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STRING MATCHING: THE ERGODIC CASE*

By PauL C. SHIELDS

University of Toledo and Eétvés Lorand University

Of interest in DNA analysis is the length L(x7) of the longest sequence
that appears twice in a sequence x{ of length n. Karlin and Ghandour and
Arratia and Waterman have shown that if the sequence is a sample path
from an iid. or Markov process, then L(x}) = O(log n). In this paper,
examples of ergodic processes are constructed for which the asymptotic
growth rate is infinitely often as large as A(n), where A(n) is subject only to
the condition that it be o(n).

Let A denote a finite set and let x} denote the sequence x,,,%,,.1,..., %,

where each x; € A. Define L(x}) to be the length of the longest block which
appears at least twice in x7, that is,

L(x{) = max{k:3s,t;0 <s <t <n — k, for which x:}* = x4}

The asymptotic behavior of L(x}), along sample paths from a stationary,
finite-alphabet ergodic process, is of interest in DNA modeling. At first glance
it would seem that this asymptotic rate should have the form (log n)/H where
H is the entropy-rate of the process, or at least one would hope that L(x}) =
O(log n). Results of this type have been established by Karlin and Ghandour
(1985) and by Arratia and Waterman (1989) for i.i.d. processes and Markov
processes. It is not difficult to see, using the ideas in Ornstein and Weiss
(1990), that for an arbitrary ergodic process, (log n)/H is an asymptotic lower
bound in the almost sure sense, that is,

L(x}
lim inf (#1)

—>1, al ly.
mir (logn)/HZ , most surely

The goal of this paper is to show that, in general, this entropy bound is not
tight for the general class of ergodic processes. We show that for any ergodic
process {X,} and function A(n) which is o(n), there is a stationary coding, {Y,}
of {X,}, such that

limsupL(Y*)/A(n) = 1, almost surely.
n—o
Our construction is quite simple, although it uses a technique that may not be
well known outside ergodic theory.
For our purposes, a stationary process is a shift-invariant measure x on the
space AZ of doubly infinite sequences drawn from A; A is called the alphabet.
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A stationary coding is defined by a shift-invariant measurable function, called
the coding function, F: A%Z — B%, where B is a finite set. Here measurable
means measurable with respect to the Borel sets in the two product spaces,
and shift-invariant means that F(T,x) = Tz F(x), for p-almost all x, where T,
and Ty denote the respective shifts on AZ and BZ. The coding function F
transports the given stationary measure u to a stationary measure v on B?
which we denote by F(u). Thus if u is the measure corresponding to the
stationary sequence {X,};-%_, of random variables, then v is the measure
corresponding to the sequence {Y,}Z%, defined by Y,, = F({X,,, . J:=>.).
Our basic result is the following.

THEOREM 1. Let p be an ergodic process with alphabet A and suppose
lim, A(n)/n = 0. There is a stationary coding function F; A%Z — A% such that
if y = F(x), then

limsupL(y7)/A(n) = 1, almost surely.

Our coding function will be obtained by iterating the construction given in
Lemma 1 below, a construction that shows how to make L(y]*) large in
probability for a fixed m by a code that makes only a small percentage change
in each sequence x. To quantify changes in infinite sequences, we use the
limiting average Hamming distance defined by

d(x,y) = limsup— 3 d(x;,%,), 4,y €A%,
n i=1

where d(a,b) =1if a # b, d(a,b) =0if a = b.

LEMMA 1. Let p be an ergodic process with alphabet A, let m and k be
positive integers such that k < m /4 and let ¢ be a positive number. There is a
coding function F = F(u,k,m,¢) such that the encoded process v = F(u)
satisfies:

@ v({y™ Ly =kD=1—¢.

(b) u{x: F(x)y # x,}) < 2k/m.

Proor. Let g be the greatest integer in m /2. The function F(x) will be
defined by partitioning x into nonoverlapping blocks, each of length no more
than g, such that most of the blocks will have length exactly equal to g. Then
k changes will be made in each g-block to guarantee that each such block will
contain matching strings of length k. We take for our g-block coder the
function that simply replaces the last £ symbols in a g-block by the first %
symbols, namely the function ¢, ,: A™ — A™ defined by

¢k,m(af) =b§, bi=ai, ISng—k, bg_k+i=ai, ISISk.

Note that our definition insures that if 5§ = ¢, ,(a$), then L(b%) > k and
Yéd(a;,b,) < gk.
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The partitioning of a given sequence x is done by using the punctuation
scheme described in Shields and Neuhoff (1977), which is essentially the same
as the Rochlin tower coding technique used in Ornstein (1974). Let 6 be a
positive number to be specified later and choose a cylinder set C such that
0 < u(C) <. Fix x € AZ and define the increasing sequence n; = n,(x) by
the condition T'"ix € C. (Note that the set X of sequences x for which
infn; = — and supn; =~ has measure 1 with respect to every ergodic
measure so the coding functlon can be defined arbitrarily outside X.) The
g-block coder is applied to successive g-blocks starting with n;, until we get
within g of n,.;. To make this precise, for each i determine nonnegative
integers q;, r; such that n, ., —n,=q,g +r;,, 0 <r, <g. Define F(x) =y,
where

+(+1)g-1 _ +(j+1)g-1 .
YR = ¢y (2T GTETY),  0<j<g;,

Yni+q.g+i = Fni+qig+ir 0<j<r.

This defines the coding function on a set of full measure. At most £ changes
are made in any block of length g < m /2, so that condition (b) certainly holds.
The proof will be complete if we can show that § can be chosen so that
condition (a) holds. If a block of length m in x contains one of the blocks
xpifJ*De=1 0 < j < g, then the definition of ¢ guarantees matching strings
of length at least k. If a block of length m contains no such block, then it must
contain at least one of the x, .,..,;, 0 <j <r; by the ergodic theorem the
probability of this happening can be made arbitrarily small by choosing 6
small enough. This completes the proof of the lemma. O

Proor oF THEOREM 1. Let {¢;} be a sequence of positive numbers such that
L ;& < and let {n;} be an increasing sequence of positive integers such that
Mn;) <n;. Put p; = u and use the lemma to define inductively

F, = F(u;; M(n;),n;, 8i); Miv1 = F;(#z) ‘
Condition (b) of the lemma guarantees that

I~Li+1({x3 Fi(Fi—l( T (Fl(x)) tr ))o * xo}) < éIZ)‘(nj)/nj-

Thus if we assume

Y 2M(n;)/n; < =,

then we are guaranteed that almost surely each coordinate will get changed
only a finite number of times and hence the sequence of codes will converge to
a limit code F. 3

Now we want to guarantee that for the limit process v = F(u), the probabil-
ity

v({xpi: L(x7) < A(ny))})
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is summable in i, so that almost surely L(x{:) can be less than A(n;) only
finitely often. We are already guaranteed by condition (a) of the lemma that at
the ith stage,

pi({xfi: L(xp) <A(n))) <eg

and need only make sure that the subsequent codes do not have large effects
on this probability. This can be accomplished by selecting the n; a bit more
carefully, namely, we choose n;,, so much larger than n, that the density of
changes, 2A(n;,,)/n;, ,, is so small that the following holds:

E.

/.Li({x{‘f: L(x{) < )t(nj)}) < ui_l({x{‘i: L(x{) < /\(nj)}) + 5-1_7, j<i.
This will guarantee that for the limit measure v the following holds for all j:
V({x{‘f: L(x{) < )t(nj)}) < 2¢;.

Thus, since we assumed that L ¢; < », the theorem is established. O

Note that the Ornstein isomorphism theory [see Ornstein (1974)] guaran-
tees if the original process u is i.i.d., then the limit process will be a Bernoulli
process, that is, it will be isomorphic to some i.i.d. process; in particular, the
limit process will have very strong mixing properties. Note also that our proof
actually shows that codes can be obtained that satisfy the theorem and that
make as small a density of changes in the original process as we please.

REMARK. The referees raised the following two questions.

QuEsTION 1. “What is going on here?”’ That is, what conditions on a
stationary process are necessary and sufficient for log n type laws to hold for
string matching?

QUESTION 2. Does every ergodic process have an isomorphic image with
arbitrary string matching asymptotics, that is, the property given in Theor-
em 1?

The construction used in this paper does not shed much light on Question 1
other than the negative result that even very strong mixing properties, such as
the very weak Bernoulli (VWB) property, are not enough. The author has
recently constructed examples showing that conditions stronger than VWB are
needed to get positive results about several other entropy related properties,
such as prefix generation, waiting times, exponential rates of type II error
probabilities and redundancy rates. [The prefix result is in Shields (1992); the
other results are more recent.] These and our string matching results raise a
whole host of questions about what is going on, including the question of
necessary and sufficient conditions in each case and the more general question
of whether any of these results are related.
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We suspect that there are no nice necessary and sufficient conditions for any
of these problems. The more interesting question is to determine a class of
processes which is big enough to include the processes of interest in a large
class of applications, such as DNA modeling, universal coding, hypothesis
testing and engineering design, but small enough that nice entropy properties
will hold.

An isomorphism is a stationary coding for which the coding function F is
invertible. The answer to Question 2 is unknown in general, but a positive
answer can be given for the isomorphism class of an ii.d. process. This is
because there is a VWB process of any given entropy with arbitrary string
matching asymptotics, for it is easy to modify the proof of Theorem 1 to obtain
a homomorphic image of any given smaller entropy. Since VWB processes of
the same entropy are isomorphic, this indeed shows that the isomorphism
class of an i.i.d. process contains processes with arbitrary string matching
asymptotics.
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