x| < 1,

clx| ¢, a>0,

1
H,/ (x) < clog(m), a=0,

c, a<0.
We note that for 0 <8 < 1,
(4.4) |e—(x+2)?/2t _ o—x/2t| < c|z|ﬁt—p/2(e—(x+z)2/2t + e—x2/2t)’

as follows by arguing separately for |z|® < ¢ and |2/% > ¢.
From this it follows that

IHa* fe(x) - Ha* ft-':(x)l
o e_t B
(4.5) < ff(y) dy(j; Wle—(x—ey)2/2t — e~ @—?/2t| gy

<cle — 5|B(Ha+ﬁ *fo(x) + H, ¥ fé(x))

We can easily check that the integrals (3.2)-(3.7) which were uniformly
bounded in ¢ in dimensions 4,5 will remain uniformly bounded if we replace
the factors G, G * G and G * G * G which are of the form H_, by correspond-
ing factors of the form H,,,; with B8 small. Then (4.5) allows us to extract a
factor ¢ — /. O

5. Proof of Theorem 2(c): Combinatorial aspect. Our proof is by the

method of moments.
Recall that

(5.1) v, = j0°°[0°°<ﬁ(x — y), X,(dx) X,(dy)) dsdt — 2c(e)[0°°<1, X, ds,

where
c(¢) =fﬁ(x)G*G(x)dx
(5.2) 1 1 .7(») 11
= 4173;2' y.;’ dy — e log(;) +O(1)

By (2.10) we know that
(5.3) E,(v?™)

is a sum of contributions from the graphs of C,,,, that is, the set of binary
graphs with 4m labelled exits, 1,2, ...,4m with no twin exits coupled; that is,
no twin exits are ever labelled 2i — 1, 2i for any i.
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The basic idea which we explain in this and the next section is that the
dominant contribution to (5.3) comes from graphs which effectively break (5.3)
up into a product of m second moments.

Let A,,, ¢ C,, denote those binary graphs in C,,, for which there is a
complete pairing (i, j,),...,(i,,, j,,) of the 2m integers 1,2,...,2m and such
that for each such pair (i;, j,) the exits labelled 2i, — 1,2i,,2i, — 1,2, are
arranged as in Graph 2 of Section 3:

S
NN\
N

2.

25,

(5.4)

®23i,-1

or one of its 43 variants as described at the end of Section 3.

We will see later that the dominant contribution to {5.3) comes from the
graphs in A,,, and is of order log®™(1/¢), while any other graph in C,,, will
give a contribution which is O(log?™ ~1(1/¢)).

Let us compute the contribution from the graphs in A,,,. Consider the
subgraph (5.4). The partial integral with respect to

dxdydzy;,  dz,;, dzy;,  dz,; |

is described in (3.3). It is crucial that this partial integral is independent of z (a
consequence of the translation invariance of Brownian motion), and is simply
the constant [see (3.11)]

I(e) = [G(x)G*G* f,(x)G*G*Gx f,(x)dx

“saate(c) ol ))

As we saw at the end of Section 3, there are 4% variants of (5.4). Thus the
partial integration corresponding to all m pairs (i;, j,) and all the 4 variants
for each pair gives rise to the factor

w0 [l sope(l)

After this partial integration, we are simply left with a binary graph with m
exits. Since any graph in D,, can arise in this fashion and since there are
(2m)!/m!2™ ways to pair the integers 1,2, ...,2m, we see that [see (2.4)] the
contribution to (5.3) from A,,, is

(5.7 (rrzt"';')"' ( 216 log? ( ! ))mEH((/:(l, X, ds)m) + O(logzm'l(é)).

(5.5)
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We will show in the next section that the contribution of all graphs in
C,. \A,,, is O(og®™~1(1/¢)). This will give

()]

@2m)( 1 \" ® m
ﬁT(m) E”((fo (1,Xs>ds) ) ase — 0.

Furthermore, the next section will show that

(5.9) EM[(@%—S-;)M_I] -0 ase— 0.

Let M,,, denote the right-hand side of (5.8). We now show that for |A|
small,

© A2mM2m 1 )t2
(510) mgom = exp I/.ng 1- 1- ? .

This will show at once that any limit distribution of vy, /log(1/¢) is deter-
mined by its moments, hence is unique, and will also show that its Laplace
transform is given by (5.10), which will establish Theorem 2(c).

We give a simple combinatoric argument for (5.10). Let us calculate the
moments

(5.11) E”((f:ﬂ, X)) ds)m)

via (2.4). We integrate successively over the exit and internal variables, using

(5.8)

[G(x)dx =1,
so that (5.11) is equal to
(5.12) Y [ IT w(dy,) = L ID,, llul,
D, veV_ r=1

where D, . denotes the set of labelled binary graphs with m exits and r
entrances, and |A| denotes the cardinality of a set A. Hence

© AZ m

® m A2\
(513) mZ=() (2m)|M2m = m{: Z Il-"I IDm r ( 411_6)

.r=

Let d(n) = |D, ,|, the number of binary graphs with n labelled exits and
one entrance. We have

(5.14) ID,, ,| = % Y (s i )d () - d(y)

(since components of D,, .. corresponding to different entrances are unordered).
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(5.15)

LE

I
g

However, it is known that

= d(n)( 2\ 1 22
5.16 ——] ==(1-1{1-—
e LIPS -5y 5

[(d(n))/n! is the number of unlabelled binary graphs with n exits; see Comtet
(1974), page 52 for (5.16)].
(5.15) and (5.16) now establish (5.10). O

6. Proof of Theorem 2(c): Analytic aspect. We recall from (2.10) that

E(v') = E /vg du(yv)agG(yﬂa) - Yiw)
(6.1) " .
x [ dy, il:llfs(zzi — 2y_1) dz.

vevV,

In this section, we show that unless n = 2m and the graph C isin A,,,,
then the contribution of C to (6.1) is

2 ofjee (2]}

As discussed in Section 5, this will complete the proof of Theorem 2(c).
We can think of the integral in (6.1) as obtained by assigning a factor
G(Yf@a) — Yi@ay to each arrow a € A. We must integrate out all internal
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variables dy,, v € V,, all entrances with respect to du and all exits with
7.y flzg; — 29 1) dzy;_y dzy,.

Our approach to (6.2) is to successively integrate out the variables, at each
stage replacing the graph C by a different graph C’ (not necessarily a directed
or binary graph).

The arrows of C’ are associated with factors described below, such that the
contribution of C is bounded by that of C’. In this process we will be able to
associate a factor O(log(1/¢)) to each f, in (6.1) in such a way that these
factors will bound all divergences as ¢ — 0, and we will show that unless
n=2m and C C A,,,, at least one of the factors associated to some f, will be
o(1).

Here are the details:

We begin by integrating the exit variables z,, ..., z,,. We obtain » factors of
the form

/G(a — 25;_1) [(22; — 25;_1)G(b — 2y;) dzy;_; dzy;
—G+G+f(b—a). ‘

We know from the fact that C c C,,,, that a # b. Form a new graph C’
obtained by putting an edge between i(x) and i(v) whenever f(u) =z, _;,
f(v) = z,,; that is, we connect the vertices associated with a, b in (6.3). With
this new edge, called a leading edge, we associate the factor G * G = f,. At this
stage, we have not made any estimates so that the contribution of C’ is
identical to that of C.

Assume that C’ has a subgraph of the form

W
x\.b

where (x, a) and (x, b) are both leading edges. We distinguish three possibili-
ties:

(6.3)

oq

(6.4)

ce

(i) a =c, or b = ¢ (we cannot have both).
(ii) a =b.
(iii) a, b and c are distinct.

We analyze each in turn:
(i) Assume that b = ¢. This can only have occurred if C contained the
subgraph

[ I8

(6.5)
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Since we think of z,,;,2z,,_; as connected by f,, we refer to the situation in
(6.5) as a simple loop.
The partial integral over x in this case is

fG(c -x)G+xG* f(c—x)G*G* f.(a —x)dx
(6.6)
= [G(x)G*G * f(x)G*G* f(a—c —x) dx.
We let u, (x) denote a generic function which falls off exponentially and
monotonically in |x|, and such that
clx] ™%, lx| > &,
ua,e(x) < —-a

ce™ lx] <e.

With u, . we associate log(1/Ix|) instead of |x| .
We know from Lemma 4 that

GxG*f,<u,,.
Hence (6.6) is bounded by

(6.7) fG(x)uz’e(x)uz’e(a — ¢ —x)dx.
If |x| > ila — cl, (6.7) is bounded by
(6.8) uy(a = c)[G(x)uy, (a—c—x)dx,
while if x| < 3la — cl, so that la — ¢ — x| > |a — ¢|/2, (6.7) is bounded by
(6.9) u,.(a- c)fG(x)uz’e(x) dx = log(%)uz’s(a -c).

The integral in (6.8) is easily evaluated by noting that with

- e X2/

GMNx)=| e —dt
() fo (2mt)¥?

we have, for some A small,

A A
Uy, <CcGA G x f,

and
G < cG*.
Thus the integral in (6.8) is bounded by
(6.10) G*+G*+G*+ f(a—c) =u,, (a—c),

by (8.10) and Lemma 4.

In any event, (6.6) is bounded by log(1/#)u, (a — c). (It is important to
recall that we cannot have a = c.) We then form a new graph C”, with an edge
between the vertices associated with a and c. We consider the factor log(1/¢)
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as associated with f.(2y; — 2,,_;) and we associate u, , to our new edge, now
called a leading edge.

Because (6.5) refers to a binary graph, in C”, aside from our new edge
connecting a and c, there is only one other arrow connecting ¢, with a factor
G(c — d). We now integrate

(6.11) [G(c—d)u, (a-c)de =u, (d-a).

[This integral was already computed in (6.8) and (6.10).]

If a = d, we are in the situation of Section 3, Graph 2, that is, our subgraph
(6.5) was precisely of the form making up A,,,, contributing log2(1 /¢€), which
we associate with the two f, factors for that subgraph, which now have no
further influence.

If a #d, we form a new graph C” linking a and d, and with the factor
u, (d — a). We have a subgraph

(6.12) . ¢ .

oh

which looks like (6.4), except that instead of the factor u,, associated to
(d, @), we have u,,.

We will see after analyzing cases (ii) and (iii) that the worst possible case
comes from the two-loop subgraph

¢ x/
\\\\

that is, 2~ = e (so that a # ¢) and the partlal 1ntegral over d is

JGe—d)us, (e - d)u,, (d - a)d(d)

(6.13)
= [G(x)uy, ()1, (a — e —x) dx,

with @ # e.

As in the analysis of (6.7), we find (6.13) bounded by

1
(6.14) log(;)uo’s(a —e)tu,(a—e),
so that the de integral is
1

(6.15) O(log(—)).

Thus, three factors of f, give rise only to a log%(1/¢) contribution [as opposed
to log3(1 /&)l
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In particular, a subgraph of the form

/

.22 .zl

/

(6.16) ° ° o_ o ) ) ) )
NN AN

---with i — 1 loops, gives a contribution which is O(logi~'(1/¢)), unless
1=2.
(ii) This case arises from the subgraph

_
(6.17) . . .
\.23

The partial integral with respect to z;,..., 2, x,y is

J[G(x = ¢)(G*G f.(x = ))’G(y - d) dxdy

Ozl

s
y\.z4

=fG*G(c—d—x)(G*G* fe(x))zdx

(6.18) < [G*G(c—d —x)u, (x)dx
<c[G G c—d —x)Gx f,(x) dx

=cG**G*+«G** f.(c — d)
= uO,s(c - d)
as in (6.10).

If ¢ = d (which is the situation of Section 3, Graph 1), we have a log(1/¢)
for two factors of f,, while if ¢ # d we have the bound

1
uy  (c—d)< log(;)u(c -d),
where u(c — d) is bounded, and falls off exponentially as |c — d| — ®. We have
a factor log(1/¢) for the two f.’s, a new graph with an edge connecting the

vertices associated with ¢ and d and associated factor u(c — d).
(iii) If a, b and c are distinct, the partial x integral is

(6.19) fG(c—x)G*G*ﬁ(x—a)G*G*ﬂ(x—b) dx.
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If the variable a or b no longer appears in any other factors associated with
edges of our graph, we perform the da or db integral. If, for example, we first
do the da integration, then (6.19) is bounded by

1
(6.20) ug (c—b)< log(—)u(c -b)
€
and as in the discussion of (ii), we associate log(1/¢) with two f, factors.
If both @ and b appear in other factors, we use

wv < 3(u?+v?)
to bound (6.19) by
(6.21) G*uy (a—c)+Gxu,y (b—c)<u,.(a—c)+u, (b-c).

We now form two new graphs: one with a new edge connecting a¢ and c,
with a factor u, [(a — c), and proceed analogously for the other graph.

It suffices to consider the first graph. Notice that the factor u, (a — c) is
the type of factor we obtained from the initial integration over exits—hence
we can continue our analysis as if it arose in the latter manner—with the
difference that we have actually used up two f, factors!

We can now return to the end of our discussion of case (i) and see that
indeed the worst possible case for (6.12) is as described there, that is, (6.16).

By iterating (i), (i) and (iii), applied to leading edges, we see that (6.2) holds.

O

7. Proof of Theorem 1. In analogy with (2.10) we find

Eﬂ(yen(T)) = Z [ H /‘L(dyv) H ps,c(a)—s,(a)(yf(a) - yi(a)) 1_.[ dsv dyv
C,,~ VEV_ acA veV,
(7.1) )
X1y <7, foran j) l_Ilfe(zzi—l — 2y;) dzg;_ dzy; dty;_ diy,,
iz

where now
e~ 0%/2s)

ps(y) = (@ns)?

is the transition density for Brownian motion in R<.

Note that by inserting factors exp(—(s ;) — 8;4)) = e~ T, we can bound the
contribution to (7.1) of any graph C, by its contribution to (2.10). This
immediately shows that if d = 4,5 and n = 2, then (7.1) is uniformly bounded
in ¢, while if n = 6, we can bound the contribution of each graph to (7.1) by
clog™(1/¢), and in fact, unless n = 2m and our graph belongs to A,,,, then
its contribution can be bounded by c log™~(1/¢).

The L? convergence for d = 4,5 follows easily by using such a domination
together with (4.5). The case of d = 6 is more subtle.
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We consider in detail the contribution of a subgraph of the type described by
Graph 2 of Section 3. This contribution is

J(37 5) = fptl—s(zl - z)psl—s(y - z)p32—31 x = y)ptz—sz(z2 - x)
Xpt3—32(23 - x)pt4—31(z4 — ) f(21 — 23) f.(23 — 2,) dxdydz; dt; ds;

= fpsl—s(y)psz—sl x = y)ptl—s * Dyy—s, * fs(x)pt3—32

(7.2)
X * Py, _s,* fo(x —y)dxdydt; ds;
= [psz—sl(x)pta-sz * pt4—sl * fe(x)psl—s * ptl—s * pt2—32 * fs(x) dx dti dsj
= [Poy-s(%)GT 2% GT ™ % f(%) Pyy—s * GF % G2+ f,(x) dxds;,
where
(7.3) Gi(%) = [ py(x) ds.
0

Recall from (3.11) that

I(e) = [G(x)G*G* f,(x)G %G *G* f(x) dx

1 11 9 1 oli 1
~64n® 2 % (?)+ (°g(?))'

We now show that for any fixed 6 > 0,

(7.4)

(7.5) J(s,¢) = J(e) +O(10g(%)), T—s> 36,
Let
g, =e"'p(x), G"(x)= fore_’pt(x) dt.

Using
1 —e7Y < 2¢,
we easily check that

I(s,8) = [qo,-s(®)GT 1% GT "2 x f(2)q,,_,

(7.6) 1

X * GT=¢x GT~%2x f.(x) dxds; + 0(10g(—)).
&

Using the bound

C
q,(x) < 33
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if
r=39,
we see that in (7.6) we can assume that the integral is over the region
(T —s;,>286,T — s, > 8}
and using the bound

c
r2’

r 001
|G(x) — G(x)] sc]r 3 dt
we see that

qs2_31(x)GT—sl * GT 52 % fe(x)qsrs + QT 5+ QT 2% fe(x) dx dsj

T—5,>8

f{T—slzza}

Qs,—s ()G *G * [ (x)q,,_* GG * f,(x)dxds;
T—59>6

)

GT—S—Sl(x)G * G * fe(x)qsl_s * G * G * fs(x) dxdsl

= f{T—slzzs}

(1.7)  JT-s228)

oful2)

= G(x)G*G* [ (x)q,_s*G*G * f(x) dxds,
(T —s,>28}

coful2)

= J(e) + O(log(%)),

which proves (7.5).
Let us now consider the contribution Ef(yf'"(T)) of a graph C c A,,, to
(7.1). C has m subgraphs of the form we have just considered. Let s,,...,s,,

denote the variables corresponding to s in J(s,¢). Considering first the
contribution from {T — s; > 34, for all i} we find that

1 _ m
18) BEGinm) = [0 + ofogn T e ( [z ) )
0
plus a term which comes from

(T — s, > 35 for all i}°.

In (7.8), C, is the graph obtained from C by ‘‘amputating” the m sub-
graphs just described.
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Since J(s, ) < clog®(1/¢) for some c¢ independent of s,, we see that the
error term to (7.8) coming from {T' — s; > 38 for all i}° is bounded by

(7.9) ¢ logz"‘(%)Ef"((foTIZsl ds)m_l(fTT_aslzsl ds)),

where c is independent of §.
Combining (7.8) and (7.9) we find that

tim Zn (D) _ Efo(([oleslds)m)

210) ¢—0 log®™(1/¢) m—1
+0{Efo((-[oTIZs| ds) (fTT 35|Zsl ds))},

where O{ } means that we can bound the error term by a multiple (which is
independent of &) of the expectation inside the brackets. Since the left hand
side of (7.10) is independent of 8, we in fact have

%) N el T
(7.11) lim EC((log(l/s)) —Ef((folzslds) )

In a similar manner, we can show that

E( ( L An(t) log(l)))
_,E“(exp(zi‘—”1 [”"lzw))

which shows that the limit process for v,(¢)/log(1/¢) has the same finite
dimensional distributions as B,,, where B, is a real Brownian motion inde-
pendent of Z and

(7.12)

1
(7.13) M, = gg[olzslds.

To complete the proof of Theorem 1 it suffices to prove tightness for
v.(¢)/log(1 /¢); for this we show that for all m,

Y(2) = 7.(8) \*" It — s|*™
and
v(s) \*" wm
(7.15) E"((Bg(l—/s)) <c,S$

for some a > 0, for all s, ¢ on any bounded interval. We can assume s < ¢.
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(7.15) follows easily from the fact that all time integrals in (7.1) are now
over times less than s, and in our analysis in Section 6, there were a number
(at least proportional to m) of factors which we bounded by

f(fospr(x,y) dr)dy —s.

To prove (7.14), we note that since v,(¢) — v,(s) involves a double integral
over [0,¢]% — [0, s]2 = [0, s] X [s,£] U [s,2] X [0, s] U [s, t]?, we can easily see
from (7.1) and our analysis that it suffices to show that

(7.16) [p(x) dr < %ZS—IG(%)

for some a, b, c. This follows from Hélder’s inequality:
—x2 /2r

/-
r2

s

. —px /2r 1/p
drslt—sll/"([ )
S

|t — l/p
= 2 l/p (f

; —px2/2r 1/p
dr)

(7.17) .
¢ — sI"” 1/p
= S/ (G(pl/zx))
It —s|* [x
<o 6(3)
where
1 1
-+ = = 1. O
p p
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