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SOME LARGE-DEVIATION THEOREMS
FOR BRANCHING DIFFUSIONS!

By TzonG-Yow LEE

University of Maryland

A branching diffusion process is studied when its diffusivity decreases to
0 at the rate of ¢ < 1 and its branching/transmutation intensity increases
at the rate of ¢~ !. We derive the action functionals which describe some
large deviations of the processes as ¢ tends to 0. The branching diffusion
processes are closely related to systems of semilinear parabolic differential
equations.

Introduction. We investigate large deviation probabilities for a family of
branching diffusions with transmutation. Our motivation can be described
using the following family of binary branching Brownian motions (BM):

(H1) A particle starts from the position x € R? and executes a small BM,
e/2(BM), 0 <& < 1. ’

(H2) Its lifetime exceeds ¢ with probability exp(—ct/e), where c is a positiv
constant. -

(H3) At death it is replaced by two descendants.

(H4) Each descendant, starting from where its ancestor dies, repeats the
process (H1)-(H3) and so on. All diffusions and lifespans are assumed
independent of one another.

Denote by @; the probability distribution of this branching BM. Note that
the probability space is a set of sample trees Z = (Z,, 0 < ¢) rooted at x, where
Z, denotes the collection of positions of particles existent at time ¢. For a
particle existent at time T', we call its ancestral path a branch; for two particles
existent at time T, we call their ancestral paths a 2-branch. For convenience, T
is a fixed number throughout this paper. Our study is motivated by the
following problems.

ProBLEM 1. What is the asymptotic probability as ¢ — 0 that the sample
tree Z contains a branch close to ¢: [0, T] - R4?

ProBLEM 2. Conditioned that the sample tree Z contains a branch ¢, how
many branches are there in a tiny neighborhood of ¢?

ProBLEM 3. What is the asymptotic probability in Problem 1 if we replace
a branch by a 2-branch?
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For the neighboring model of random walks, Problems 1 and 2 were
mentioned and conjectured in [14]-[16], and partial solutions were given in [14]
and [15]. There is no overlap with our method. We are grateful to the editor for
pointing out these references.

If there is no branching mechanism in the process @:, then Problems 2 and
3 are trivial and the solution to Problem 1 is well known (cf. [9] and [18]).
Roughly speaking, the probability that the £'/2(BM) contains the branch (.e.,
follows the path) ¢: [0, T] —» R? is asymptotically

-1 .71 2
exp Tfo El(p(s)l ds.
Here ¢(s) is d¢(s)/ds. Such a function as
1,0l
o= [ Fle(s) ds

is called an action functional, rate function or entropy.

For Q¢ defined in (H1)-(H4), the same event occurs with a greater probabil-
ity because there are typically exp(ct/e) many particles at time ¢. Some
computations then lead to the following conjectures.

ConJECTURE 1. The Q@ probability that the sample tree contains the
branch ¢: [0, T] — R? is asymptotically like

1 t]- 2
exp{~ min [ct—f—z-lqb(s)l ds]},

€ 0<t<T 0

that is,

-1 1
‘*"p{T o';i’%fot(a"f"(s)ﬁ B ) ds} ase 0.

CoNJECTURE 2. Conditioned that the sample tree contains the branch ¢,
there are typically
1 rl
- T—1t)— [ =lg(s)?
exp{ - Oga;:T[d )~ [ Fle) ds]},
that is,
1 T 1 9

oo ; s, o~ i) )

many branches close to ¢ as ¢ — 0.

In Section 1 a rigorous version of Conjecture 1 is proved (Theorem 1). In
Section 2, Conjecture 2 is precisely formulated and is partially proved (Theo-
rem 2). In Section 3 we give a meaning and a proof to Problem 3 (Theorem 3).
The unsolved part of Conjecture 2 and some other large deviations for the
number of particles are discussed elsewhere.
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Theorems 1, 2 and 3 are, in fact, proved for a broad class of branching
diffusion processes. Briefly speaking, we allow a branching diffusion particle to
transmute (change type) and allow the diffusivity, lifetime and offspring
distribution to depend on both the position and the type of the particle. The
offspring distribution can be supercritical (mean m > 1), critical (m = 1) or
subcritical (m < 1).

In Section 4 we point out some applications and further generalizations.

1. Large deviations for the branches. We consider the following gen-
eralizations of (H1)-(H4):

(HY) A type-k, k = 1,2, particle starts from x € R? and executes a small
diffusion generated by &'/2D,A/2, where D,: R? — (0, %) is Lipschitz
continuous.

(H2') Its lifetime exceeds ¢ with probability exp[(—1/¢)/{a,(X,) ds] given its
path X,, 0 < s < ¢, where a;: R? - (0, ») is continuous.

(H3) At death it is replaced by n, type-1 descendants and n, type-2 descen-
dants with probability p,(r,, n,, y), where y is the ancestor’s position at
death and p,(n,,n,, ) is continuous for each 2 =1,2, n,;,n, >0,
Zn ngzopk(nl’nz’ ) =1

(H4') Each descendant, starting from where its ancestor dies, repeats the
process (H1)-(H3') and so on. All diffusions, lifespans and offspring
distributions are assumed independent of one another.

Let P; , denote the probability distribution, E; , the expectation and Z the
sample tree of this process. @ can be regarded as the special case where
Dy(x) = Dy(x) = 1, a)(x) = ay(x) =c,

Z pi(ny,ny,x) =1

ny+ny,=2

and there is therefore no need to distinguish particle types.
Listed below are some important functions associated with the process P ,.

Birth rates (Malthusian parameter).

cq,1(x) = al(x){ > nlpl(n11n21x)] - 1},

ni,ng

01,2("‘) = ay(x) Z nypy(nq,ny, x),
ny,ng

g, 1(x) = ay(x) > nipy(nq,ng, x),

ni,ng

Cy 0(x) = az(x){ > n2p2(n1,n2,x)] - 1}’ x € RY

ny,ngy
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Hamiltonian.
H(x, p) == the largest eigenvalue of

$Dy(x)lpl* + c1,4(%) c1,2(%)
c,1(%) 1Dy(x)lpI” + ¢55(%) |
equals [p|?/2 + c in the case of Q¢ as in (H1)-(H4), x,p € R,

Lagrangian. L(x,q) = sup,cgdq - p — H(x, p)), equals |g|?/2 — ¢ in the
case of ¢, x,q € R%.

Action functional for the branches. S: C(R%) — [0, ] is defined as

S(e) = { Jnax OaL(qo(s), é(s)) ds, if ¢ is absolutely continuous (a.c.),

+ oo, otherwise,

where C(R?) denotes the set of all continuous functions: [0,T] — R%. We
impose on C(R?) the uniform topology induced by the metric p:

p(e,9) = max lo(s) —¢(s). @ ¥ € C(R?).
We make the following assumptions on our branching diffusions P, ,:

(A1) There exists K € N such that if n; > K or n, > K, then py(n;,ny, x) =
0 for & = 1,2; inf{c, ,(x): (k,m) =(1,2) or (2,1) and x € R%} > 0.
(A2) D,(x),a,(x), k = 1,2, are bounded functions.

The essential part of these two assumptions is that ¢, (%), k,m = 1,2, are
finite. The remainder is mainly for simplicity of presentation.

TuEOREM 1. Assume conditions (Al) and (A2). Then the functional e 18
is the action functional for the branches of the family of branching diffusions
P{,,e€—0,k=12 By this statement we mean the following in the uniform

topology p:

1D S is lower semicontinuous and the level set {¢: S(¢) < A and
¢(0) = x} is compact for each 0 < A < » and x € R%.

(1.2) If C is a closed subset of CR?) N {p: ¢(0) =x}, then
limsupe In P} ,{the sample tree Z contains a branch in C} <

-0

— inf S(¢) fork =1,2.
eeC

1.3 If G is an open subset of CR?) N{p: ¢(0)=x}, then
liminfe In P; {the sample tree Z contains a branch in G} >

e—0

— inf S(¢) for k = 1,2.
quG

We establish a series of Lemmas 1-5 to prove Theorem 1.
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LEmMA 1.1. The functional S is lower semicontinuous in the uniform
topology p and so are the functionals

¢~ [L(e(s), é(s)ds and o~ min ["L(p(s),9(s)) ds.

Proor. We only prove this for the functional S. For the other two
functionals the modification needed is simple. For ¢ € C(R?), a partition
= (tgsty, ..., tn), 0—t0<t1 -+ <ty=T and 1<j <N, define a

Ham1ltoman H oo, j» Hy . /(P) = the largest eigenvalue of the matrix

max Dl(so(t))]— + omax Cpy(et)), max Cpy(e(t)
tj_1stst; tj_i<tst, t,_1st<t, d
ol? , p € R%.
P
max Cy 1(¢(2)), max Dz(‘P(t)) T"’ max C, 5(¢(2))
ti_1<t<t, t,_1<t<t,
Denote by L, . (q) the correspondlng Lagrangian:
L,.;(q) = suw[g-p-H,, (p)], geR
peR

Then we have
tj . t] .
[7 Le(s),6(s)) ds = [* L, ., ;(4(5)) ds

j—1
o(;) = o(t;_1)
J J=

where the last step uses Jensen’s inequality.
Let II denote the set of all partitions of [0, T']. From the definition of the
functional S, the following representation is valid:

o(t;) — e(t;_1)
S(¢) = sup max Z (¢ —tj_I)L‘p,,,,j( Jt — el .
m=(tg, t,...,ta)ell m=0r.0y j b1
Since
o(t;) —o(t;_1)
-+ VL .
(s m I(I)l’ax’ E (t —1) ‘P"’T:J( tj _ tj—l

is a continuous function from C(R?) to [0,) in the uniform topology p for
each partition 7 € I, this representation of S proves the lower semicontinu-
ity. O

LEemMma 1.2. Let 0 <0 <1/2 and llolly be the Holder norm of order 6 of
¢ € C(R?), that is,
lo(t) = ()l
llellg == sup ————F—.

[’}
0<s<t<T |t — sl
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Then
lim sup lim supe In P {the sample tree Z contains a
A—>x
branch Y wzth IYlle > A} = — for each k = 1,2 and
x R,

Proor. For clarity of argument we first give a proof for the special
branching diffusion Q; as defined by (H1)-(H4) and then point out the
modification needed for the general case.

Denote by N the total number of particles existent at time T. First, note
that

I == Q;{Z contains a branch Y with ||Y[l, > A}

< eenf2))

(1.4)
B .
+ Qj{N < exp(—&2 ) and at least one branch Y with ||Yl|, > A}

for any positive B.

By Chebyshev’s inequality and by the fact that each branch is, in distribution,
equivalent to an £/2(BM), we see that

(1.5) I< Ej{N}exp(—) + Prob{|le'/2(BM)lly > A}exp(g).

It suffices to show the following:

(1.6) limsup ¢ In E{N} =
-0
(1.7) lim sup lim sup & In Prob{l(BM)lls > ¢ "'/?A} = —oo,
A—>o £—0

because these, together with (1.5), imply

lim sup limsup I < max[Tc — B, —»] =Tc — B
A—>w® e—0
and B can be arbitrarily large. (1.6) is easy to compute. (1.7) is known (see,
e.g., [2]). For ¢, Lemma 1.2 is proved.
If P;, is a general branching diffusion as defined by (H1')-(H4'), (A1) and
(A2), we define a time change 7(¢), depending on the branch (v, x) = (v,, X;;
0<t<T)=(;,X};0<t<T) namely,

w(t) = [D,(X,)ds for0<t<T.
0
Regard ¢ = t(7), also depending on (v, X), as the inverse of 7(¢) and denote by

Z,,y the random tree process using time parameter 7. It is then sufficient to
imitate the proof for @:. O
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For a given ¢ € C(R?) with ¢(0) = x, S(y) < » and a positive number §
consider Q(y, §), the 6-neighborhood of ¢ in reversed time:
Q(y,8) ={(¢t,y):0<t<Tand|y —¢(T - ¢t) <8}.

Let (Uf(t, ), Us(¢, y)) be the solution of the following system of linear differ-
ential equations:

a
(55 — eDA)8/2)U(8,3) = e es iV + e sV Us],

. )
(1.8) (E - gpz(y)A/z)U; = & g (DU + 3,5(3)Us]

in Q(y, §), boundary value = 0 and initial value = 1.

We derive from [8, Theorem 1] the following Proposition 1.3. It is proved by
large-deviation estimates and the Laplace asymptotic method.

ProposiTION 1.3. The solutions (U, Ug) to the problem (1.8) satisfy the
following:

lim e In U£(T, x)
Loy = sun{ [~ L(o(s), () dsi(T =, 0(5) € 0w, )

for053<Tandqo(0)=x}, k=1,2.

There exists a function f(e), independent of (t,y) and
with ling f(e) = 0 such that
el

eln U;(¢,y)

(1.10) <f(e) + sup{/: — L(¢(s),¢(s))ds: (t —s,e(s))

€ Q(¢,8) for 0 <s < tand ¢(0) =y}
fork=1,2,(t,y) € Q(y,9).

LEmma 1.4, IfS(¢) < o, (0) = x and N(, 8, T') is defined as the number
of branches X with p(X, ) < 8, that is, (T — s, X,) € Q(,8) for 0 <s < T,
then

limsup limsup ¢ In P ,{N(¢,6,T) > 1} < —S(¢) fork=1,2.

60 e—0
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Proor. First, we extend the definition of N(y, 5, T):

N(Gy_,4,8,t) = the number of branches X with

olggi(ths = (Gr_¥)(8)|< 8, where (Gr_¥)(s) =¢(T —t +s).
It is known (cf. [3], [10]-[12] and [17]) that

(112)  EJ {N(Gr_4,8,¢)} = Ug(t,y), the solution of (1.8).

Since P; {N(y,8,1) > 1} < Ef {N(y, 8, )} = UA(T, x), by Proposition 1.3 we
get

lim sup limsup ¢ In P{ ,{ N(¢,8,T) > 1}

(1.11)

-0 e—0
< limsupsup{[T = L(¢(s),¢(s)) ds: (T - s,¢(s)) € Q(, 8) for
80 0

0 <s <T and ¢(0) =x} by Lemma 1.1

- [OT — L(¥(s), (s)) ds.

Had we replaced T by a and repeated the same argument, we would have
obtained

lim sup lim sup & In P{ ,{ N(¢, 8,a) > 1} < [a = L(¥(s),4(s))ds.
60 -0 0

In view of the fact that P; {N(y,8,a) > 1} is decreasing in a, the proof is

complete. O

LEMMA 1.5, If S(¥) < », $(0) = x and N(4, 8, T) is as in Lemma 1.4, then

liminfliminf e In P; {N(¢,5,T) 2 1} > -S(y), k=1,2.

-0 -0 ’

ProoF. First, we investigate the moment generating function of
N(Gr_,¥,8,t) which is defined in (1.11). For 0 < 0 < 1, define

wi(t,y,0) = B ({1 — (1= 0)NOr»29)  k — 1.9 (t,) € Q(y, 9).

In view of the fact that 1 — (1 — 6)" < no for all n > 0, (1.12) and (1.10) in
Proposition 1.3 ensure that u$(t,y, ) converges to 0 uniformly in (¢,y)
Q(y, 8) as € — 0 if @ is chosen to be sufficiently small (depending on ¢ and ).
More precisely, if

T
M 5= sup max —L(¢($), ¢(8)) ds
&, 0: o, ) <5 0st<TIT_4
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and
(M, s +8,) ) -
0,5 5 = exp——————, where §, is a positive number,
v €
then we have
BE,S,SI = sup u‘;e(t1y’ 08,6’61) -0 ase—0.

k=1,2,(,y)eQy,d)
Our assumptions (A1) and (A2) ensure that B > 0 exists such that

ak(y) 1- u;(t’y’ 05,6,81)

K
(1.13) - Z pr(ny,ng,y)(1 - uel)nl(]_ — ue2)n2

ny,ne,=0

= [ck,l(y) - Bﬁe,a,.sl]ui(t,y»oe,s,al) + [ck,2(y) - Bﬁe,s,sl] us,

for all (¢,y) € Q(¢, ) for any fixed 8,8, > 0 and suffi-
ciently small &.

By looking into the time when the original particle dies, it can be derived
that (ui(z, y, 9), u’(t, y, 9)) satisfies the following differential equation (cf. [3],
[10]-[12] and [17]):

ad
[5 - eDk(y)A/z]u;(t,y, 0)

- e-lak(y)[(l — uf)
(1.14)
= T pa(rangy)(1 - ut) (1 - us)™,

ny,ng
k=1,2for (¢,y)in Q(y,d),
boundary value= 0 and initial value=6.

From (1.13), (1.14) and a comparison principle for parabolic equations, it
follows that

(1.15) ui(t, 9,9, 55) = Vi(t,y) fork=1,2,
where (Vi(¢, y), V5(¢, y)) satisfies

d
— —eDy(¥)A/2|Vi(¢,y)

dt
= 8_1{[ck’1(y) - Bﬂsy‘srsl]Vf + [cky2(y) - BBS,S,SI]VZI;}’
k =1,2for (¢,y) in Q(y, ),
boundary value=0 and initial value=6, ; ; .

In view of assumption (A1), ¢, 5(y) — BB, ; 5, and ¢, ((y) — BB, ; 5, are uni-
formly positive as ¢ — 0 and Proposition 1.3 is thus applicable to V(¢,y). A
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simple computation shows
limeInVi(T,x) = —(M, ; + 8,)
e—0

T
+ sup [ —L(e(s),é(s)) ds
e0)=x, plp,p)<6"0

\%

-8, — M+f L(w(s),4(s)) ds

= -8+ inf [ min L((p(s) ¢(s)) ds

@:plo,9)<8 | 0<a<T7/q
+joT — L(¥(s),6(s)) ds.

Lemma 1.1 then implies
lim inf lim 1nf eInVi(¢, x)

-0 -0

-8, + min /;L(np(s),d}(s))ds

2

(1.16) + 7= L(v(s), b(s)) ds

-8, — max aL(w(s),nﬁ(s))ds

0<a<TY0
-8, - S(y) fork=1,2.

Since P; {N(y,8,T) > 1} > EZ {1 — (1 — ON®>T} = u5(T, x, 0) for 0 <
0<1, Q1. 15) and (1.16) yield the des1red result upon letting &, tend to 0. O

ProorF oF THEOREM 1. The lower semicontinuity of S is proved in Lemma
1.1. To prove the compactness of the level sets, we only need to show that {¢:
S(¢) < A and ¢(0) = x} is precompact in the uniform topology for each A < .
To prove this, recall D := sup, cge -, 2 D;(x) and define

C, ;= supc; ;(x), i,j=1,2finite by assumptions (A1) and (A2)],
xeR?
. AN 61 1 (_:'1 2
A := the largest eigenvalue of the matrix C = | _~"~ _""|,
Con Cop
. )
H*(p) = the largest eigenvalue of the matrix D—2— identity + C
—Ipl*
= D—l;— +A, peR9

lql?
L*(q) = sup [q-p — H*(p)] = 25 -2, gqeR9.

pERd
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It follows easily that if ¢ is a.c., then

1
S(9) = [[L(p(),6(s)) ds = ["L*(4(5)) ds = —= ["|(s)[ ds - T
0 0 2D’
Thus {¢: S(¢) <A and ¢(0) = x} is contained in {¢: (1/2D)(JI¢(s)* ds <
A+ T) and ¢(0) = x}, which is precompact in the uniform topology. The
desired compactness is established and (1.1) is proved.
To prove the upper bound (1.2), note that

P ,{Z contains a branch X € C}
< P; 4{Z contains a branch Y with [[Y|l; /4 > A}
+ P; 4{Z contains a branch X € C with || X|l; 4 < A}
= I3(A) + I5(A).
Thus

lim sup ¢ In P ,{Z contains a branch X € C}

e—0
(1.17)
< max| limsup £In I{(A), limsup ¢In I5(A)|.

-0 -0

By Lemma 1.2 and the fact that if C is closed, then C N {¢: lloll;/4 < A} is
compact, (1.17) guarantees that to prove (1.2) it suffices to verify
limsup, ,o¢eln P {Z contains a branch X in a compact subset K} <
—inf, . ¢ S(¢). This limiting inequality is a rather simple consequence of
Lemma 1.4. The lower bound (1.3) follows easily from Lemma 1.5. O

2. Large deviations for the number of branches. To be precise,
Conjecture 2 consists of the following two parts [again assume S(y) < © and
$(0) = x1: )

If A>max,_, [T — LW(s), ¥(s))ds, then

A
lim sup lim sup ¢ In P/ k{N(l//,cS,T) >exp —[N(¢,8,T) > 1} <0.
550  e-0 ' €

If A<max,_,_p [T — L@W(s), y(s))ds, then

A
lim sup lim sup ¢ In P} k{N(np 8,T) <exp— N(y,5,T) > 1} <0.
8—0 e—0

In Theorem 2 we shall prove that the first limit is in fact — . The second limit
will be calculated elsewhere.
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THEOREM 2. For S(¢) < » and ¢(0) = x, we have the following:
lim sup limsup ¢ In E; ,{N(y,5,T)"}
60 -0

(2.1)
<-Sy) + nomafoT - L(np(s),(/}(s)) ds foreachn > 1.
T SR
IfA > ogi?i‘Tfa — L(¥(s),4(s))ds, then
(2.2) A
lim sup lim sup ¢ In Pj,k{N(d/, 8,T) =exp ';’N((/I, 6,T) = 1} = — oo,
850  £-0

Proor. For notational simplicity we first prove this lemma for the process
Q; defined in the Introduction. Modifications needed for the general case will
be pointed out in the end.

Let n!wi(¢, y) denote the nth moment of N(G,_,y, 5, ¢), that is,

wi(t,y) = E{N(Gr_,8,¢)"}, neN,

where EJ is the expectation associated with @;. Denote by v®(z,y,1) the
moment generating function

v(t,y,A) = Eg{exp[ -AN(G,_,,5,t)]}, Ar=0.
We have the following equation for vé(, y, A) (cf. [3], [10]-[12] and [17]):
d €A c 9 .
(5 - —2—)v‘s = ;[(ve) - US] in Q(y, ),
boundary value = 1, initial value = exp(—A).
By this differential equation and the formal expansion

v (¢, y,A) =1+ ), (—1)"wf,(t,y)/\",

n=1
one arrives at the following sequence of formal differential equations (cf. [13]):
d €A c .
(2.3) (5 B ?)wf = Gwi in 80,9,
boundary value = 0, initial value = 1.

For n > 2,

a €A c cnt .
(2.4) (5 - —Z—)w; = wp+ El wfw:_; in Q(y,8d),

boundary value = 0, initial value = 1.

For n > 1 particles existent at time ¢, we shall call their ancestral paths
(¢1,¢02,...,9,) = @™ an n-branch during the time interval [0, ¢]. Denote by
C; . the set of n-branches during [0, ¢]. Define the splitting time T": C..—[0,¢]
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and the function F, ,: C, , = (—o, ] as
T (@1, @z) == max{b: 0 < b <tand ¢,(s) = ¢,(s) for 0 < s < b},

Folo) = [[ = L(o(o),6(0))ds + [ = L(ga(s), éa(s)) ds

+ — L(gs(s), 65(s)) ds + - --

max[r(¢3: (Pl)r r(‘P3’ ¢2)]
t
+ — L(¢,(8),¢,(s))ds.
max[r((Pnr(Pl) :::: r((Pnr‘Pn—l)] ((P( ) gD( ))
It is easy to check that F,, is symmetric with respect to ¢,,...,¢,. We
claim that:
There exist fi(e), fy(e),..., independent of (¢,y) e
Q(y, 8) and lin})f,,(e) =0 for each n > 1, such that
e In wi(t, y) < f,(e) + sup{F, (¢"): (t — s, ¢,(s) €
Q@, 8) for 0 <s <t and (pJ(O) y for1 <j <n}.

Recall that —L(x,q) = ¢ — 1lg|® in the case of Q¢. (2.1) follows from the
assertion (2.5) by the following computation:

(2.5)

limsup limsupe In w; (T, x)
-0 e—0

< limsup sup {Fp .(¢"): (T —s,¢,(s)) € Q¢,8) for0 <s<T

-0 ¢meCr.,

and ¢;(0) =x for1 <j < n}

IA

6—0 ‘41

lim sup [sup{/? — L(@q(s),¢1(s))ds:
(T —s,04(s)) € Q(¢,8)for 0 <s < T}

Ly sup{f: — L(¢;(s), ¢,(s)) ds

j=29,a

(T -s,0;(s)) € Uy, 8) for0 <s < T} ,

which by Lemma 1.1 equals
joT ~L(#(s),4(s))ds + (n — 1) max fT — L(¥(s),(s))ds

= min —L(t/r(s) n//(s))ds+n max f L(¢(s),4¥(s))ds

0<a<T790

~S(¥) +n maxj L(¢(s),(s))ds
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Next, we prove the assertion (2.5) by induction on n. For the problem (2.3)
the following Feynman—Kac formula holds:

1
wi(t,y) = M;{exp[;j:cds]; (t—5,¢) e Qy,8)for0<s < t},

where M denotes the expectation with reference to £'/*(BM) starting from y

and ¢, denotes the sample path. A Laplace asymptotic method then shows

limsupe In wi(t,y) < sup{fot(c - %|¢(s)|2) ds: (t —s,¢(s)) € Q(y,d)

e—0

for 0 < s <t and ¢(0) =y}

- sup{jo‘ — L(e(s), é(5)) ds: (£ — 5, 0(5)) € Q(¥,5)

for 0 < s <t and ¢(0) =y}.

By the local uniformity property of the large deviations for small BM, it is
readily checked that (2.5) holds for n = 1.

The solution wZ(¢, y) of the problem (2.4) admits the following Feynman-Kac
representation:

wy(t,y) = wi(t,y)

n—1 1 s
> M;{fonlﬂwf(t =8, )w,_,(t — s,{s)exp[;focdb] ds},

i=1
where 7,[{] = min{s: (¢ — s,{,) & Q(y, §)}.

Applying the smaller-n cases of (2.5), the Laplace asymptotic formula gives

limsupelnw;(t,y) < sup{E_n(¢"): (2 —s,0;(5)) € (¢, 8)
>0
for0 <s <t ¢;j(0) =yforl<j< n}.

Again, the local uniformity property implies (2.5) and ends the induction. (2.1)
is completely proved in the case of Q.

For the general branching diffusions P;,, we consider a related Markov
diffusion-transmutation process ({Z, »?) uniquely characterized by

d{; = &'?D,({))/* dB,, where B, is a d-dimensional

BM, v! is {1,2}-valued with Prob{y{ , =1l{; =y and
cm,l(y)

vi=m}= " b+o(b)as b >0 for (m,1)=(Q1,2)
or(2,1), {§ =x and v§ = k.

Denote the corresponding expectation by M; ,. The modification needed con-
sists in replacing £!/2(BM) by the diffusion-transmutation process ({7, v}).
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The large-deviation action functional for ({;,v{) as ¢ — 0 is derived in [8].
Correspondingly, we define

1
Wi (6y) = — B {N(Gr_,5,)"),  neN.

The differential equaticns for wy , are

(;_t —eD,(y) = )wi,l(t,y)

=& g, 1(¥)wi 1 + ¢ 2(¥)wh o] fork =1,2in Q(y,5),
boundary values = 0, initial values = 1,
and for n > 2,

(5"; - Epk(y)A/z)wk w(t,9)

= E_I[Ck,l(y)wi,l + ck,z(y)lez,Z]
+ G, (y, w‘f’l, ce WS 1, Wh ..., Wh , ) for kR=1,21in Q(¢, 8),
boundary values = 0, initial values = 1,

where G, is such that G,(y, w§ |A, ..., wS A" "L ws A, wh, A" Disa
homogeneous polynomial in A of order n for each y € R9. For wj, ((¢,y) the
following Feynman-Kac formula is valid:

1 .
wi (8, y) = k{eXP[ f(cus,1(§s) + cus,z(fs))ds

(t—s,¢) eQ(¢,5)forOs.s<t}.

A Laplace asymptotic method shows that

lin})s Inw; (T, x)

< sup{fOT — L(g(s),é(s)) ds: (T — 5, 0(s5)) € (¢, 5)

for 0 < s <t and ¢(0) =x}.

This result, together with the needed local uniformity property for large
deviations, has been stated in Proposition 1.3. Since the same kind of argu-
ments as for M works nicely for M ,, we omit the details.

By (2.1), the Chebyshev 1nequa11ty ‘and Lemma 1.5, we get

lim sup limsup ¢ In P; k{N(d/ 5,T) >exp—‘N(¢// 5, T) = }

8—-0 aad ]

< n[ max aT — L(¥(s),6(s)) ds —A].

O0<a<T
Letting n tend to « yields (2.2) and completes the proof. O
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3. Large deviations for the 2-branches. Recall that a 2-branch is an
element of C(R?)%. Under the process Py ,, a 2-branch X2 = (X, X,) satisfies
X,(0) = x = X,(0) a.s. We introduce two functionals I' and ©: C(R%)? - [0, T']
and a functional S,: C(R%)? — [0, «]:

Ip? =max{a:0<a < T, ¢,(t) = ¢,(¢) for 0 < ¢t < a},
where ¢? := (¢,, ¢,). [ X% means the splitting time of X; and X,, that is, the
death time of the most recent ancestor of the branches X, and X,:
0p? = max{b: 0 <b<Tg? jo”L(%(s), $1(s)) ds
(3.1)
- max szaL(gol(s),gbl(s))ds}.

O<ax<Tep

Action functional for the 2-branches:

2
[27 Ligx(5), $:(5)) ds
2
Sa(¢?)={  + Y max|0, max [ L(g(s),é:(s))ds,
i=1 Te?<a<T ' Op?
if % == (¢, ¢,) isa.c.,
+ o, otherwise.

Let 0 .= @¢2. The following formula is easy to check:

2
S2(¢’2) = S(‘Pl,F‘PZ) + Z S(Gep;, T — 0)
i=1

(3.2)

2
= S(¢1,0) + x S(Gee;, T — 0),
i=1
where S(g, b) is defined as S(¢) in Section 1 but with T replaced by b and
(GopXs) = ¢(6 + s).
We impose on C(R%)? the topology induced by the metric p,:

p2( 9% ¢?) = min{max[p(ey, ¥,), p(@2, ¥5)], max[p(¢1, ¥3), p( g, ¥1)]}-

p, gives a uniform topology on the symmetrized space C(R?)?/{(¢,, ¢,) =
(‘Pz, 4’1)}-

If the particle does not multiply under the branching mechanism, then the
probability that the sample tree Z contains a 2-branch is 0. To anticipate a
nontrivial large-deviation phenomenon for the 2-branches, it is therefore
natural to assume the following multiplying condition:

For each k = 1,2, x € R?, there exist n,,n, such that

(33) ni+ny,>2and p(ny,n, x)>0.
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THEOREM 3. If condition (3.3) is satisfied in addition to assumptions (A1)
and (A2), then £~ 'S, is the action functional for the 2-branches of the family
of branching diffusions P; ,, ¢ —> 0, k = 1, 2. This statement means the follow-
ing in the p, topology:

(3.4) S, is lower semicontinuous and the level set {¢p*: S,(¢?) < A and
©%(0) = (x, x)} is compact for each 0 < A < » and x € R,

3.5) If C is a closed subset of C(R?)? N {p% ¢©%0) = (x, x)}, then
lim supe In P; {the sample tree Z contains a 2-branch in C} <
>0
— inf Sy(¢?) fork =1,2.
o?eC
(3.6) If G is an open subset of C(R?)? N {p%: ¢%0) = (x, x)}, then
liminf ¢ In P; J{the sample tree Z contains a 2-branch in G} >

e—0
— inf S,(¢?) for k =1,2.

o2eG

Proor. From (3.2) and Lemma 1.1, we see that S, is the sum of three
lower semicontinuous (in the p topology) functions, which is readily checked to
be lower semicontinuous in the p, topology. To verify the property of compact
levels, it suffices to prove that, for each A, A = A(A, x) = {¢?: S,(¢?) < A and
@2(0) = (x, x)} is precompact. Recall that D := sup;,_; 5 ,cge D,(x). From the
definition of S,, we have

\%

1 Op2 . Z2 .r . 1
Sa(¢?) ﬁ[/o “lgu(s)|” ds + z /®¢Zl¢,~(s)12ds] - 2TA

> —l_—fT|q'>~(s)]2ds — 2T\ for i = 1,2, where (¢, ¢5) = ¢>.
= 9D 0 i [ 1 Y2
So,
AcC {gozz ¢1(0) = x = ¢4(0), fTI¢i(s)|2 ds < 2D(2TA + A),i = 1,2},
0

which clearly is precompact. (3.4) is proved.

To prove the upper bound estimate (3.5), we use Lemma 1.2 and the same
kind of argument as used in the proof of Theorem 1. It turns out that we only
need to show

lim sup lim supe In P; ,{Z contains a 2-branch X? with p,(X?2,¢?) < 8}
(3.7) #-0  e=0

< =8y(¢?) for Sy(y?) < .
From now on we fix a 2 with S,(¢2?) < » and ¢%(0) = (x, x). Let 6 := O¢2.
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For each A > 0 we have
P; ,{Z contains X? with p,(X?, y*) < 5}

A
< P NG 0,0) = e =)

A
(3.8) + P;’k{l < N(¢,,8,0) < exp = at least one of these branches
stays in the §-neighborhood of ¢, and at least one in the
d-neighborhood of ¢, during the time interval [0, T ]}

= B,(&,8, A) + By(¢,6, A).
From Theorem 2 (T replaced by #) and the fact that, by (3.1),

max [ - L(‘/ﬂ(s), ‘/fl(s)) ds

0<ax<6/q .
= | amas, [L(()v (1) 5| = L), i) s
- ‘L /\(s)) d
[ 40
— max_["L(y(s),dx(5)) ds=0,
O<a<Ty270
we get
(3.9) lim sup lim supe¢ In By(¢,8, A) = —o foreach A > 0.

8§-0 e—>0
Next, we estimate By(e, §, A):
By(£,8,A) < P {N(¢,,8,0) > 1}

2 A
X n(exp—) sup P; {N(Gg¥;,8,T - 6) = 1}.
i=1 € J1y—uy0)l<s, m=1,2
From its proof Lemma 1.4 is readily checked to hold with the following
uniformity property:
lim sup lim supe In sup P; {N(Gu;,8,T — 0) > 1}
5§50  £-0 ly—p(®]<8, m=1,2
< =8S(Guy;, T - 9).

This implies

lim sup lim sup¢ In B,(¢,6, A)

5§50 -0

(3.10) 2
< —S(¢1,0) + 2A - Y S(Gey;, T - 0),

i=1
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which by (3.2) equals 2A — S,(¥?). (3.7) follows from (8.8)—(3.10) and from
letting A tend to 0. The upper bound (3.5) is established.
The lower estimate (3.6) is equivalent to

liminf lim inf & In P¢ ,{Z contains a 2-branch X?
§-0 e—>0 ’

(3.11) with p,( X2, y¢?) < 8)
> —S,(¢?) for ¢ such that S,(¢?) < @ and x € R?.

This limiting inequality is easy to derive for § = 0 or 7. We omit the details.
To prove this for 0 < < T, first observe that

P; ,{Z contains X? with p,(X?,¢?) < §}

2 Py {{N(41,7,6) = 2}

2
X inf Pt IN(Gy,,8, T —6) = 1},
(3-12) il:Il ly—g @<y, m=1,2 ¥ m{ ( oV ) . }

forany0 <y <

2
= 1(87 'Y)i=l_[1Ji(5’ 7)'

By (1.3) in Theorem 1 we have
liminf e In P, {N(Gy;,8,T — 0) > 1}

-0

2 —S(y —¥y(0) + Gy, T — 0) for |y - ‘h(o)l <.

From the proof of Theorem 1 the following local uniformity is readily checked.
There exists 0 < y(8) < & such that

lim iglf eln J;(e,v(8))
(3.13)

>—-  sup S(y-—¢y(0) + Gy, T—0) fori=1,2.
ly =4 (0 < y(8)

By (1.3) in Theorem 1 and the multiplying condition (3.3), it is easy to see
that

(3.14) limiélfI(s,y(‘o‘)) > —-S(¢y,0).
The limiting inequality (8.11) now follows from (8.12)-(3.14) and the continu-

ity property of D,(x) and ¢, ,(x), k, m = 1,2. This ends the lower estimate
and Theorem 3. O

4. Some remarks. Our results allow us to evaluate many asymptotic
probabilities.
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ExampPLE 1.

limeIn Pg k{the sample tree Z contains a

e—0

branch X with fTIXs!p ds > 1}
0

= —int{S(p): [[Iw(e)F" ds > L and 9(0) = ).

ExaMmPLE 2.

lime In P? k{Z contains a 2-branch X2 = { X;, X,) with diameter

e—0

; X,(s) — X (¢ >1}
k,m=1,1n2,a(.)‘(ss,i£T| k(s) m( )|

= —inf{32(¢2): 9% = (91, ¢3),

s) - t)| > 1and ¢?(0) = (x,x)}.
2B Jou(s) = en(t)] > 1and ¢%(0) = (x, )

ExamPLE 3.

lin(l) ¢ In P; ,{there are some particles in the domain A c R? at time T')
—inf{S(¢): ¢(0) = x and ¢(T) € A}

= — inf L s s)) ds.
0: p(0)=x, p(T)eA 0<a<T ((P( ) gp( ))

ExaMPLE 4.

lime In P; {there are some particles in A and some in B at time 7'}

e—0
= —inf{Sz((pz): #%(0) = (x,x), ¢,(T) € A and 0o(T) € B},
where A and B are two disjoint domains.

By the fact that u$(¢, x, A) .= P; ,{there are some particles in A at time #}
is the the solution of the system of reaction-diffusion equations

a
(5 - SDk(y)A/z)uZ(t’ x,A)
4.1 _ . .
ED |- u) - T im0 - a0 )"
ny,ny

for £ = 1,21in (0,%) X R?,
with
(4.2) u%(0,x,A) = x4(x), theindex functionof A, for £ = 1,2, x € R?,
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we have the following PDE interpretation of Fxamples 3 and 4:

a
limelnu(t,x) = — inf max | L(¢(s),¢(s))ds
3. 50 k( ) ¢: p(0)=x, p(T)cA Osast'/(; (GD( ) (P( ))

fork=1,2,¢t>0, x € R%.
lin})sln[ui(t,x, A) +u5(t,x, B) —u5(t,x, AU B)]
4. T
= - inf Sy(0?).

0% pH0)=(x, %), p{(1)EA, px(t)EB

Statement ' is closely connected with the phenomenon of wave front propaga-
tion in the reaction—diffusion system (4.1) as ¢ — 0, studied by many authors
(cf. [1], [5]. Statement 3’ distinguishes itself from [1] and [5] in that it
considers space-nonhomogeneous systems and gives a new formula for the
wave fronts. For wave front propagation in the case of one reaction—diffusion
equation, see, for example, [4], [6] and [7]; in the case of a weakly coupled
reaction—diffusion system, see [7].

With minor modifications, one can generalize our results to incorporate
small diffusions with drift (corresponding to the elliptic “operators
eL{ j_1037(x) 8% fox,0x; + ¢ bi(x)3/dx;, k = 1,2), more than two particle

’

types and n-branches, n > 3. It is als. possible to adopt the Holder norm of

any order ¢ < } rather than the uniform topology.

Acknowledgment. The author would like to thank the referee for valu-
able comments.
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