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BINOMIAL MIXTURES AND FINITE EXCHANGEABILITY

By G. R. Woop
University of Canterbury

We answer two questions: “What is the probability that a randomly
chosen distribution function on {0, 1,..., n} is a mixture of binomial distri-
butions?”’ and ‘“ What is the probability that an n-exchangeable sequence is
the initial segment of an infinite exchangeable sequence?”’ Curiously, the
answers are the same.

1. Introduction. Suppose that we choose at random a probability distri-
bution function on {0,1,..., n} for some fixed natural number n. In the first
half of this paper, we calculate the probability that the distribution chosen will
be a mixture of binomial distributions. We set the problem geometrically, and
so introduce a probability model which makes the problem precise. Results are
summarized in Theorem 1 and explicit numerical values are given in Table 1.

A closely related problem is discussed in the second half of the paper. Here
we choose at random an n-exchangeable sequence of 0—1 random variables and
calculate the probability that it is the initial segment of an infinite exchange-
able sequence of 0-1 random variables. We review the geometry of this
problem, as introduced in Diaconis (1977), and present the main results in
Theorem 2. This is followed by Table 2 which shows the probabilities as limits
of values presented in Crisma (1982).

2. Binomial mixtures. Let h(i|p) be the binomial probability distribu-
tion function, with parameters n, a natural number and p, 0 <p <1. A
probability distribution p = (py, py,...,p,) on {0,1,...,n} is a mixture of
binomial distributions if

(1) pi = ['h(ilp) dG(p) fori=0,1,...,n,
0

for some cumulative distribution function G on [0, 1].
For fixed n and p, we may view h(i|p) as a point in R"*!, the (n + 1)-tuple

(k(0lp), h(1lp), ..., h(nlp)).

If we now allow p to move from 0 to 1, these points trace out a ‘‘binomial
curve” B, in the simplex T, = {x = (xy, x7,...,%,): L7 ox;, =1 and x, > 0
for all i} of all probability distribution functions on {0, 1, ..., n}. Mixtures p, as
defined in (1), are then seen geometrically as elements of the convex hull of the
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Fic. 1. The simplex T, of probability distribution functions on {0,1,2}, the curve of binomial
probability distributions B, and the mixtures of binomial distributions, co B,, shaded.

binomial curve, denoted co B,. The sets T,, B, and co B, are pictured in
Figure 1. Here

B,={((1-p)*2p(1-p),p?):0<p <1}.

We consider T, equipped with Lebesgue measure and assume that a distri-
bution p is drawn from T, according to this measure. In order to find the
probability that p is a mixture of binomial distributions, we determine
the n-dimensional volume of co B,,, denoted V(co B, ), and compare it with the
volume of the containing simplex, V(T,). The results are presented in the
following theorem:

THEOREM 1.
n 1
(i) V(coB,) =Vn + 1 (n!)"*k]:[1 TR
(i) V(co B,,) _ (n!)n 11{ 1

V(T.) p=1 (2 — 1)1
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(iii) Given 0 < r < 1, there exists an n such that for n > n,,
V(coB,,;)  V(coB,)
V(T | V(T,)
Thus, a fortiori, V(co B,)/V(T,) —» 0 as n — .

Table 1 shows some values of the ratio V(co B,)/V(T,) for low n and
points to their rapid convergence to 0.

TaBLE 1
The probability that a randomly chosen distribution
on {0,1,...,n} is a mixture of binomials
n V(co B,) / V(T,)
2 0.6
3 0.3
4 9.14 X 1072
5 1.89 x 1072
6 2.65 x 1073
7 2.52 x 1074
8 1.63 X 107°
9 7.17 x 1077
10 2.14 x 1078
12 596 x 10712
15 153 x 10718

PROOF OF THEOREM 1. The proof rests on a single critical observation: The
binomial curve B, is an affine transform of the moment curve M, in R",
where

M, ={(p,p%...,p"):0<p <1}.

An affine transform [see, e.g., McMullen and Shephard (1971), page 14] is the
composition of a linear transformation and a translation. We show that
B, = A(M,), where the affine transformation A: R* — R™*' has the form

Ax = Lx + e; foreach x € R”,

with e; = (1,0,...,0) the first standard basis vector in R™*! and L the map
taking R” linearly onto the hyperplane H in R"*! orthogonal to the equian-
gular vector, (1,1,...,1). Specifically, L has matrix ({,;) for i = 0,...,n, and

j=1,...,n, where
i—i(n\(n—1i ..
(-1’ (i)(j—i)’ J=zt,
0, Jj<it.

It is straightforward to confirm that A(M,) = B,, whence it follows that
A(co M,) = co B,,.
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The n-dimensional volumes of co M,, and co B, will be related as
V(co B,)) = |det L'|V(co M,),

where det L' is the determinant of L', the (n + 1) X (n + 1) matrix
whose first n columns are those of L and whose last column is the nor-
malized equiangular vector, namely (1,...,1)/Vn + 1. Karlin and Shapley
[(1953), Theorem 15.2] obtained the remarkable result that V(co M,) =
IT;_ (& — D& — DV /(2k — 1), so it remains to compute the determinant of
L'. Fortunately, L' can readily be reduced to upper triangular form as follows.
Replace the second row with the sum of the first and second rows, then replace
the third row with the sum of the new second and third rows and so on. For
k=2,...,n, we find that k — 1 of these elementary row operations brings

k—i n—i|_ _(n
Z (=1 ( )( - z) h (k)
to the kth diagonal pos1t10n, which at the next row operation removes the

value of (Z) lying directly beneath that diagonal element. The nth row

operation produces an upper triangular matrix, with (n + 1)/vVn + 1 in the
(n + 1)st diagonal position. Thus

detL’=(—1)"\/mk]i[1(Z).

Multiplying the absolute value of this determinant and the expression for
the volume of co M,, yields

V(co B,) = n+11‘[[k_l)'(k_1)' " ]

il @R—D!T (n—B)E!
k-1l 1n 1
=V 1D T o= 7 I =

n
=Vvn+1(n)" ! l_[ @E =1’ giving (i).

k=1
Further, V(T,) = vn +1 /n!, so V(co B,)/V(T,) = (n)"T1}_,1/2k —
giving (ii).
Finally, let a, = (nD)*I1}_,1/(2k — 1)!. Then
a,. n+l n+1 n+1
- 2n+1  2n n+2 "

say. Now b, ,/b, can be shown to converge to 1/2 as n — ». Thus &, |0,
whence (iii) follows. O

a,

3. Extending finite exchangeable sequences. Let X;,i =1,...,n,be

random variables taking only the values 0 or 1. Then {X,}* ; are said to be

n-exchangeable if for every fixed sequence of 0’s and 1’s {e;}’; and every
permutation 7 of {1,2,..., n} we have

P(X,=e,..., Xn =e,) =P(X,=¢,),..., X, = €o(n))-
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(O’ 07 1’ 0)

(01 1’ 01 0)

(1’ 07 O’ O)

Fic. 2. The 2-exchangeable sequences, E,, and those which are infinitely extendible, the convex
hull of the curve J, in E,. All are contained in the simplex Ty of all probability distributions on
four points.

An infinite sequence of 0-1 random variables {X,}? ; is termed an infinite
exchangeable sequence if {X,} ; is exchangeable for each n. The initial
segment, {X;}* ;, of an infinite exchangeable sequence is certainly n-
exchangeable. How likely is it that an n-exchangeable sequence is the initial
segment of an infinite exchangeable sequence?

In Diaconis (1977), one view of the geometry behind this question is
elucidated. A 2-exchangeable sequence, for example, corresponds to an assign-
ment of probabilities to the four events (X; = 0, X, = 0), (X; =0, X, = 1),
(X;,=1,X,=0) and (X, =1, X,=1), say p,, py, ps and p,, such that
Py = p3. Such 4-tuples may be viewed as the slice E, through the standard
simplex T; in R*, shown in Figure 2.

A 2-exchangeable sequence which can be extended to an infinite exchange-
able sequence corresponds to a point in the convex hull of the curve J, in E,,
given by

Jy={((1 =p)", p(1 = p), (1 - p),p?): 0 < p < 1},

as described in Diaconis [(1977), page 275] and displayed in his Figure 5.

The geometry underlying n-exchangeable sequences can be described in a
similar fashion. Probabilities on {0, 1}" are viewed as points in the standard
simplex T,._, in R?", the n-exchangeable sequences E, as the intersection of
Tyn_, with a suitably chosen n-dimensional flat and the infinitely extendible
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sequences as the convex hull of the curve J, in E,, given by

= {((1 -p) . p(1-p)"" Y, ..., p(1 —p)"_l,...,p"):O <p< 1}.

Details are given in Diaconis [(1977), page 275].

The connection between the two questions of this paper can now be made.
Each distribution p in T,, as described in Section 2, determines an n-
exchangeable distribution w, in E, via the procedure: (i) pick X at random
according to p; and (ii) put X 1’s and n — X 0’s in random order, uniformly
over all (;) possibilities. Moreover, each n-exchangeable distribution arises in
this way. By de Finetti’s theorem, u , is infinitely extendible if and only if it is
a mixture of Bernoulli processes, hence if and only if p is a mixture of
binomials.

If the probability model for random n-exchangeable sequences is ““‘choose p
using Lebesgue measure on T, and then use Ky’ then certainly the questions
have the same answer. That this probability model for random n-exchangeable
sequences is equivalent to the direct use of Lebesgue measure on E, follows
from the fact that the map taking p to u, can be expressed as the restrlctlon
of a linear map. Specifically, it occurs as a composition D o U - E, where

E: R"*! > R?" is an embedding,
U: R* > R? is an isometry,

D: R* - R?" isadilation.
By a dilation we mean a mapping which has a positive diagonal matrix with
respect to some orthogonal basis. The construction is routine, so is omitted. It

reveals that the volume of E, is [1}_,1/ -\/ (Z) times that of T,,. We can sum
matters up as follows:

THEOREM 2.
(i) V(cod,) = Vn + 1 (n)® V72 H (212 - 11);'
s V(co J,) n 1

(ll) W = l:[ — 1)‘

V(CO Jn)

(lll) —V—(ET—)O asn — oo,

For n <6 and r > n, Crisma (1982) was able to compute the probability
that an n-exchangeable sequence is extendible to an r-exchangeable sequence.
His technique involved a challenging summation of simplex volumes. Theorem
2(ii) provides the limits to which his values tend as r — . Table 2 presents
Crisma’s results, together with the limiting values.

For n > 6 and r > 1, the values in the table are based on Crisma’s
conjectured form for the probability that an n-exchangeable sequence is
extendible to an r-exchangeable sequence, given in Crisma [(1971), page 20].
Based upon his conjecture, Crisma obtained our limiting numerical values [see
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TABLE 2
The probability that an n-exchangeable 0-1 sequence is extendible to an r-exchangeable sequence.
Results for finite r are due to Crisma [2]. Entries are given to four decimal place accuracy

r—-n
n 1 2 3 4 5 6 7 8 9 ©

0.8889 0.8333 0.8000 0.7778 0.7619 0.7500 0.7407 0.7333 0.7273 0.6667
0.7500 0.6300 0.5600 0.5143 0.4821 0.4583 0.4400 0.4255 0.4136 0.3000
0.6144 0.4480 0.3583 0.3031 0.2661 0.2397 0.2200 0.2048 0.1928 0.0914
0.4938 0.3054 0.2148 0.1638 0.1321 0.1108 0.0958 0.0847 0.0762 0.0189
0.3917 0.2019 0.1225 0.0828 0.0603 0.0464 0.0372 0.0308 0.0262 0.0027
0.3076 0.1304 0.0673 0.0397 0.0257 0.0179 0.0131 0.0101 0.0080 0.0003
0.2398 0.0826 0.0358 0.0182 0.0103 0.0064 0.0043 0.0030 0.0022 0.0000
0.1858 0.0516 0.0186 0.0080 0.0040 0.0022 0.0013 0.0008 0.0006 0.0000
0.1433 0.0318 0.0094 0.0034 0.0015 0.0007 0.0004 0.0002 0.0001 0.0000

S O Uk W

Crisma (1971), page 24]. This paper offers no evidence to refute his conjecture,
still outstanding after two decades.
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